

Net-Zero self-adaptive activation

of distributed self-resilient

augmented services

D6.2 System Integration on the testbeds, Pilot installations and

implementations.r1

Lead beneficiary NOVA Lead author Ioannis Markopoulos, Angelos

Lampropoulos

Reviewers Jorge Pose, Julio Suárez, Joaquín Escudero (GRAD), Kostas Pournaras,

Kostas Lampropoulos (PNET)

Type R Dissemination PU

Document version V1.0 Due date 31/10/2025

Ref. Ares(2025)9384591 - 31/10/2025

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 2 of 228

Project information

Project title Net-Zero self-adaptive activation of distributed self-resilient

augmented services

Project acronym NATWORK

Grant Agreement No 101139285

Type of action HORIZON JU Research and Innovation Actions

Call HORIZON-JU-SNS-2023

Topic HORIZON-JU-SNS-2023-STREAM-B-01-04

Reliable Services and Smart Security

Start date 01/01/2024

Duration 36months

Document information

Associated WP WP6

Associated task(s) T6.2, T6.3

Main Author(s) Ioannis Markopoulos (NOVA), Angelos Lampropoulos (NOVA)

Author(s) Mohammed Alshawki, Péter Vörös (ELTE), Vincent Lefebvre, Mark

Angoustures (TSS), Nasim Nezhadsistani (UZH), Antonios Lalas,

Virgilios Passas, Asterios Mpatziakas, Alexandros Papadopoulos,

Athanasios Papadakis, Nikolaos Vakakis, Aristeidis Papadopoulos,

Eleni Chamou, Anna Maria Pistela, Evangelos V. Kopsacheilis, Nikos

Makris, Donatos Stavropoulos, Thanasis Korakis, Anastasios Drosou

(CERTH), Maria Safianowska (ISRD), Shankha Gupta, Sumeyya

Birtane, Mays AL-Naday (UESSEX), Kostas Pournaras, Kostas

Lampropoulos (PNET), Edgardo Montes de Oca, Maxime Vinh Hoa La

(MONT), Joachim Schmidt, Leonardo Padial (HES-SO), Tom Goethals

(IMEC), Jorge Pose, Julio Suárez (GRAD), Wissem Soussi, Gökcan

Cantali, Gürkan Gür (ZHAW), Rana Abu Bakar, Layal Ismail, Marco

Lucio Mangiacapre, Francesco Paolucci (CNIT)

Reviewers Jorge Pose, Julio Suárez, Joaquín Escudero (GRAD), Kostas

Pournaras, Kostas Lampropoulos (PNET)

Type R – Document, Report

Dissemination level PU – Public

Due date M22 (31/10/2025)

Submission date 31/10/2025

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 3 of 228

Document version history

Version Date Changes Contributor (s)

v0.1 18/06/2025 Draft initial document for ToC

validation

Ioannis Markopoulos ,

Angelos Lampropoulos

(NOVA), Antonios Lalas

(CERTH), all authors

v0.2 17/07/2025 Finalise testbed setup Testbed Owners

v0.3 04/09/2025 Filalise which component will be

installed in which testbed

Use Case Owners

v0.4 24/09/2025 Finalize test scenarios / test cases Use Case Owners

v0.5 13/10/2025 Deliver final draft Ioannis Markopoulos,

Angelos Lampropoulos

(NOVA), all authors

v0.6 17/10/2025 Review of document completed Jorge Pose, Julio Suárez,

Joaquín Escudero (GRAD),

Kostas Pournaras, Kostas

Lampropoulos (PNET)

v0.7 22/10/2025 Review comments implemented All authors

v0.8 27/10/2025 Quality review completed Eryk Schiller, Leonardo

Padial (HES-SO)

v0.9 30/10/2025 Final review and refinements Antonios Lalas, Evangelos

V. Kopsacheilis (CERTH)

v1.0 31/10/2025 Document ready for submission Antonios Lalas (CERTH)

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 4 of 228

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do

not necessarily reflect those of the European Union or 6G-SNS. Neither the European Union nor the granting

authority can be held responsible for them. The European Commission is not responsible for any use that may be

made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other

participant in the NATWORK consortium make no warranty of any kind with regard to this material including, but

not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the NATWORK Consortium nor any of its members, their officers, employees, or agents shall be

responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the NATWORK Consortium nor any of its

members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss or

damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© NATWORK Consortium. This deliverable contains original unpublished work except where clearly indicated

otherwise. Acknowledgement of previously published material and of the work of others has been made through

appropriate citation, quotation, or both. Reproduction is authorised provided the source is acknowledged.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 5 of 228

Contents
List of acronyms and abbreviations .. 13

List of figures ... 16

List of tables .. 17

Executive summary .. 18

1. Introduction .. 20

1.1. Purpose and structure of the document .. 20

1.2. Intended Audience .. 21

1.3. Interrelations .. 21

2. Testbed Environments .. 23

2.1. 5G Testbed .. 26

2.1.1. 5G-Signal Processing Testbed Infrastructure .. 26

2.1.2. Available cloud and edge resources ... 28

2.1.3. 5G-Core and SDN related resources ... 28

2.1.4. 5G-SDN Testbed Components Set-Up .. 29

2.2. NITOS Testbed Components Set-Up .. 29

2.2.1. NITOS Testbed Infrastructure ... 30

2.2.2. NITOS Testbed Components Set-Up ... 32

2.3. 5GLab Testbed Components Set-Up ... 32

2.3.1. 5GLab Testbed Infrastructure ... 32

2.3.2. 5GLab Testbed Components Set-Up ... 34

2.4. ARNO Testbed ... 35

2.4.1. ARNO Testbed Infrastructure ... 35

2.4.2. ARNO Testbed Components Set-Up ... 37

2.5. Montimage 5G-IoT Testbed .. 38

2.5.1. Montimage 5G-IoT Testbed Infrastructure .. 38

2.5.2. 5G-IoT Testbed Components Set-Up .. 40

2.6. CloudNativeLab Testbed ... 43

2.6.1. CloudNativeLab Testbed Infrastructure ... 43

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 6 of 228

2.6.2. CloudNativeLab Testbed Components Set-Up ... 44

2.7. Patras5G-PNET Testbed Components Set-Up .. 48

2.7.1. Patras5G-PNET Testbed Infrastructure ... 48

2.7.2. Patras5G-PNET Testbed Components Set-Up .. 49

2.8. NCL Testbed Components Set-Up ... 53

2.8.1. NCL Testbed Infrastructure ... 53

2.8.2. NCL Testbed Components Set-Up ... 54

2.9. TSS Testbed infrastructure and Components Set-Up ... 57

2.9.1. TSS Testbed Infrastructure ... 57

2.9.2. TSS Testbed Components Set-Up ... 58

2.10. ISRD Testbed Components Set-Up ... 60

2.10.1. ISRD Testbed Infrastructure .. 60

2.10.2. ISRD Testbed Components Set-Up ... 61

2.11. ELTE Testbed Components Set-Up ... 64

2.11.1. ELTE Testbed Infrastructure .. 65

2.11.2. ELTE Testbed Components Set-Up ... 66

2.12. ZHAW Testbed Components Set-Up ... 69

2.12.1. ZHAW Testbed Infrastructure ... 69

2.12.2. ZHAW Testbed Components Set-Up ... 70

2.13. HES-SO Testbed Components Set-Up ... 70

2.13.1. HES-SO Testbed Infrastructure ... 70

2.13.1. HES-SO Testbed Components Set-Up ... 73

2.14. UZH Testbed Components Set-Up .. 74

2.14.1. UZH Testbed Infrastructure .. 74

2.14.2. UZH Testbed Components Set-Up .. 74

3. Dry Run Tests for NATWORK Components .. 77

3.1. Energy efficient over edge-cloud .. 79

3.1.1. Test procedures / Test cases... 79

3.2. TrustEdge .. 80

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 7 of 228

3.2.1. Test Procedures / Test Cases .. 80

3.3. Feather .. 80

3.3.1. Test Procedures / Test Cases .. 80

3.4. Flocky .. 81

3.4.1. Test Procedures / Test Cases .. 81

3.5. Secure-by-design orchestration ... 82

3.5.1. Test Procedures / Test Cases .. 82

3.6. End-to-End Security Management .. 82

3.6.1. Test Procedures / Test Cases .. 82

3.7. Slice orchestration and slice management for beyond 5G networks 83

3.7.1. Test Procedures / Test Cases .. 83

3.8. AI-Based RIS configuration .. 84

3.8.1. Test Procedures / Test Cases .. 84

3.9. ML-based MIMO ... 84

3.9.1. Test Procedures / Test Cases .. 84

3.10. JASMIN & Filter Mitigation ... 85

3.10.1. Test Procedures / Test Cases .. 85

3.11. DetAction: Detection and reAction against jamming attacks 86

3.11.1. Test Procedures / Test Cases .. 86

3.12. Security-compliant Slice Management ... 86

3.12.1. Test Procedures / Test Cases .. 86

3.13. Multimodal Fusion Approach for Intrusion Detection System for DoS attacks 87

3.13.1. Test Procedures / Test Cases .. 87

3.14. Lightweight SDN-based AI-enabled Intrusion Detection System for cloud-based

services .. 87

3.14.1. Test Procedures / Test Cases .. 87

3.15. AI-enabled DoS attack ... 88

3.15.1. Test Procedures / Test Cases .. 88

3.16. Multiagent AI based cybersecurity support system .. 89

3.16.1. Test Procedures / Test Cases .. 89

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 8 of 228

3.17. Data plane ML ... 91

3.17.1. Test Procedures / Test Cases .. 91

3.18. Wire-speed AI (WAI) and Decentralized Feature Extraction (DFE) 92

3.18.1. Test Procedures / Test Cases .. 92

3.19. Microservice behavioral analysis for detecting malicious actions 93

3.19.1. Test Procedures / Test Cases .. 93

3.20. MTD Controller ... 95

3.20.1. Test Procedures / Test Cases .. 95

3.21. MTD Strategy Optimizer ... 96

3.21.1. Test Procedures / Test Cases .. 96

3.22. MTD Explainer .. 96

3.22.1. Test Procedures / Test Cases .. 97

3.23. AI-driven security monitoring for anomaly detection and root cause analysis in IoT

networks .. 97

3.23.1. Test Procedures / Test Cases .. 97

3.24. Security-performance balancer ... 99

3.24.1. Test Procedures / Test Cases .. 99

3.25. DFE Telemetry .. 99

3.25.1. Test Procedures / Test Cases .. 99

3.26. Secure Data Aggregation .. 100

3.26.1. Test Procedures / Test Cases .. 101

3.27. Federated Learning for edge-to-cloud .. 101

3.27.1. Test Procedures / Test Cases .. 101

3.28. MTDFed .. 102

3.28.1. Test Procedures / Test Cases .. 102

3.29. CIA-hardening of x86 payloads Component ... 102

3.29.1. Test Procedures / Test Cases .. 103

3.30. CIA-hardening of containerized payloads ... 104

3.30.1. Test Procedures / Test Cases .. 104

3.31. CIA-hardening of WASM payloads Component .. 105

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 9 of 228

3.31.1. Test Procedures / Test Cases .. 105

3.32. JDM-xApp ... 106

3.32.1. Test Procedures / Test Cases .. 106

3.33. Liquid RAN ... 106

3.33.1. Test Procedures / Test Cases .. 106

3.34. Liquid Near-RT RIC ... 106

3.34.1. Test Procedures / Test Cases .. 106

3.35. KPM xApp ... 107

3.35.1. Test Procedures / Test Cases .. 107

3.36. Characteristics Extractor ... 107

3.36.1. Test Procedures / Test Cases .. 107

3.37. Key Generator ... 107

3.37.1. Test Procedures / Test Cases .. 107

3.38. Security Evaluator ... 108

3.38.1. Test Procedures / Test Cases .. 108

3.39. AI -Based Anomaly Detection Explainer ... 108

3.39.1. Test Procedures / Test Cases .. 108

3.40. Wirespeed traffic analysis in the 5G transport network .. 109

3.40.1. Test Procedures / Test Cases .. 109

3.41. Detection and mitigation against jamming attacks (HES-SO) 109

3.41.1. Test Procedures / Test Cases .. 109

3.42. Setting up of a Mirai botnet. .. 110

3.42.1. Test Procedures / Test Cases .. 110

3.43. FPGA-based hardware detection of DDoS attacks ... 111

4. Attacks... 112

4.1. DoS attacks and port scans ... 112

4.1.1. Testbed & Service Mapping .. 112

4.1.2. Dataset preparation. ... 113

4.1.3. Training and Validation ... 113

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 10 of 228

4.2. AI-DoS attack ... 114

4.2.1. Testbed & Service Mapping .. 114

4.2.2. Dataset preparation. ... 114

4.2.3. Training and Validation ... 114

4.3. DoS attacks and Brute Force attacks .. 114

4.3.1. Testbed & Service Mapping .. 115

4.3.2. Dataset preparation. ... 116

4.3.3. Training and Validation ... 116

4.4. OT/ICS attacks .. 116

4.4.1. Testbed & Service Mapping .. 117

4.4.2. Dataset preparation. ... 119

4.4.3. Training and Validation ... 120

4.5. DoS, Port Scans, and OWASP ZAP Scans ... 120

4.5.1. Testbed & Service Mapping .. 121

4.5.2. Dataset preparation. ... 121

4.5.3. Training and Validation ... 122

4.6. DoSt Attack ... 122

4.6.1. Testbed & Service Mapping .. 122

4.6.2. Dataset preparation. ... 123

4.6.3. Training and Validation ... 123

4.7. Mirai botnet attack .. 123

4.7.1. Testbed & Service Mapping .. 123

4.7.2. Dataset preparation. ... 124

4.7.3. Training and Validation ... 125

4.8. Data for JASMIN training and evaluation ... 125

4.8.1. Testbed & Service Mapping .. 126

4.8.2. Dataset preparation. ... 126

4.8.3. Training and Validation ... 126

4.9. Eavesdropping attack on PKG ... 126

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 11 of 228

4.9.1. Testbed & Service Mapping .. 126

4.9.2. Dataset preparation. ... 127

4.9.3. Training and Validation ... 127

4.10. Jamming attack ... 128

4.10.1. Testbed & Service Mapping .. 128

4.10.2. Dataset preparation. ... 128

4.10.3. Training and Validation ... 128

5. Conclusions ... 130

5.1. Next steps ... 130

6. References .. 132

Appendix ... 133

A.1 Energy efficient over edge-cloud .. 134

A.2 TrustEdge .. 135

A.3 Feather .. 136

A.4 Flocky .. 141

A.5 Secure-by-design orchestration ... 144

A.6 End-to-End Security Management ... 146

A.7 Slice orchestration and slice management for beyond 5G networks 150

A.8 Signal Processing Services .. 152

A.9 DetAction: Detection and reAction against jamming attacks .. 155

A.10 Security-compliant Slice Management ... 158

A.11 Multimodal Fusion Approach for Intrusion Detection System for DoS attacks 160

A.12 Lightweight SDN-based AI-enabled Intrusion Detection System for cloud-based services

... 162

A.13 AI-enabled DoS attack .. 164

A.14 Multiagent AI based cybersecurity support system ... 167

A.15 Data plane ML ... 170

A.16 Wire-speed AI (WAI) and Decentralized Feature Extraction (DFE) 172

A.17 Microservice behavioral analysis for detecting malicious actions 176

A.18 MTD Controller ... 181

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 12 of 228

A.19 MTD Strategy Optimizer ... 184

A.20 MTD Explainer .. 187

A.21 AI-driven security monitoring for anomaly detection and root cause analysis in IoT

networks ... 188

A.22 DFE Telemetry .. 192

A.23 Secure Data Aggregation .. 194

A.24 Federated Learning for edge-to-cloud ... 197

A.25 MTDFed .. 198

A.26 CIA-hardening of x86 payloads Component ... 202

A.27 CIA-hardening of containerized payloads .. 207

A.28 CIA-hardening of WASM payloads Component ... 210

A.29 Liquid RAN .. 214

A.30 Characteristics Extractor ... 218

A.31 Key Generator ... 219

A.32 Security Evaluator ... 221

A.33 AI -Based Anomaly Detection Explainer ... 224

A.34 Wirespeed traffic analysis in the 5G transport network .. 226

A.35 Detection and mitigation against jamming attacks .. 227

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 13 of 228

List of acronyms and abbreviations

Abbreviation Description

16-QAM 16-Quadrature Amplitude Modulation

5GC 5G Core

64-QAM 64-Quadrature Amplitude Modulation

AI Artificial Intelligence

AMF Access and Mobility Management Function

ARNO Advanced Research on Networking testbed

AUSF Authentication Server Function

AV Autonomous Vehicle

BPSK Binary Phase Shift Keying

CNF Container Network Function

CNI Container Network Interface

CNN Convolutional Neural Network

CPE Customer Premises Equipment

CRD Custom Resource Definition

CSI Channel State Information

CTI Cyber Threat Intelligence

DB Data Base

DFE Decentralized Feature Extraction

DL Downlink

DOST Denial of Sustainability

DPDK Data Plane Development Kit

E2SM E2 Service Model

E2SM-CCC E2SM - Cell Configuration and Control

E2SM-RC E2SM - Radio Control

eNB evolved Node B

FDD Frequency Division Duplex

FR1 Frequency Range 1

gNB Next-Generation Node B

HTTP Hyper Text Transport Protocol

KDR Key Disagreement Rate

KGR Key Generation Rate

KPI Key Performance Indicator

MAE Mean Absolute Error

MEC Multi access Edge Computing

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 14 of 228

Abbreviation Description

MIMO Multiple Input Multiple Output

ML Machine Learning

MTD Moving Target Defense

NB-IoT Narrow Band Internet of Things

Near-RT RIC Near- Real Time RAN Intelligent Controller

NFV Network Function Virtualization

NFVI NFV Infrastructure

NFVO NFV Orchestrator

NIST National Institute of Standards and Technology

NRF Network Repository Function

NSA Non-Stand Alone

NSaaS Network Slice as a Service

NSSF Network Slice Management Function

OAI Open Air Interface

OFDM Orthogonal Frequency Division Multiplexing

OSM Open-Source Management and Orchestration

Orch Orchestration

PCF Policy Control Function

PKG Physical Key Generation

PRB Physical Resource Block

QoE Quality of Experience

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

QSFP-DD Quad Small Form-factor Pluggable Double Density

RAN Radio Access Network

RB Resource Block

RBAC Role-Based Access Control

REST API Representational State Transfer Application Programming Interface

RF Radio Frequency

RIS Reconfigurable Intelligent Surfaces

RNN Recurrent Neural Network

RU Radio Unit

SA Stand Alone

SDK Software Development Kit

SDN Software Defined Network

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 15 of 228

Abbreviation Description

SDR Software Defined Radio

SIM Subscriber Identity Module

SISO Single Input Single Output

SMF Session Management Function

SSH Secure Shell

STFT Short Time Fourier Transform

SVM Support Vector Machine

TDD Time Division Duplex

TEE Trusted Execution Environment

UDM Unified Data Management

UE User Equipment

UHD USRP Hardware Driver

UL Uplink

UPF User Plane Function

USRP Universal Software Radio Peripheral

V2X Vehicle to Everything

VM Virtual Machine

VNF Virtual Network Function

VPN Virtual Private Network

WAI Wirespeed Artificial Intelligence

WASM WebAssembly

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 16 of 228

List of figures
Figure 1: CERTH 5G Signal Processing Testbed ... 27

Figure 2: NITOS Testbed.. 30

Figure 3: AI-based anti-jamming testbed ... 33

Figure 4: PKG infrastructure-component testbed .. 34

Figure 5: ARNO testbed .. 36

Figure 6: Montimage 5G-IoT testbed architecture ... 39

Figure 7: AI-AD&RCA flow diagram ... 40

Figure 8: Current xNativeLab implementation ... 44

Figure 9: TrustEdge attestation components in Kubernetes and on edge devices 45

Figure 10: High level overview of Feather components ... 46

Figure 11: Functional evaluation setup for Flocky .. 47

Figure 12: Patras 5G (PNET) facility infrastructure ... 48

Figure 13: Topology of the TelcoCloud testbed running in PNET testbed. 50

Figure 14: Testbed configuration for the AI-based MTD service .. 51

Figure 15: NCL Testbed Infrastructure .. 54

Figure 16: NCL Testbed Components ... 55

Figure 17: ISRD Testbed Infrastructure ... 60

Figure 18: ISRD Testbed setup .. 62

Figure 19: ISRD Liquid Near-RT RIC interfaces .. 63

Figure 20: The main screen of the Liquid Near-RT RIC ... 63

Figure 21: Grafana dashboard with ISRD KPMs .. 64

Figure 22: ELTE Testbed infrastructure ... 65

Figure 23 ZHAW local testbed for AI-based MTD framework implementation and testing. 69

Figure 24 HES-SO full testbed. .. 71

Figure 25 Mirai Malware Control Mechanism .. 72

Figure 26 HES-SO Network testbed architecture for Mirai botnet attack generation. 73

Figure 27: Anomaly Detection Explainer. ... 75

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 17 of 228

List of tables
Table 1: List of testbeds and related components for NATWORK project 23

Table 2: Components and related information of the dry run tests .. 77

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 18 of 228

Executive summary
Deliverable D6.2 “System Integration on the testbeds, Pilot installations and

implementations.r1”, outlines the first steps in the validation of the NATWORK system, prior to

the pilot trials. Within this deliverable, the infrastructure of the testbeds for NATWORK project

is fully described. These testbeds were constructed to host NATWORK components that are

derived from the sixteen (16) Use Cases of the project. Several test scenarios have been identified

to ensure the technical readiness of the NATWORK system for each individual component.

Furthermore, within this technical report the deployment of the Attack Generation System is

thoroughly presented. This Attack Generation System emulates potential attacks on the network

and allows verification of the performance of NATWORK modules. Training datasets for the AI

models are also described.

Fourteen (14) testbeds are currently employed by the NATWORK project belonging to thirteen

(13) partners. These testbeds have been set-up throughout Europe. More specifically, the

testbeds for the NATWORK project reside in the following areas (countries): Greece, Spain, Italy,

France, Belgium, United Kingdom, Poland, Hungary, Switzerland.

These testbeds, used by the NATWORK project, are controlled environments that evaluate the

sixteen (16) Use Cases (UCs) and the related components that have been identified in previous

stages of the project. Currently, this test framework evaluates the technical elements of

NATWORK components.

The components of the NATWORK project have been defined in D2.3 “Architecture, Interfaces &

Specifications”. Additional information for the components was introduced in D6.1 “Definition of

the evaluation framework & Pilot specifications”. Currently, forty-three (43) components have

been identified from the 16 Use-Cases of the project. Each component determines the related

NATWORK service or services and illustrates an element(s) of the system. For mature

components, specific test scenarios have been identified and demonstrated within the report.

Each test scenario covers a specific functionality of the component in question.

Dry run tests have been performed for specific (mature) components of NATWORK. These tests

are preliminary and indicate the initial behavior of the system. The dry run test results are

presented in this report. Most components have been installed on a dedicated testbed. In case

that a component is set up in more than one testbed, the test results are reported in one single

report per component. Through D6.3, the second version of “System Integration on the testbeds,

Pilot installations and implementations” report, the second phase of dry run tests of the

components will be documented. In that second report, all components, including components

that currently are in their early stage, will be validated. Moreover, use case trials and demos will

be performed as part of T6.3 “Use Cases Trials and Demonstration” and the relevant outcomes

will also be reported in D6.3 in M32.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 19 of 228

As a final step, several potential attack scenarios have been formulated for NATWORK. These

attacks have identified vulnerabilities of the services and components of the NATWORK system.

By identifying these vulnerabilities, the security and overall performance of NATWORK

components can be improved. The attacks have been triggered through the Attack Generation

System, which is a tool that processes potential attacks to a given system. These attacks and the

corresponding response of NATWORK are also reported within the current deliverable.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 20 of 228

1. Introduction
The main goal of T6.2 “Testbed integration & attack generation system.r1” is to prepare

NATWORK for the forthcoming use case trials of the system and the validation and evaluation of

the NATWORK framework while T6.3 “Use Cases Trials and Demonstration” focuses on the

implementation/execution and reporting of these use case trials and demonstrations, taking into

account end-to-end use case requirements and architecture implementation (WP2) for the

beyond 5G/6G security framework envisioned in NATWORK. To accomplish these goals, several

activities have been performed in this period and reported in D6.2 “System Integration on the

testbeds, Pilot installations and implementations.r1”. More specifically, the set-up of the

NATWORK components into the testbeds is thoroughly described. For the components installed,

dry run tests have been performed to indicate that the components are ready for use for the next

stages of the project. The actual test scenarios and the results of these tests are also presented

within the present report. Finally, several attacks were identified and triggered through the

Attack Generation System. At the current stage, the response of each individual Use Case to these

attacks has been also reported in D6.2.

This specific deliverable covers the initial assessment of the validation of NATWORK components.

In the first version, D6.2 focuses on the successful installation of the 43 components of the

NATWORK project. Moreover, this deliverable identifies the results of the dry run tests of mature

components. At M32, the second version of this report, D6.3, will be submitted having the dry

run test results for all components. In this second report, the interworking of the developed

architectural elements will be assessed. The final definition and set-up of the use-case

environments, the initial set of generated results and findings from T6.3 “Use Cases Trials and

Demonstration” will be also presented in D6.3.

1.1. Purpose and structure of the document

D6.2 “System Integration on the testbeds, Pilot installations and implementations.r1” focuses on

the interconnection of the NATWORK components– currently 43, and the validation of the

technical readiness of the system. More precisely, this deliverable includes a detailed report for

each individual testbed. In addition, this deliverable highlights the successful installation of the

NATWORK components onto the testbeds and verifies that the components are up and running.

These verifications are performed through specific Test Scenarios and related Test Cases that are

also presented in this document. Moreover, relevant security attacks have been triggered against

the NATWORK components. The response to these attacks is demonstrated in the report.

The sections of this document can be summarized as follows:

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 21 of 228

• Section 2 – Testbed Environments: Section 2 describes the 14 testbeds within NATWORK

and the related components that have been installed in the testbeds.

• Section 3 – Dry Run Tests for NATWORK Components: This part of the deliverable

identifies the process of the dry run tests for each NATWORK component. Moreover, the

dry run test results or the period in which the dry run tests will be performed are

presented (see Appendix).

• Section 4 – Attacks: Throughout this section, multiple types of attacks towards NATWORK

ecosystem are presented and the related response to these attacks are depicted.

• Section 5 – Conclusions: This section discusses the key elements of the document, i.e. the

set-ups of the Testbeds, the individual tests (Dry Run Testing) of the components or group

of components, and the related attacks that the NATWORK ecosystem could, in certain

conditions, face.

• Appendix – Test Scenarios of Components: This appendix demonstrates the Test

Scenarios for the matured components of NATWORK project. Within each scenario, the

period in which the dry run test has been or will be conducted is indicated. Test scenarios

that have been run also contain their corresponding results.

1.2. Intended Audience

The NATWORK Project’s D6.2 “System Integration on the testbeds, Pilot installations and

implementations.r1” is devised for public use. This deliverable focuses on the initial assessment

of NATWORK through the testbeds that have been set up by the partners. Within the testbeds,

the related NATWORK components have been installed for preliminary tests. In addition, several

attacks were identified towards the NATWORK system. These attacks are thoroughly described

in the current deliverable. The information in this report is an integral part of WP6 activities and

activities of other WPs. Furthermore, this report can be beneficial to an audience that is

concerned about cybersecurity activities in general.

1.3. Interrelations

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and

resources from academia, industry, and research sectors, focusing on user-centric service

development, robust economic and business models, cutting-edge cybersecurity, seamless

interoperability, and comprehensive on-demand services. The project integrates a collaboration

of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a

broad representation for addressing security requirements of emerging 6G Smart Networks and

Services in Europe and beyond. 

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple

activities across various WPs, the structure ensures clarity in responsibilities and optimizes

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 22 of 228

communication amongst the consortium partners, boards, and committees. The interrelation

framework within NATWORK offers smooth operation and collaborative innovation across the

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e.,

Research Institutes, Universities, SMEs, and Large Industries) enabling scientific, technological,

and security advancements in the realm of 6G.

D6.2 “System Integration on the testbeds, Pilot installations and implementations.r1” is directly

associated with T6.2 “Testbed integration & attack generation system” and T6.3 “Use Cases Trials

and Demonstration”. In D6.3, the second version of “System Integration on the testbeds, Pilot

installations and implementations” report, both T6.2 and T6.3 will again report, but with the

focus being the final definition, set-up and integration of the use-case environments, the

generated trial results and findings. In addition, this deliverable acts as an interconnection

between T6.1 that has been concluded at M18 and T6.4 that will be completed after T6.2 and

T6.3. Furthermore, D6.2 is related with WP2 as the related Use-Cases and relevant Architecture

were established in it, as well as WP3, WP4 and WP5 as the related components were defined

through these WPs.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 23 of 228

2. Testbed Environments
This section describes the testbeds that NATWORK project uses to verify its components and

services in a preliminary stage. These components have been determined previously, through

deliverable D2.3 “Architecture, Interfaces & Specifications” in M12. This deliverable depicted the

initial version of the architecture of the NATWORK system and the fundamental components that

constitute the overall functionalities that NATWORK provides. In addition, from D6.1 “Definition

of the evaluation framework & Pilot specifications” that was submitted in M18, it was identified

further how the project will demonstrate the performance, security, and sustainability of its

proposed solution.

The testbeds examined thoroughly in this section will evaluate the 16 Use Cases and the related

components that have been established in previous stages of the project. The main goal is to

verify that the NATWORK components are up and running. Additional actions, including

integration activities, will be performed at later stages of the project.

In the table below, all of the testbeds that have been used for NATWORK project are depicted.

So far, fourteen (14) testbeds have been set-up from thirteen (13) partners. The main aim of

using these testbeds is to verify the readiness of NATWORK components. These testbeds are

spread throughout EU and more specifically in 9 countries. It should be noted that some

components have been installed in more than one testbed. More information can be found in

the table below, where each individual testbed including the name of the testbed, the partner

responsible for the testbed and the component(s) that have been installed in each testbed are

reported:

Table 1: List of testbeds and related components for NATWORK project

Testbed Partner Component(s)

1 5G Testbed CERTH

• AI-Based RIS Configuration Component

• ML-based MIMO Component

• JASMIN & Filter Mitigation Component

• Multimodal Fusion Approach for Intrusion

Detection System for DoS Attacks

Component

• Lightweight SDN-based AI-enabled Intrusion

Detection System for Cloud-based Services

Component

• AI-enabled DoS Attack Component

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 24 of 228

Testbed Partner Component(s)

• Multiagent AI based cybersecurity support

system

• Microservice Behavioral Analysis for

Detecting Malicious Actions Component

• Security-performance balancer Component

2 NITOS Testbed CERTH

• Slice Orchestration and Slice Management

for beyond 5G Networks Component

• Wirespeed traffic analysis in the 5G transport

network

3 5GLab GRAD

• DetAction: Detection and reAction Against

Jamming Attacks Component

• Characteristics Extractor

• Key Generator

• Security Evaluator

4 ARNO Testbed CNIT

• AI-driven Security Monitoring for Anomaly

Detection and Root Cause Analysis in IoT

Networks Component

• Wire-speed AI (WAI) and Decentralized

Feature Extraction (DFE) Component

• DFE Telemetry Component

5 5G-IoT Testbed MONT

• AI-driven Security Monitoring for Anomaly

Detection and Root Cause Analysis

Component

• CIA-hardening of x86 payloads Component

• CIA-hardening of WASM payloads

Component

6 CloudNativeLab IMEC

• TrustEdge Service

• Feather Component

• Flocky Component

7
Patras5G-PNET

Testbed
PNET

• MTD Controller Component

• MTD Strategy Optimizer Component

• MTD Explainer Component

• MTDFed Component

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 25 of 228

Testbed Partner Component(s)

• AI-driven Security Monitoring for Anomaly

Detection and Root Cause Analysis

Component

8 NCL UESSEX

• Energy efficient over edge-cloud Component

• Secure-by-design Orchestration Component

• Security-compliant Slice Management

Component

• Federated Learning for Edge-to-cloud

Component

9 TSS Testbed TSS

• CIA-hardening of x86 payloads Component

• CIA-hardening of containerized payloads

Component

• CIA-hardening of WASM payloads

Component

10 ISRD Testbed ISRD

• JDM-xApp Component

• Liquid RAN Component

• Liquid Near-RT RIC Component

• KPM xApp Component

11 ELTE Testbed ELTE

• End-to-End Security Management

Component

• Data plane ML Component

• Secure Data Aggregation Component

12 ZHAW Testbed ZHAW

• MTD Controller Component

• MTD Strategy Optimizer Component

• MTD Explainer Component

• MTDFed Component

13 HES-SO Testbed HES-SO

• Detection against jamming attacks

Component

• Setting up of a Mirai botnet

• FPGA-based hardware detection of DDoS
attacks.

14 UZH Testbed UZH • Anomaly Detection Explainer Component

In the following sub-sections, the infrastructure of the individual testbeds, as well as information

on how the related components are installed in the testbeds are described.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 26 of 228

2.1. 5G Testbed

The 5G Testbed at CERTH comprises two main parts: one dedicated to signal processing for the

development and evaluation of services and components at the lower communication layers, and

another based on Software Defined Networking (SDN), focusing on upper layers and service-level

functionalities. Both parts are described in detail below.

2.1.1. 5G-Signal Processing Testbed Infrastructure

The CERTH 5G Signal Processing testbed integrates all components required to build a network

in the FR1 5G frequency bands. It is designed to support experimentation-driven research in both

wired and wireless communication networks. The testbed consists of modular components that

can be flexibly combined to address diverse scenarios, enabling extensive experimentation and

solution evaluation. During the project, the testbed will be expanded with additional hardware

components, which are also described in this section.

Software Defined Radios: The testbed includes five USRP B210 SDRs, which enable

experimentation across a wide range of scenarios involving multiple base stations, as well as both

legitimate and malicious users such as jammers or eavesdroppers. Each USRP B210 operates over

a frequency range of 70 MHz to 6 GHz and supports two transmit and two receive chains, allowing

2×2 MIMO operation. The devices provide up to 56 MHz of instantaneous bandwidth through

the transceiver front-end and are powered by a Spartan-6 XC6SLX150 FPGA. Connectivity is

ensured via USB 3.0 (SuperSpeed), with host integration supported through the UHD driver and

GNU Radio.

Processing Units: Testbed includes three NVIDIA Jetson Nano modules as lightweight edge

nodes. Each Nano integrates a 128-core Maxwell GPU, a quad-core ARM Cortex-A57 CPU, 4 GB

LPDDR4 (25.6 GB/s), making them suitable for on-device DSP, spectrum sensing, and distributed

inference close to the radios; camera-centric pipelines and Linux/JetPack support align with our

GNU Radio toolchain.

For the heavier workloads, there are three NVIDIA Jetson AGX Orin units provide an Ampere GPU

with 2,048 CUDA cores and 64 Tensor Cores alongside a 12-core Arm Cortex-A78AE CPU—for

accelerated PHY/MAC processing, neural receivers, and real-time beam/radar inference. This

keeps SDR pipelines GPU-offloaded while remaining in a Linux/JetPack environment compatible

with GNU Radio.

RIS units: The RIS hardware integrated in the testbed is the TMYTEK XRifle Dynamic RIS designed

for operation in the sub-6 GHz 5G band. It consists of a 16x16 PIN-diode array with binary phase

control—the most constrained configuration, posing significant challenges for multiplexing

schemes. The device covers 4.2–5.2 GHz, supports linear polarization, and provides

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 27 of 228

incidence/reflection steering capabilities from -60o to +60o along both vertical and horizontal

planes.

Figure 1: CERTH 5G Signal Processing Testbed

Supplementary equipment: The testbed is further equipped with periodic antennas, WiFi

antennas, RF splitters, and amplifiers, which extend its flexibility for diverse wireless

experiments. Omnidirectional antennas allow baseline coverage and broadcast scenarios, while

WiFi antennas support integration with commodity devices and benchmarking against standard

WLAN technologies. RF splitters and amplifiers provide precise power control, distribution, and

link-budget adaptation across the different SDR front-ends. In the upcoming period, the setup

will be expanded with horn antennas and MIMO-capable arrays. The horn antennas will enable

high-gain, highly directional measurements, particularly useful for RIS characterization, angular

selectivity studies, and interference control. The addition of MIMO antenna arrays will unlock

spatial multiplexing experiments, enabling realistic evaluations of the project outcomes.

2.1.1.1. AI-Based RIS Configuration

For the evaluation of this service, the parts of the testbed that will be used are the following:

• USRPs B210

• RIS unit

• Horn antennas for reception and transmission

• The processing units

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 28 of 228

2.1.1.2. ML-based MIMO

For the evaluation of this service, the parts of the testbed that will be used are the following:

• USRPs B210

• MIMO antennas

• The processing units

2.1.1.3. JASMIN & Filter Mitigation

• USRPs B210

• MIMO, WiFi, periodic antennas

• The processing units

• Amplifiers

2.1.2. Available cloud and edge resources

The testbed integrates Cloud and Edge Computing resources to support experimentation and

innovation in distributed infrastructures. It provides a flexible environment with Kubernetes and

Docker for containerized applications, OpenStack for cloud orchestration, Open Source MANO

(OSM) for network function management, and virtual machine (VM) capabilities for legacy and

hybrid workloads. This combination enables researchers and developers to design, deploy, and

evaluate advanced cloud-native and edge-native services in a realistic, scalable, and

interoperable setting.

2.1.3. 5G-Core and SDN related resources

The testbed leverages Software-Defined Networking (SDN) and 5G technologies to enable

experimentation with next-generation communication infrastructures. It integrates the OAI 5G

Core Network project for 5G core functionalities, O-RAN for open and interoperable radio access,

and OpenDaylight as an SDN controller to manage and orchestrate programmable networks.

Together, these components create a flexible, standards-based environment for designing,

testing, and validating 5G services, network slicing, and advanced edge-to-cloud use cases in both

research and pre-deployment scenarios.

Building on this foundation, this testbed incorporates a modular microservices-based

architecture that supports dynamic scaling, automated lifecycle management, and performance

monitoring. AI-driven behavioral analysis models process real-time data to detect anomalies such

as DoS attempts, triggering automated responses through the Floodlight SDN controller. This

integrated setup provides a realistic platform for validating threat detection accuracy, evaluating

mitigation effectiveness, and assessing overall system resilience under controlled attack

simulations in next-generation 5G microservice ecosystems.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 29 of 228

2.1.4. 5G-SDN Testbed Components Set-Up

2.1.4.1. Multimodal Fusion Approach for Intrusion Detection System for DoS

Attacks

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge

Resources and the 5G-Core and SDN related resources will be used.

2.1.4.2. Lightweight SDN-based AI-enabled Intrusion Detection System for Cloud-

based Services

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge

Resources and the 5G-Core and SDN related resources will be used.

2.1.4.3. AI-enabled DoS Attack

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge

Resources and the 5G-Core and SDN related resources will be used.

2.1.4.4. Microservice Behavioral Analysis for Detecting Malicious Actions

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge

Resources and the 5G-Core and SDN related resources will be used.

2.1.4.5. Security-performance balancer

Separating user traffic to different servers based on ciphering, integrity, and replay protection

algorithms is essential for optimizing performance and enabling efficient use of cryptographic

acceleration. Different algorithms (Snow, AES, ZUC) impose varying computational loads on the

CPU and hardware accelerators. By directing users with similar algorithmic demands to specific

servers by Security Performance Balancer, the network can reduce context-switching overhead

and better align traffic with hardware capabilities, such as dedicated crypto engines and

accelerators. This minimizes latency, prevents CPU bottlenecks, and ensures consistent

throughput, especially under high-load conditions. It also allows tailored tuning of server

configurations to match the expected algorithm's workload, improving processing efficiency and

overall user experience.

2.1.4.6. Multiagent AI based cybersecurity support system

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge

Resources and the 5G-Core and SDN related resources will be used.

2.2. NITOS Testbed Components Set-Up

The NITOS Testbed Facility offers a comprehensive set of technologies and capabilities that

support advanced experimentation. This section provides a detailed description of the testbed

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 30 of 228

infrastructure, along with the configuration and deployment procedures required for hosting the

NATWORK components within the NITOS environment.

2.2.1. NITOS Testbed Infrastructure

NITOS Future Internet Facility is a state-of-the-art, integrated research infrastructure comprising

multiple heterogeneous testbeds. It is dedicated to supporting experimentation-driven research

in the field of wired and wireless communication networks. The facility is remotely accessible and

available to the global research community 24/7. To date, it has been utilized by hundreds of

researchers worldwide.

Figure 2: NITOS Testbed

Wireless Experimentation Platform: NITOS provides a highly versatile wireless networking

testbed, enabling researchers to conduct real-world experiments across a spectrum of radio

technologies and deployment scenarios. The platform features a mix of stationary and mobile

nodes, each equipped with multiple wireless interfaces that support technologies such as 5G, Wi-

Fi, WiGig, and others. These nodes are deployed across diverse environments, from controlled

indoor labs with external RF isolation to complex outdoor spaces where interference and mobility

reflect real-world conditions. This configuration allows experimentation at multiple layers of the

protocol stack—from physical layer customization to application-layer performance testing—

facilitating research in multi-radio access technologies (multi-RAT), spectrum sharing, and next-

generation wireless systems. The testbed supports repeatable trials, multi-hop mesh setups,

mobility patterns, and heterogeneous interface coexistence, making it ideal for both academic

and industrial research.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 31 of 228

Cloud and Edge Computing Resources: To support distributed systems and networked

applications, the NITOS facility includes a powerful computing cluster composed of multi-core,

high-memory servers with substantial storage capacity and high-throughput network

interconnects. This infrastructure enables experimentation with a wide range of cloud and edge

computing paradigms. The platform supports virtualization (VMs), container orchestration (e.g.,

Kubernetes, Docker), and bare-metal deployment, allowing researchers to explore topics such as

microservice-based architectures, resource offloading, network slicing, NFV, and service

chaining. Fast internal and external connectivity facilitates integration with other testbed

components—such as wireless or IoT infrastructures—enabling end-to-end experimentation

across heterogeneous layers.

Software-Defined Radio (SDR) Capabilities: For researchers interested in custom wireless

protocol development and physical layer innovation, NITOS offers access to a rich set of high-end

software-defined radio platforms. These SDR devices are fully integrated with the testbed’s

compute and wireless infrastructure, enabling both isolated lab-scale experiments and over-the-

air trials. The available SDRs support advanced configurations such as 4×4 MIMO, channel

bandwidths of up to 100 MHz, and high-frequency tunability. Combined with flexible software

stacks (e.g., GNU Radio, srsRAN, OAI), they allow full-stack experimentation, from waveform

generation and channel modeling to real-time signal processing and PHY/MAC protocol design.

The SDR testbed also supports research in spectrum sensing, dynamic access control, and cross-

layer optimization.

Programmable Networking (SDN): The NITOS infrastructure is equipped with a fully

programmable networking environment that supports software-defined networking across both

wired and wireless domains. Utilizing SDN-capable switches and programmable forwarding

engines, researchers can design and deploy custom network control policies, routing strategies,

and traffic engineering solutions. The testbed supports OpenFlow and advanced data plane

programmability via the P4 language, enabling low-level control over packet processing pipelines.

This allows for experimentation with novel network functions, telemetry, intent-based

networking, and integration with edge computing and IoT environments. The SDN infrastructure

is ideal for exploring topics such as network slicing, service function chaining, and security-aware

routing in programmable, multi-domain environments.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 32 of 228

2.2.2. NITOS Testbed Components Set-Up

2.2.2.1. Slice Orchestration and Slice Management for beyond 5G Networks

Component

Towards the deployment of this component at the NITOS Testbed, the Cloud and Edge Computing

Resources, the Wireless Experimentation Platform and the SDR Resources will be utilized. More

specifically, the following resources will be employed:

• Kubernetes cluster hosted on server

• OAI for RAN and Core Network

• Nodes with 5G connectivity (UEs)

2.2.2.2. Wirespeed traffic analysis in the 5G transport network

Towards the deployment of this component at the NITOS Testbed, the Cloud and Edge Computing

Resources, the Wireless Experimentation Platform and the SDN Resources will be utilized. More

specifically, the following resources will be employed:

• Netronome Agilio SmartNIC 25Gbps

• Kubernetes cluster hosted on server

• OAI for RAN and Core Network

• GPU for the training the Machine Learning (ML) model

2.3. 5GLab Testbed Components Set-Up

This section presents two independent tracks deployed at Gradiant 5GLab. The first is for AI-

based anti-jamming, which runs on the 5G RAN infrastructure and the second is the PKG stack

for a sub-THz indoor link.

2.3.1. 5GLab Testbed Infrastructure

The AI-based anti-jamming testbed is designed for detecting and mitigating jamming attacks in a

5G indoor laboratory environment, where the UE, jammer, and gNB are located within 10 meters.

The system operates in the n78 band (3.5 GHz, FR1), using USRP B210 devices both to generate

the jamming signals and to capture IQ samples of the gNB’s received signal.

The jammer transmits software-generated chirp signals (chosen to maximize power efficiency)

with configurable parameters such as transmit gain, sweep period and bandwidth. Transmission

is handled through the UHD framework.

The gNB runs on BubbleRAN, which provides an SDK to develop xApps for the Near-RT RIC, in this

case focused on PRB scheduling. The captured signals are preprocessed to identify the PRBs

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 33 of 228

affected by jamming. The results of this detection stage are then communicated to the scheduling

xApp via a REST API, where they serve as the input parameters for adaptive scheduling decision.

Figure 3: AI-based anti-jamming testbed

The PKG testbed targets OFDM-based physical layer key generation for sub-THz bands in an

indoor laboratory environment with separation between Tx and Rx around 10 meters. It consists

of three SDR nodes (Alice, Bob & Eve) using USRP B210 devices with specific sub-THz antennas

centered at 92.45 GHz on TDD. USRP B210 units provide baseband acquisition and streaming of

raw IQ, while external sub-THz up/down-conversion front ends perform the translation to and

from 92.45 GHz and handle RF filtering and gain control. Waveform generation, clocking, and

data acquisition run on the host via GNU Radio. Channel estimation and feature extraction are

executed in software (PC/server with MATLAB) and feed the PKG pipeline: quantization,

information reconciliation, and privacy amplification. For learning-based UL/DL prediction,

inference is performed by a pre-trained model on a dedicated server connected to the SDR node.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 34 of 228

Figure 4: PKG infrastructure-component testbed

2.3.2. 5GLab Testbed Components Set-Up

In this case, DetAction component relies on AI-based anti-jamming testbed infrastructure,

meanwhile the following three components belong to the PKG testbed structure.

2.3.2.1. DetAction: Detection and reAction Against Jamming Attacks

The role of this component is to receive, preprocess, localize in the spectrum, and mitigate

jamming attacks. It takes IQ samples from a USRP capturing the signal, resamples them to a target

data rate, and applies an STFT with a fixed-length window to transform them into the frequency

domain. From this representation, spectrum fragments corresponding to 5G RB frequencies are

extracted and normalized. These fragments are then evaluated by a CNN to detect whether

jamming is present. Finally, the mapping of jammed versus non-jammed RBs is provided to the

scheduling xApp, which uses this information to avoid the jammed spectrum while attempting to

maintain QoS for the UEs.

2.3.2.2. Characteristics Extractor

This component converts raw IQ into channel characteristics for downstream PKG analytics. It

performs synchronization, channel estimation, and feature computation (CSI and related

statistics) on data acquired from the sub-THz indoor link. The service generates feature vectors

with timestamps and quality flags, finally saves the results in an experiment database. The

resulting clean feature sets feed the Key Generation Service and provide channel indicators for

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 35 of 228

PKG evaluation. Metrics for the adversary (Eve) are also extracted here, ensuring variability

across positions and conditions to assess security in the Security Validation component.

2.3.2.3. Key Generator

This component derives a shared symmetric key from reciprocal channel measurements over the

sub-THz link. It ingests features from the extractor and executes the PKG pipeline: UL/DL neural

network model, followed by quantization, information reconciliation, and privacy amplification.

The AI block can enhance reciprocity using measurements at Alice. The operating scope targets

indoor trials with a Tx–Rx separation around 10m, with Bob moving to create a dynamic channel.

Key results include Key Generation Rate (KGR), Key Disagreement Rate (KDR) for the main link,

reconciliation performance, and end-to-end latency.

2.3.2.4. Security Evaluator

This component provides independent verification of key strength and system robustness. It runs

statistical tests (NIST test suite), tracks mismatch rates and compares the Alice/Bob keys against

an adversary (Eve) baseline. It reports experiment results for the whole PKG pipeline and

evaluates them against baseline values of randomness quality, KGR/KDR targets (KPIs), and

reproducibility across scenarios.

2.4. ARNO Testbed

2.4.1. ARNO Testbed Infrastructure

The Advanced Research on NetwOrking (ARNO) testbed is a modular and continuously evolving

experimental platform that spans the full nick Telco and IT continuum: access, metro, and core

networks, as well as edge and cloud domains. Initially conceived for optical networking research,

ARNO has matured into a reference infrastructure for programmable networking and in-network

intelligence. A central strength of ARNO lies in its programmable hardware ecosystem, which

enables researchers to explore fine-grained control, acceleration, and telemetry directly in the

data plane. The testbed integrates P4-programmable 100G switches, including the Intel Barefoot

Tofino 1, offering line-rate programmability for flexible packet processing and advanced

telemetry functions. Complementing these, ARNO features a broad set of SmartNICs and DPUs,

such as NVIDIA BlueField-2 and BlueField-3, as well as converged BlueField-2 DPUs with

embedded GPUs. These platforms allow the offloading of networking, storage, and security

services from CPUs to programmable accelerators, supporting advanced use cases in in-network

computing, hardware-assisted orchestration, and AI-driven decision-making at the edge.

Additional programmable platforms, including NetFPGA SUME and Xilinx Alveo boards, further

extend experimentation into FPGA-based packet processing. ARNO’s network core couples this

programmable environment with a metro optical infrastructure (ROADMs, packet-optical nodes,

coherent transponders, and pluggable optics up to 400 Gbps) and a Calix E7 PON for the access

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 36 of 228

segment. Two Edgecore switches with Quad Small Form-factor Pluggable Double Density (QSPF-

DD) interfaces provide support for 400G ZR/ZR+ and 400G/100G XR pluggable optics,

programmable via CMIS specifications.

Figure 5: ARNO testbed

For computing, ARNO provides DELL PowerEdge and HP servers equipped with NVIDIA Tesla,

V100, A16, and T4 GPUs, FPGAs, and Intel PAC cards, enabling high-performance AI/ML

workloads tightly coupled with programmable networking. This synergy allows end-to-end

validation of architectures spanning from programmable data planes (Tofino, BlueField,

NetFPGA) to cloud-edge orchestration. On the wireless side, ARNO includes an SDN-controlled

5G/6G segment with SDRs (Ettus X310, B210, N310), Quectel development kits, NTN modules,

and support for multiple gNB splits (option 2 and 7-1). The testbed runs open and customizable

5G/6G software stacks (OAI, srsRAN), tightly integrated with RAN Intelligent Controllers (RICs)

and hardware acceleration for latency-sensitive functions. COTS solutions, such as the

BubbleRAN MPX, further complement this environment.

Beyond connectivity, ARNO supports vertical applications through a robotics and XR

infrastructure: multi-payload drones, 4WD rovers, Meta Quest 3 and Oculus VR headsets, smart

glasses, and humanoid robots enable immersive and mobile scenarios for verticals such as

remote driving, training, and telepresence. Traffic generation and monitoring is ensured by

Spirent, VIAVI, and software tools like Cisco TRex, enabling experiments up to 400 Gbps line rate.

Finally, ARNO supports federated and secure experimentation through OpenVPN, GRE, IPsec, and

BGP tunneling, with proven interoperability across multiple European testbeds.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 37 of 228

2.4.2. ARNO Testbed Components Set-Up

2.4.2.1. Wire-speed AI (WAI) and Decentralized Feature Extraction (DFE)

The DFE/WAI components run as security functions inside programmable devices at the data

plane of the network (core network and data net network connected to 6G). The main backends

considered for setting up in ARNO are the following:

• Bluefield-2 and/or Bluefield-3 SmartNIC encompassing DOCA Flow acceleration

capabilities.

• Barefoot Tofino 1 switch.

In the former case, at least a couple of Bluefield-2 are deployed in a packet/optical network

encompassing 40/100/200/400 Gigabit Ethernet links. Each device is attested to a hosting server

(i.e. Dell PowerEdge R760 or HPE Proliant DL380 Gen11), capable of providing single or dual port

traffic capacity up to 100Gb/s or 200Gb/s, depending on the type of card.

The deployment of DFE/WAI functions is done using the OFA Agent container, that may reside

either in external controllers, in the hosting server or in the DPU user space.

2.4.2.2. DFE Telemetry

The DFE Telemetry is a network function component deployable in P4 switches, able to extract

selected features from selected flows and send them in the form of a Telemetry Report to

selected analysis collectors. The setup is envisioned as a P4 software deployment within

hardware backends. Software backends are the BMv2 and NIKSS switch utilizing e-BPF

technology. The deployment is performed through P4 code instantiation inside the backend,

through manual or orchestration-triggered via OFA. At runtime, all P4 flow entry configurations

are possible that enable the activation/deactivation of a new telemetry stream, selecting the

destination collector. Furthermore, at runtime, all feature selection are configurable dynamically

via dedicated flow rule commands.

2.4.2.3. AI-driven Security Monitoring for Anomaly Detection and Root Cause

Analysis

The AI-driven Security Monitoring for Anomaly Detection and Root Cause Analysis (RCA)

component, developed by MONT, will be adapted and deployed within CNIT’s ARNO testbed to

leverage its programmable hardware and high-performance AI capabilities. This component aims

to provide real-time detection of anomalies and advanced RCA in complex IoT and 6G

environments.

The ARNO testbed offers an environment with P4-programmable switches (Intel Tofino),

SmartNICs/DPUs (NVIDIA BlueField-2/3), and FPGA accelerators. The MMT probe and

Montimage AI Platform (MAIP) will integrate with these programmable data-plane elements to

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 38 of 228

collect, process, and analyze traffic features in real time. Through in-network telemetry provided

by ARNO’s DFE/WAI components, the AI-driven monitoring system will ingest fine-grained flow

data for anomaly detection. Using advanced ML algorithms (CNNs, reinforcement learning, XAI

modules), the component will identify deviations in IoT traffic patterns indicative of DDoS attacks

or misconfigurations. RCA functionalities will further correlate anomalies with root causes, such

as specific flows, devices, or misbehaving services, and provide explainable outputs to operators.

The deployment will exploit both edge and core domains of ARNO:

• At the data plane, lightweight feature extraction will be performed directly on P4 switches

or BlueField SmartNICs.

• At the AI/ML backends, Dell and HPE servers equipped with GPUs (Tesla V100, T4, A16)

will run the MAIP models, allowing accelerated inference and scalable training.

• The RCA visualization will be integrated into the ARNO orchestration tools and

dashboards, offering explainable insights for operators.

The deployment in ARNO will validate the ability of MONT’s component to operate at line-rate

monitoring speeds (up to 100–200 Gbps), with low-latency anomaly detection and explainable

RCA. This will demonstrate how AI-driven monitoring can be tightly coupled with programmable

infrastructures in 6G contexts, ensuring scalability, transparency, and trustworthiness.

2.5. Montimage 5G-IoT Testbed

The 5G-IoT testbed deployed by MONT serves as a dedicated environment to evaluate, integrate,

and validate advanced security monitoring solutions in realistic IoT and 5G/6G scenarios. The

testbed is designed to support experimentation with high volumes of heterogeneous traffic and

provides the infrastructure to simulate IoT devices, gateways, and services under diverse

operational conditions, alongside real devices. It enables the deployment of monitoring and

analysis components, such as the Montimage Monitoring Tool (MMT) and the Montimage AI

Platform (MAIP), ensuring that anomaly detection, root cause analysis, and mitigation strategies

can be tested in a controlled yet realistic setting. The following subsections describe the

underlying testbed infrastructure and the components set-up, highlighting how they jointly

create a flexible and programmable platform for the validation of NATWORK technologies.

2.5.1. Montimage 5G-IoT Testbed Infrastructure

As presented in Figure 6, the 5G-IoT testbed of Montimage constitutes a controlled experimental

environment designed to validate anomaly detection, monitoring, and automated response

mechanisms in next-generation IoT networks. Its configuration, combining 5G Core functions, IoT

devices, and the Montimage Monitoring Tool (MMT), directly supports the objectives of UC#3.1:

Enabling anomaly detection using machine learning automated techniques for attack detection.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 39 of 228

At the access layer, IoT devices and smartphones connect to the network through base stations

supported by Software Defined Radio (SDR). This setup allows the emulation of diverse traffic

conditions, including benign operations and malicious behaviors such as Distributed Denial-of-

Service (DDoS) attacks initiated by compromised IoT devices. The MMT-Sniffer, deployed at the

IoT routing device, captures traffic flows at the earliest possible stage, ensuring that anomaly

detection systems receive accurate and representative input data.

The 5G Core (EPC) hosts the principal network functions required for control and data plane

operations, including the Access and Mobility Function (AMF), the Session Management Function

(SMF), and the User Plane Function (UPF), interconnected with additional modules such as NRF,

NEF, PCF, UDM, and AF. This architecture enables full end-to-end data transmission between IoT

devices and the external Data Network (DN), thereby ensuring realistic conditions for traffic

analysis and attack emulation.

Figure 6: Montimage 5G-IoT testbed architecture

Complementing the 5G Core, the Montimage Monitoring Tool (MMT) is deployed as the main

security monitoring component. The MMT Probe collects and analyzes traffic data in real time,

while processed results are stored in a MongoDB database for correlation and long-term analysis.

The Operator module consolidates insights from the probe and database, enabling root cause

analysis, anomaly classification, and alert generation. Results are exposed through dashboards

that provide real-time visualization of traffic trends, anomalies, and security events.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 40 of 228

AI/ML capabilities sit on top of a feature-extraction and enrichment layer that incorporates

protocol semantics, temporal patterns, graph relationships, and device context. The model zoo

includes Isolation Forest and autoencoder-based detectors, LSTM for sequential behavior, and

graph neural networks for topology-aware reasoning. Robustness is assessed through adversarial

testing against evasion and poisoning, while accountability and resilience are tracked with

precision/recall, time-to-detect, and mean time to recovery. Explainability is provided through

SHAP and counterfactual analyses, summarized by an LLM-based explainer to translate low-level

indicators into human-readable causes and mitigation suggestions.

This integrated testbed supports the following experimental capabilities:

• End-to-end monitoring of IoT traffic across access, core, and external networks.

• Emulation of attack scenarios involving infected or compromised IoT devices.

• Application of AI/ML-based anomaly detection to identify suspicious behaviors.

• Automated decision support and Root Cause Analysis (RCA) for mitigation of threats.

Overall, the 5G-IoT testbed provides the experimental foundation for UC#3.1, ensuring that

anomaly detection solutions are developed, validated, and optimized under realistic conditions

that closely mimic 5G-enabled IoT deployments. Reproducible deployment is facilitated by a

Docker-based reference configuration that instantiates the 5G core components, MMT services

(Probe, Operator, MongoDB), and example traffic generators. The materials and scripts are

available at: https://github.com/montimage-projects/cerberus-edge-configuration.git

2.5.2. 5G-IoT Testbed Components Set-Up

2.5.2.1. AI-driven Security Monitoring for Anomaly Detection and Root Cause

Analysis (AI-AD&RCA)

This comprehensive solution leverages the Montimage 5G-IoT Testbed as the experimental

foundation for deploying advanced artificial intelligence techniques to enhance security

monitoring capabilities in next-generation IoT ecosystems. The framework integrates real-time

network traffic analysis with explainable AI methodologies to provide transparent, accountable,

and resilient security operations.

Figure 7: AI-AD&RCA flow diagram

Figure 7 illustrates the AI-driven Security Monitoring framework designed for anomaly detection

and root cause analysis (RCA) in IoT and 5G/B5G networks. The framework integrates multiple

https://github.com/montimage-projects/cerberus-edge-configuration.git

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 41 of 228

layers of monitoring, analysis, and explanation to ensure both rapid detection of threats and

transparency in decision-making.

The process begins with data sources, where network traffic from IoT/5G/B5G testbeds and log

data from SIEM systems are collected as the primary inputs. These heterogeneous data streams

are then processed through the data collection and feature extraction stage, where the raw data

is normalized and transformed into meaningful features suitable for analysis.

At the core of the monitoring system are the detection modules, which combine two

complementary approaches. On the one hand, AI models provide machine learning-based

detection for adaptive and scalable anomaly identification. On the other hand, rule-based

detection (e.g., MMT-Security) applies deterministic checks and lightweight pattern matching to

capture well-defined or known attack behaviors. Together, these methods enhance detection

coverage and robustness.

To ensure that security decisions remain interpretable, the framework integrates an Explainable

AI (XAI) layer. This module explains why specific anomalies were flagged, providing interpretable

insights that support operator trust, compliance requirements, and accountability in security

operations. Once an anomaly is confirmed, the root cause analysis (RCA) module investigates the

underlying reasons for the detected issue, whether it stems from a misconfiguration, a targeted

cyberattack, or system-level failures.

Finally, all findings are consolidated in a dashboard and action layer, where operators can view

security alerts, RCA insights, and recommended mitigation actions. This user-friendly interface

ensures that decisions are informed, actionable, and timely.

Overall, this layered architecture provides a holistic approach to anomaly detection and RCA. It

combines AI and deterministic methods, enhances explainability, and strengthens resilience

against evolving threats, thereby contributing to secure and trustworthy IoT and 5G/B5G

networks.

AI-AD&RCA Inplementation

AI-AD&RCA, built on the Montimage Monitoring Tool (MMT) framework, offers flexible

deployment options to accommodate diverse operational environments. Deployment can be

performed via Docker containers, by building from the source code, or using precompiled

packages. All deployment resources are available on Github1:

1 Github repository: https://github.com/Montimage/maip

https://github.com/Montimage/maip

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 42 of 228

• Docker Deployment enables quick, consistent, and environment-agnostic setups. Using

Docker containers simplifies installation and ensures reliable operation across different

platforms, making it an ideal choice for rapid deployment.

• Source Code Installation is intended for environments that require customization or

advanced debugging. By building the system directly from source code, operators gain full

control over configuration and the internal logic of the platform, enabling fine-tuned

adaptations for specific requirements.

• Precompiled Packages offer a fast deployment option for Ubuntu-based systems. The

precompiled .deb packages reduce setup complexity and minimize configuration

overhead, making them a convenient choice for quick installation without deep technical

adjustments.

The core of the tool is a server implemented in ExpressJS, integrating the MMT framework

written in C. This includes modules such as MMT-DPI, MMT-Probe, and MMT-Security for real-

time feature extraction and traffic analysis. On top of this foundation, the system leverages

advanced Python-based machine learning (ML) and explainable AI (XAI) libraries to enable

intelligent anomaly detection and root cause analysis.

The server exposes over 60 Swagger APIs that deliver comprehensive services, including real-time

feature extraction from network traffic, building and training ML models for anomaly detection,

retrieving detailed model metadata, predicting whether network traffic is benign or malicious,

and applying various XAI techniques to interpret and explain model predictions. These APIs

support the full lifecycle of anomaly detection and root cause analysis, from data ingestion to

actionable insights.

On the client side, the system includes a React-based interface that interacts with the server

through the Swagger APIs. This interface provides a user-friendly environment for managing

models, monitoring anomalies, and visualizing root cause insights. The landing page displays a

comprehensive list of both prebuilt and user-defined ML models for anomaly detection, enabling

flexible and efficient operational workflows.

Beyond ML-based detection, the system adopts a hybrid detection approach, supporting rule-

driven and signature-based detection methods to ensure robust threat detection coverage.

Prebuilt security rules define abnormal traffic patterns for known threats, while anomaly-based

rules capture expected traffic behaviour, flagging deviations for further investigation. This hybrid

architecture enables the system to effectively detect both known threats through signature-

based detection and previously unseen anomalies through ML-based analysis, enhancing

situational awareness and enabling precise root cause analysis.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 43 of 228

2.6. CloudNativeLab Testbed

xNativeLab (previously CloudNativeLab) is an IMEC testbed which allows for fast and user-friendly

creation of Kubernetes clusters for teaching and use case evaluation purposes. Kubernetes nodes

run on virtual machines, allowing for fast and easy setup as well as teardown. xNativeLab is

closely related to the IDlab Virtual Wall, which uses much of the same hardware but allows for

baremetal access to devices and servers. xNativeLab provides SSH access through VPN to pre-

provisioned servers with a fully set up cluster for various supported Kubernetes versions,

including networking plugins. Conversely, the Virtual Wall is accessed through SSH by using jFed

(Fed4Fire) or the SLICES project. While xNativeLab is the default evaluation environment for

Kubernetes-related projects, the Virtual Wall is a fallback option if baremetal functionality is

required.

2.6.1. CloudNativeLab Testbed Infrastructure

xNativeLab is a testbed service designed to simplify experimentation with cloud-native and edge-

native frameworks in realistic environments. Traditional research infrastructure often requires

extensive manual setup and advanced system administration skills, which can hinder the quick

reproduction of experiments. xNativeLab builds on the SLICES research infrastructure, enabling

researchers to quickly deploy distributed software frameworks across cloud, edge, and IoT

devices while maintaining complete control over the stack for customization. A key component

is the xNativeApp, a deployment package that includes both infrastructure and software

definitions, allowing researchers to create reproducible and easily deployable research packages.

The current implementation of xNativeLab is illustrated in Figure 8.

The Virtual Wall is the main hardware supporting experiments and consists of three parts. Virtual

Wall 1 & 2 (206 & 159 nodes, respectively) are legacy testbeds with older hardware; the New

Virtual Wall 1 is currently under construction and consists of 186 pcgen7 nodes with:

• 1x 6 core Intel Core i5-9500 CPU (3.00GHz)

• 64GB

• 512GB SSD

• 1 or 5 gigabit nics (+1 control connection)

In all cases, nodes have public IPv6 addresses. IPv4 addresses are LAN only, although public IPv4

addresses can be requested.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 44 of 228

Figure 8: Current xNativeLab implementation

2.6.2. CloudNativeLab Testbed Components Set-Up

The components for each service are deployed differently across CloudNativeLab, the Virtual

Wall (baremetal servers), and edge devices as required. While CloudNativeLab is the main

testbed and the default for Kubernetes-related components, some components (e.g. Feather)

are designed for specifically edge device operation, or require access to Operating System-level

resources (e.g. Flocky).

2.6.2.1. TrustEdge

For TrustEdge, the Kubernetes control plane and all cloud-related components are set up in

xNativeLab, hosted on a single control plane node. Edge devices that require attestation (e.g.

Raspberry Pi, edge servers) are external to xNativeLab. Specifically, as shown in Figure 9:

• The Kubernetes control plane (Certificates, RBAC, CRDs e.g. EdgeNode) form the basis of

the cluster and are hosted in their natural cloud environment in xNativeLab.

• Due to its tight interaction with the Kubernetes API itself and the need to run in a secure

environment, the Attestation controller is run in the control plane on xNativeLab.

• The Registrar/Tenant/Verifier components form the cloud-based endpoints of TrustEdge

for various operations; these interact with the Attestation controller and require secure

(controlled) execution, and as such are hosted in the control plane.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 45 of 228

• The KeyLime agent is the edge agent component of TrustEdge. Each edge device

requesting to join the cluster has an agent deployed on it which initiates attestation and

further component deployment.

• Fledge/Feather is the default Kubernetes agent used by TrustEdge. It runs on each

attested edge device, and is securely deployed after attestation and certificate

generation.

Figure 9: TrustEdge attestation components in Kubernetes and on edge devices

2.6.2.2. Feather

The Feather evaluation setup is divided between xNativeLab VMs and an edge device, specifically

a Raspberry Pi 4. xNativeLab runs a Kubernetes cluster with a single control plane node and a

worker node, as indicated by Figure 10. No modifications to a default cluster are required, as

Feather merely replaces the standard kubelet, behaving according to Kubernetes expectations.

Feather itself is deployed on the edge device, replacing the role of a kubelet and CNI plugin. The

edge device itself is provisioned with containerd and KVM/Qemu to support the multi-runtime

nature of Feather.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 46 of 228

Figure 10: High level overview of Feather components

2.6.2.3. Flocky

Flocky is evaluated on bare-metal machines using the Virtual Wall directly rather than xNativeLab

Kubernetes VMs.

For the scalability evaluation, all Flocky services are run on a single server simulating virtual edge

devices (discovery + metadata services only, more information in the functional evaluation). The

evaluation scenario consists of a straightforward execution and measurement script and

warrants no further details.

The functional evaluation consists of five node configurations, each deployed on a single server

as per Figure 11. The deployed services are the Flocky Discovery, Metadata, Deployment, and

Swirly services, as well as a stubbed Feather interface which handles component deployment.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 47 of 228

Figure 11: Functional evaluation setup for Flocky

Specifically, these microservices fulfill the following roles:

• Discovery: explores the network for other nearby Flocky devices, and provides basic node

information for higher level services.

• Metadata: subscribes to the Discovery service, gathering node capabilities, resource

availability, cluster information and active deployments from each node. Also keeps an up to

date index of the local node’s capabilities through CapabilityProviders. An example

CapabilityProvider is Feather, which provides runtime capabilities for containers and

unikernels.

• Swirly: comprises an orchestration algorithm and a web service for remote orchestration

status updates, which may trigger deployment migrations.

• Deployment: a web service translating Open Application Model (Swirly) deployment requests

to Kubernetes Deployment manifests, keeping track of deployment status and reporting

status updates to Swirly services.

• Stubbed Feather interface: rather than allowing full processing of deployments, the Feather

REST API is stubbed for this scenario.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 48 of 228

2.7. Patras5G-PNET Testbed Components Set-Up

2.7.1. Patras5G-PNET Testbed Infrastructure

The Patras 5G-PNET facility is a private Network for 5G and IoT applications, adopting the

Network Slice as a Service (NSaaS) model to provide tailored network slices for verticals to trial

use cases and assess KPIs. It operates on licensed and unlicensed spectrum with dedicated SIM

cards, supporting end-to-end customized slices across access, transport, and core, including IoT

device slicing at the edge. The testbed enables MEC orchestration, mobility management for

mobile streaming edge services, and holds an Academic License from the Greek government. It

hosts a pre-commercial site with ERICSSON 5G Rel-17 equipment, testing 5G/6G cloud-to-edge

scenarios using NOVA’s licensed spectrum, with the 5G Core remotely located in Athens.

Figure 12: Patras 5G (PNET) facility infrastructure

The cloud platform provides 1082 CPUs, 4.5 TB RAM, and 100 TB storage. It includes three AI-

enabled servers with 2x NVIDIA PNY QUADRO A6000 48GB GDDR6 GPUs interconnected via

NVIDIA NVLINK Bridge. Servers connect via 100GbE/400GbE Edgecore P4 Switches and

10GbE/40GbE NVIDIA Cumulus switches with dual 10GbE NICs DPDK enabled. Kubernetes

clusters are available on demand, managed via GitOps (LF Sylva, OpenSourceMANO, Terraform),

attached to the 5G System dataplane.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 49 of 228

Available 5G Core and EPC solutions that can be orchestrated in the facility include Open5GS in

Kubernetes, free5GC in Kubernetes, OpenAirInterface in Kubernetes, AMARISOFT 5GC, Ericsson

and RAN solutions from open-source tools such as OAI and SRS.

The facility's radio equipment features gNodeB models such as the 4x Amarisoft Classic callboxes

supporting 5G SA/NSA, NB-IoT with 3SDR 2X2; 4x4 AW2S panther RU, several USRPs from ETTUS

including N310, B210, B205 and LimeSDR cards. P-NET offers indoor and outdoor testing

environments located at the university of Patras campus. The indoor site includes RAN

equipment from Ericsson (4x DOTs 4479 – 4x4 MIMO) and 1 microcell 5W 4X4 outdoor RU

operating FR1 n78.

User equipment includes >20 5G SA standalone smartphones, 4 CPEs, 2 Raspberry Pis equipped

with 5G modems, USRPs running OAI ue-softmodem ,plus standalone USB 5G modems for

legacy devices (e.g. laptops).

Monitoring is supported by Grafana, Prometheus, NetData, and OSM with VNF telemetry.

Prometheus and NetData provide metrics for cloud infrastructure, VNFs, RAN nodes, and energy

consumption of compute nodes, switches, 5G gNodeBs, and CPEs, stored in a Prometheus server.

Grafana is used for visualization, with Elastic search and Kibana for data collection and

visualization.

2.7.2. Patras5G-PNET Testbed Components Set-Up

Figure 13 illustrates the topology of the 5G testbed, with the same TelcoCloud components

expected in future 6G networks, where we evaluated the UC4.5 AI-based MTD framework. The

setup comprises three cloud environments, operated with OpenStack; one for the Core domain,

termed ``Core NFVI", and the other for two distinct Radio Access Points with an Edge domain,

the ``Edge NFVI." This deployment implements a distributed UPF architecture, where UPFs are

co-located with the base stations (gNBs) in the Edge domains.

The Edge NFVIs include Radio Access elements (UEs and gNBs) and Edge Cloud elements

(including the UPF and other possible CNFs). This deployment allows emulating a distributed UPF

architecture, where the UPFs are co-located with the gNB on the Edge domain. The Core NFVI

hosts the control plane of the 5G Core Network, the subscriber database, and other secondary

CNFs for service provision. The Core NFVI also hosts the Slice Manager, and the NFVO

implemented with Kubernetes (for CNFs) and OSM (for VNFs). The proposed solutions

implemented in the AI-based MTD framework are also hosted in the core NFVI.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 50 of 228

Figure 13: Topology of the TelcoCloud testbed running in PNET testbed.

The 5G Core is implemented with Open5GS, an open-source 3GPP Release-17 compliant 5G core.

Open5GS provides the following network functions as discrete services, allowing the separation

of the control and data planes: (i) AMF, (ii) SMF, (iii) UPF, (iv) AUSF, (v) NRF, (vi) UDM, (vii) PCF,

and (viii) NSSF.

The RAN and mobile UEs are implemented by UERANSIM, an open-source UE and gNB simulator.

The 5G architecture is Standalone (5G SA). UERANSIM connects to Open5GS via a control

interface with the AMF and a user interface to the UPFs. The simulated UEs and gNBs connect via

a simulated radio interface. Unlike actual hardware equipment, UERANSIM allows the

deployment of a significant number of virtual UEs to test the solution's scalability under an

increasing network workload.

Following this structure, as presented in Figure 14: Testbed configuration for the AI-based MTD

service, the components of the AI-based MTD service are integrated in the testbed as described

below.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 51 of 228

Figure 14: Testbed configuration for the AI-based MTD service

2.7.2.1. MTD Controller

The MTD Controller dynamically executes MTD actions to change the attack surface of Telco

Cloud networks while maintaining service continuity. It focuses on interfacing and orchestrating

NFV resources with minimal disruption.

It runs in the core domain as a VNF, with a minimal requirement of 8 vCPUs, 16 GB of RAM, and

160 GB of storage. Its northbound interface (NBI) connects it with the MTD Strategy Optimizer

(via REST API), receiving from the latter the decisions taken on which MTD operation to perform.

Its southbound interface (SBI) is instead interfaced with the NFVO to enforce the operation on

the targeted NFV resource. Compatible NFVOs are ETSI OSM for VNFs and Kubernetes for CNFs.

2.7.2.2. MTD Strategy Optimizer

The MTD Strategy Optimizer is the cognitive component of the AI-based MTD service developed

to dynamically decide which MTD actions to perform based on the state of the Telco Cloud

network. It learns and then applies an optimized MTD strategy balancing security, cost, and

QoS/QoE.

For this reason, the MTD Strategy Optimizer is interfaced with various near-real time data sources

monitoring the network and collecting metrics to assess the network state. Specifically, the MTD

Strategy Optimizer is interfaced via REST API with:

1. The AI-driven security monitoring for anomaly detection and root cause analysis

framework, collecting security analytic data.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 52 of 228

2. The NFVO collecting resource consumption metrics to estimate the cost of MTD

operations based on the targeted NFV resource to reconfigure.

3. Openstack and Kubernetes for architectural and infrastructure information with near

real-time information on the running VNFs/CNFs.

4. The MTD Controller, informing it of the MTD operation to enforce.

5. The MTD Explainer receiving multiple data from the MTD Strategy Optimizer, such as

the decisions made and the rewards, to explain the policy and MTD strategy learned

by the deep-RL model.

2.7.2.3. MTD Explainer

The MTD Explainer uses XAI for deep-RL models and post-hoc explanation techniques to clarify

why specific MTD actions (e.g., migration vs. shuffling) for specific CNFs were chosen. For this

reason, the MTD Explainer is hosted in the core domain together with the MTD Strategy

Optimizer component, with which it is interfaced to interpret the latter’s decisions.

2.7.2.4. MTDFed

MTDFed is directly interfaced with the MTD Strategy Optimizer as it enables virtual network

operators (VNOs) running local MTD optimizers to collaboratively improve and speed-up the

optimization of MTD strategies among participants running local MTD Strategy Optimizer. Using

Federated Learning (FL), MTDFed enables collaborative optimization without compromising the

confidentiality of the network traffic nor that of the VNOs’ deep-RL models.

2.7.2.5. AI-driven Security Monitoring for Anomaly Detection and Root Cause

Analysis

The AI-driven Security Monitoring and Root Cause Analysis (RCA) component, developed by

MONT, will be integrated into the Patras5G-PNET testbed to provide real-time detection and

analysis of anomalies in IoT and 6G network environments. The Patras5G-PNET facility, with its

end-to-end slicing capabilities, MEC orchestration, and advanced monitoring infrastructure,

offers an ideal environment to validate the component under realistic conditions

The Montimage Monitoring Tool (MMT) and Montimage AI Platform (MAIP) will be deployed at

both the Edge NFVI and Core NFVI layers of the testbed. At the edge, lightweight anomaly

detection probes (MMT-probe) analyze traffic close to IoT devices and user equipment, enabling

low-latency event detection. At the core, MAIP aggregates heterogeneous data streams (network

traffic, logs, telemetry) and applies advanced ML models, including CNNs and reinforcement

learning, to detect suspicious behaviors and provide RCA. This dual deployment ensures

scalability and accuracy across the distributed 6G architecture.

The integration leverages the testbed’s Prometheus, Grafana, and Kibana monitoring stack for

visualization and correlation of detected events with infrastructure telemetry. Detected

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 53 of 228

anomalies are further enriched with contextual information from Cyber Threat Intelligence (CTI)

sources, enabling actionable insights and reducing false positives. RCA capabilities ensure that

when anomalies occur, the component not only signals the event but also identifies the

underlying cause (e.g., misconfiguration, DDoS traffic pattern, compromised IoT device).

This deployment contributes directly to UC#3.1 – Enabling anomaly detection using machine

learning automated techniques for attack detection, validating its performance under realistic

6G testbed conditions. It supports the NATWORK KPIs on Mean Time to Detect (MTTD), False

Positive/Negative rates, and Mean Time to Resolve (MTTR) by embedding monitoring and RCA

capabilities into the testbed’s edge-to-core continuum.

2.8. NCL Testbed Components Set-Up

2.8.1. NCL Testbed Infrastructure

The Network Convergence Laboratory (NCL) at the University of Essex provides the foundation

for the edge–cloud infrastructure used in NATWORK. NCL is a state-of-the-art research facility

designed to explore cloud–edge convergence, energy-aware orchestration, and secure

networked services. It integrates heterogeneous compute and storage resources with a high-

capacity programmable SDN network, enabling experimentation with advanced 6G edge–cloud

concepts.

For the testbeds we have two large-scale core cloud clusters, 2 cloudlets, and 4 edge nodes. Each

core cluster node is based on AMD EPYC 7352 24-core processors (48 threads), Ubuntu 22.04 LTS,

and NUMA-optimized architecture, interconnected via Pica programmable switches for flexible

traffic steering. Collectively, the NCL infrastructure integrates over 200+ CPUs, 200+ TB of

storage, and a programmable SDN/P4 network with 180 Gbps SDN and 100 Gbps P4 capabilities,

providing the aggregate resources across cloud, cloudlet, and edge tiers. Cloudlet nodes serve as

intermediate aggregation points, offering localized computing and orchestration closer to the

edge. Edge servers extend the continuum further by hosting lightweight CNFs, microservices, and

latency-sensitive workloads, while also acting as distributed points for federated learning and

cyberattack simulations. The lab interconnects multiple edge-cloud clusters through a dedicated

SDN fabric offering high bandwidth, ensuring low latency and high throughput across distributed

domains.

A set of containerized user-emulation clusters (user groups) have been deployed to generate

application demand across the testbed. These emulation clusters are hosted on machines based

on AMD EPYC 7281 16-core processors (32 threads) and run request generators as pods: benign

clients that emulate real user behavior and malicious users that produce controlled, oscillating

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 54 of 228

request patterns. The malicious containers are used to reproduce and evaluate novel cyberattack

scenarios such as Denial of Sustainability.

Figure 15: NCL Testbed Infrastructure

Figure 15: NCL Testbed Infrastructur demonstrates a high-level view of the testbed infrastructure,

showing a multi-domain edge-to-cloud environment where secure-by-design and energy-aware

orchestration, federated learning frameworks, and secure slice management functions are

developed and validated.

2.8.2. NCL Testbed Components Set-Up

Figure 16: NCL Testbed Components illustrates the components of the NCL edge–cloud testbed

used to evaluate UC1.1, focusing on decentralized orchestration and management of 6G slices

under novel cyberattacks such as Denial of Sustainability (DoSt). The setup leverages the FORK

orchestrator [2] as a baseline, extended with security-compliant orchestration (sFORK),

federated learning, cyber threat intelligence (CTI) integration and monitoring frameworks.

Prometheus telemetry and Grafana dashboards provide detailed observability of CPU and

memory resources of CNF services, response times, and energy utilization. Secure-by-design

orchestration is delivered via the sFORK framework, comprising global agents, local orchestration

agents, CNF managers, slice managers, dependency operators, and AI-powered scheduler, with

Kubernetes serving as both orchestration platform and execution environment for distributed

CNFs and learning tasks.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 55 of 228

Figure 16: NCL Testbed Components

Security-compliant slice management leverages federated learning agents and the CTI

framework, a peer-to-peer Operation Support System (OSS) that collects cluster hygiene metrics

and guides resource allocation to mitigate threats such as DoSt attacks while aligning with

sustainability goals. Federated learning for edge-to-cloud is done through distributed machine

learning agents and shared datasets, with Prometheus TSDB and MinIO integration planned to

support persistent storage. Secure inter-cluster connectivity is maintained via Submariner

tunnels and the MCS API. Collectively, these components provide monitoring, orchestration,

security, and learning capabilities, allowing evaluation of energy efficiency, slice resiliency, and

attack mitigation in a realistic multi-domain edge–cloud environment.

2.8.2.1. Energy efficient over edge-cloud

This component focuses on evaluating the energy impact of benign and malicious requests on

edge–cloud resources. Containerized demand-generation clusters are used to emulate realistic

user traffic, including malicious patterns reproducing Denial of Sustainability (DoSt) attacks.

These traffic generators, deployed as Kubernetes pods, stress CPU and memory resources of CNF

services by issuing oscillating requests that degrade performance without causing full-service

outages. Prometheus telemetry collects fine-grained CPU, memory, and response-time metrics,

while Grafana provides visualization and comparative analysis across single- and multi-cluster

setups. Together, these components enable measurement of energy utilization, service

degradation, and QoS variance under controlled load scenarios, forming the basis for sustainable

edge–cloud orchestration strategies.

2.8.2.2. Secure-by-design Orchestration

The secure-by-design orchestrator architecture integrates several key components:

• Global Agent: Serves as the central decision-maker, managing global dependency graphs,

initiating and monitoring deployments, and negotiating with local orchestration agents.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 56 of 228

It evaluates cluster offerings based on security, resource availability, hygiene, and energy

sustainability metrics.

• CNF Manager: Oversees the lifecycle of Cloud-Native Functions, ensuring that CNFs meet

predefined requirements while coordinating with local orchestration agents.

• Slice Manager: Orchestrates network slices by tracking their status, dynamically allocating

resources, and interacting with global and local agents to ensure efficient slice

deployment and monitoring.

• Local Orchestration Agents: Operate within each cluster to manage CNF deployments and

lifecycle. They report cluster capabilities, including resource availability, hygiene scores,

and compliance, to the global agent, and execute deployment decisions in real time.

• Dependency Operator: Maintains global dependency graphs that map relationships

between CNFs and microservices across clusters. It ensures subgraphs are up-to-date and

distributed according to resource availability and security policies.

• AI-Powered Scheduling: Applies machine learning models to improve resource allocation

and scheduling, providing local agents with insights derived from usage patterns and

predicted demand to optimize CNF performance.

• Cluster Requirements: Defines cluster-specific requirements for CNF deployment, guiding

local orchestration agents to allocate resources, enforce security policies, and meet

performance metrics.

• Monitoring: Continuously observes the health, performance, and security of CNFs and

network slices. Integrated Prometheus telemetry supplies data to both local and global

agents for timely decision-making and compliance with security policies.

2.8.2.3. Security-compliant Slice Management

Security-compliant slice management ensures that network slices and CNFs are deployed and

operated securely, resiliently, and efficiently across multi-cluster edge–cloud environments. The

secure-by-design orchestration framework integrates Cyber Threat Intelligence (CTI), enabling

continuous vulnerability awareness and adaptive risk mitigation. The sFORK orchestrator

coordinates within its operators and agents, leveraging CTI insights such as hygiene scores and

vulnerability mappings to ensure only compliant and trusted deployments occur across clusters.

The CTI Agent collects and shares vulnerability data between clusters, anonymizing sensitive

fields while preserving actionable intelligence. Local orchestration agents execute secure

deployments, while the Dependency Operator manages CNF interrelations. Prometheus

telemetry provides real-time monitoring of CPU, memory, and network metrics, which are

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 57 of 228

utilized by Federated Learning (FL) agents to support predictive resource management and

anomaly detection. Together, these components enable secure and risk aware management of

6G slices across the edge–cloud continuum.

2.8.2.4. Federated Learning for Edge-to-cloud

The Federated Learning (FL) framework enables intelligent, distributed workload prediction and

anomaly detection across edge and cloud domains within the 6G core. FL agents operate close

to the infrastructure layer, training locally on CNF CPU, memory, and energy utilization metrics

to derive cluster-specific insights. A data pipeline periodically extracts telemetry from

Prometheus TSDB, batches it, and transfers it to MinIO for persistent storage and offline

processing. These datasets comprise custom DoST simulation data, capture a mix of benign and

adversarial workload behaviors, forming the foundation for model training across distributed

nodes.

Initial benchmarking has been conducted using historical Google cluster traces as baseline

datasets for model development and performance validation. Multiple machine learning models

were evaluated for workload prediction, with XGBoost achieving the best performance.

Accordingly, the framework adopts Federated XGBoost as its baseline, leveraging an XGBoost

bagging approach for decentralized training across distributed nodes.

Two models are being developed under this framework: a resource optimization model that

predicts workload trends and advises the orchestrator on energy-aware scaling decisions, and a

classification model designed to identify and distinguish DoST-induced oscillatory patterns from

benign users with legitimate demand surges. Future development will extend this architecture

with decentralized publish/subscribe based FL integration within Kubernetes for enabling

continuous improvement in workload forecasting, traffic classification, and orchestration

resilience against evolving DoST-like threats.

2.9. TSS Testbed infrastructure and Components Set-Up

2.9.1. TSS Testbed Infrastructure

TSS testbed is dedicated to validating CIA-hardening techniques (confidentiality, integrity,

Availability) on X86 native, containerized, and WASM workloads. It provides:

Hardware resources:

o Dedicated server with multi-core CPU, 32-64 GB RAM, SSD storage.

o Networking at 1/10 GbE.

o Energy measurement instrumentation for KPI monitoring.

Virtualisation & orchestration:

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 58 of 228

o Docker & kubernetes clusters for container-based deployments.

o Support for Kubernetes sidecar deployment patterns (e.g., D-MUTRA sidecar for

runtime attestation).

Monitoring & analytics stack:

• Prometheus + Grafana for system metrics (CPU, memory, energy).

Security-specific frameworks:

• D-MUTRA blockchain: decentralized, dependency-free mutual remote attestation

framework.

• LLVM toolchain for instrumentation of x86 code.

• Modified WASMTIME runtime with integrity checker.

• E9patch for hot patching executable binaries. It allows modifying and instrumenting

binaries without requiring source code access.

2.9.2. TSS Testbed Components Set-Up

The testbed is structured into three parts corresponding to the supported format:

2.9.2.1. CIA-hardening of x86 payloads

• Workload: ELF-formatted executable MMT-Probe running as the security sensitive native

workload defined in Use Case 1.2.

• For practical reasons and representativeness of the test, SECaaS-hardened MMT-Probe,

may be tested on a different testbed where it is deployed and running. (e.g., P-NET’s,

CNIT’s or MONT’s). This will simplify the operations to generate normal traffic conditions

(e.g., by T-Rex), collect performance ratio (e.g., throughput)

• Tests will be made for CIA hardening as follows:

1. Confidentiality: automatic encryption of ELF code section, decryption at runtime

(<3s).

2. Integrity: injection of Prove/Verify primitives, comparison of runtime bytecode

signature vs pre-deployment reference, logging to D-MUTRA.

3. Availability: monitoring packet-processing routines (timestamps, throughput

baseline).

• Workflow:

1. Build & protect MMT binary via SECaaS pipeline, leveraging our tools aka Systemic

and D-MUTRA.

2. Instrument the hardened MMT binary, with timestamps, possibly triggered by

i9patch’s trampolines or through a novel LLVM-based inserted probe.

3. Deploy with blockchain nodes active.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 59 of 228

4. Run test traffic (e.g;, simulated traffic/live/PCAP).

5. Compare KPIs vs baseline unprotected MMT.

2.9.2.2. CIA-hardening of containerized payloads

• Workload: MMT-Probe and/or IS-RD’s Liquid xAPP deployed in Docker/K8s

• For practical reasons and representativeness of the test, SECaaS-hardened MMT-Probe,

may be tested on a different testbed where it is deployed and running. (e.g., IS-RD’s or

MONT’s), simplify the operations to generate normal traffic conditions (e.g., by T-Rex),

collect performance ratio (e.g., MMT’s throughput)

Tests will be made for CIA hardening as follows:

1. As the state of the art is mature and fulfilled in this area, no container-based

integrity test will be implemented.

2. Integrity verification is implemented with a sidecar attached to the workload

namespace, monitoring the container’s workload memory footprint, and

performing runtime attestation with D-MUTRA.

3. Availability: monitoring through sidecar telemetry probes accessing the

container’s workload elements (e.g., sampled collection of the instruction pointer,

sampled collection of the stack trace, sidecar located performance reference

payload).

4. To produce these hardenings (i.e., for integrity and availability preservation),

sufficient privilege or capability shall be delivered to the sidecar container (e.g.,

CAP_SYS_PTRACE).

Workflow:

5. Deploy workload as container in Kubernetes cluster.

6. Append D-MUTRA sidecar (Docker Compose / Helm).

7. Run the attestation verification pattern (e.g., cyclic, on-demand).

6. Compare attestation timing & performance penalties Run test traffic (e.g.,

simulated traffic/live/PCAP).

7. Compare KPIs vs baseline unprotected MMT or Liquid xAPP.

2.9.2.3. CIA-hardening of WASM payloads

Workload: MMT-Probe ported to WASM, executed on modified WASMTIME runtime.

Tests will be made for CIA hardening as follows:

a. Confidentiality: encryption of WASM bytecode, measured decryption delay. This

test is pending our WASM hardening feasibility study.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 60 of 228

b. Integrity: Runtime signature computed from JIT-serialized blob, compared to

reference signature. This test is pending our WASM hardening feasibility study.

• Availability: monitoring through the modified runtime for its own instrumentation. This

test is pending our WASM hardening feasibility study.

Procedure:

o Deploy modified WASMTIME with Prove/Verify routines

o Load protected WASM module; run baseline traffic.

o Trigger integrity checks (periodic + on-demand).

o Measure startup delay, attestation cycle, and runtime overhead.

2.10. ISRD Testbed Components Set-Up

2.10.1. ISRD Testbed Infrastructure

Figure 17 illustrates the O-RAN functional architecture. As a central part of cloud-native,

virtualized networking solutions, the RAN—specifically within the Liquid RAN framework—

comprises several key component groups: the 5G O-DU (Open RAN Distributed Unit), 5G O-CU

(Open RAN Centralized Unit), 5G Near-RT RIC (Near-Real-Time Radio Intelligent Controller)

integrated with various xApps, and the 5G Core Network (5GC).

Figure 17: ISRD Testbed Infrastructure

Through the ISRD approach, a flexible allocation and migration of 5G NR protocol stack functions

between the O-DU and O-CU are achievable. Both the ISRD Liquid RAN O-CU and O-DU represent

advanced implementations of the O-RAN Central and Distributed Units. Similarly, the ISRD Liquid

RAN Near-RT RIC embodies an O-RAN-compliant Near Real-Time RAN Intelligent Controller,

offering sophisticated logical control and optimization of RAN components (O-DU and O-CU). It

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 61 of 228

accomplishes this through detailed data collection and responsive actions over the E2 interface,

enabling near-real-time management of RAN performance and resources.

2.10.2. ISRD Testbed Components Set-Up

2.10.2.1. JDM-xApp

The JDM-xApp continuously receives real-time metrics from E2 nodes and evaluates patterns of

degradation. It can operate in two modes: in the rule-based mode, it applies threshold logic—

such as flagging jamming when BLER exceeds 10% or when CQI drops abruptly—triggering

mitigation actions that limit MCS levels for specific UEs. This mode is deterministic, simple to

deploy, and does not require prior training or data labeling.

For environments where jamming patterns may evolve or exhibit non-linear characteristics, the

second, ML-based mode approach introduces intelligence through unsupervised learning

techniques like clustering or anomaly detection. These models analyze historical metric trends to

identify outliers indicative of jamming and classify the severity level. The xApp then dynamically

enforces adaptive scheduling policies based on this classification. It also incorporates a feedback

mechanism to adjust its behavior over time, thereby improving its resilience to new or stealthy

jamming methods. Although more complex, this mode is especially useful in high-mobility and

dense deployments, or adversarial environments.

In both operational modes, the JDM-xApp uses the E2 CONTROL interface to issue commands to

the O-DU, modifying the scheduler’s behavior for affected UEs. This could include restricting MCS

levels, altering scheduling priorities, or temporarily offloading traffic. Such targeted control

ensures precise jamming mitigation without unnecessarily degrading overall system

performance.

2.10.2.2. Liquid RAN

Figure 18The deployment depends on the specific end-user needs, but usually consists of

multiple instances of O-DU, O-CU. The 5GC, and either a commercial or an USRP-based RU can

be also provided if required. Additionally, the deployment can integrate the Near-RT RIC and the

relevant xApp(s) such as RAN KPM xApp. All the Liquid RAN components are deployed as

containerized applications that can run either directly on bare metal or within Kubernetes

environments as pods. Figure 18 depicts a complete deployment with all optional and additional

components.

 In this architecture, the RAN components interconnect with other 5G network elements as

defined below. Liquid RAN supports a wide range of commercial User Equipment (UE) brands

such as Oppo, Samsung, and OnePlus. The User Equipment (UE) can connect to either a

commercial RU (for example, Benetel 550) or a COTS RU equipped with a USRP (b210) serving as

the radio front end, with UEs typically placed inside an RF shield box for test isolation. The O-DU

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 62 of 228

interfaces with commercial RUs via the Open Fronthaul (Open-FH) interface, while

communication with COTS RUs occurs over a proprietary fronthaul link. The O-CU connects to

the 5G Core Network (5GC) through standardized N2 and N3 interfaces. Additionally, xApps

expose external APIs that provide access to RAN-related metrics, enabling enhanced monitoring

and control capabilities.

Figure 18: ISRD Testbed setup

Liquid RAN supports various configurations of bands (n77, n78, n79), bandwidths (10-100MHz)

and antennas (SISO and MIMO 2x2 DL). For a complete deployment servers with proper

computing resources, which depends mostly on the bandwidth used, will be required.

2.10.2.3. Liquid Near-RT RIC

The ISRD Liquid Near-RT RIC serves as an O-RAN–standardized Near-Real-Time RAN Intelligent

Controller designed to optimize RAN performance. As shown in Figure 19, it interfaces with E2

nodes—specifically O-DUs and O-CUs—as well as with xApps and the Non-RT RIC, using O-RAN–

compliant E2, xApp API, and A1 interfaces, respectively. While the SMO and Non-RT RIC are not

part of the ISRD solution, the ISRD Near-RT RIC itself is delivered as a containerized software

package built on Docker. Its default deployment method uses Docker Compose, though

alternative orchestration options such as Docker Swarm and Kubernetes are also supported,

ensuring flexible and scalable deployment in various environments.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 63 of 228

Figure 19: ISRD Liquid Near-RT RIC interfaces

The basic deployment of Liquid RIC follows a Cloud-Native Function (CNF) model using Docker

containers managed through Docker Compose. In a single-machine setup, the user operates with

a single YAML file for entity management, simplifying network configuration considerably. The

deployment process involves pulling the Near-RT RIC Docker images from DockerHub and then

configuring the deployment through the docker-compose.yaml file. This YAML file defines the

container names, their interconnections, and the overall structure of the Near-RT RIC

environment. Liquid RIC can be run in two ways, the first being the console and the second being

detached mode, running containers in the background.

Figure 20: The main screen of the Liquid Near-RT RIC

The Liquid RIC container and all other containers provide their logs which can be viewed using

standard docker commands. The logs are written to both the system console of a respective

container and to the dedicated log files. The Liquid RIC offers a Graphical User Interface (GUI) for

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 64 of 228

both the Near-RT RIC and KPM xApp. Through the GUI the user can observe Near RT RIC and RAN

performance monitoring as well as perform xApp control such as addition and removal. The GUI

consists of several different views for exploring different dimensions of Liquid RIC. The views are:

Home, xApps, xApp, E2 Nodes, E2 Node, Cells, Cell, Logs and a Settings view. Figure 20 shows

Home view, which is the main screen.

2.10.2.4. KPM xApp

The KPM xApp is a built-in xApp of the Liquid Near-RT RIC. It subscribes to the measurements

(KPMs) from all cells, which are stored in the Valkey database. The KPM collection interval and

the reporting interval is 1 second. The KPMs can be viewed both in the Liquid Near-RT RIC GUI

and the KPM xApp GUI. The KPM xApp GUI is Graphana based and it is a browser-based

application, including several dashboard which support different RAN vendors. The example

dashboard is depicted in Figure 21.

Figure 21: Grafana dashboard with ISRD KPMs

2.11. ELTE Testbed Components Set-Up

The ELTE testbed has been designed to emulate a complete 5G network with support for

advanced security and monitoring capabilities. It integrates open-source 5G components,

emulated radio access, a programmable data network, and blockchain services. This environment

provides the basis for experiments in anomaly detection, monitoring, and blockchain-assisted

trust mechanisms.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 65 of 228

2.11.1. ELTE Testbed Infrastructure

The ELTE testbed provides a realistic and flexible environment for 5G and IoT experimentation,

combining open-source 5G components, programmable hardware, cloud infrastructure, and

blockchain-enabled security. The 5G Core node is implemented using Open5GS, with two

separate deployments to ensure modularity and performance separation. One instance handles

the complete suite of control-plane functions, including session management and mobility

control, while a second instance is dedicated exclusively to the User Plane Function (UPF),

enabling precise traffic management and realistic evaluation of data-plane operations. A

dedicated setup is integrated to validate machine learning functions within the data plane,

consisting of high-performance servers for model deployment, traffic orchestration, and

monitoring, paired with Intel Tofino switches running P4 pipelines enhanced with ML-based

classification logic. This configuration allows high-speed packet classification, fine-grained

monitoring, and reproducible testing of AI-driven anomaly detection methods, while a Flwr

federated learning node supports distributed training and secure aggregation of ML models

across the network, ensuring scalability and privacy without centralizing sensitive data.

Figure 22: ELTE Testbed infrastructure

The Data Network is built on OpenStack and closely integrated with the Open5GS based UPF,

providing a programmable and flexible environment for service deployment, traffic routing, and

multi-domain emulation. The cloud infrastructure enables dynamic orchestration of virtualized

network functions and application workloads, supporting experiments that combine

communication-layer performance with application-layer behaviors. Radio access is emulated

through UERANSIM, with separate instances for User Equipment and gNB, allowing scalable

emulation of multiple devices and radio interfaces while maintaining compliance with 3GPP

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 66 of 228

standards. This approach facilitates controlled and repeatable experiments without the need for

extensive physical hardware.

A blockchain layer, deployed across all nodes using the Foundry framework, adds distributed

trust, tamper-resistant logging, and secure coordination for network operations. It provides a

foundation for validating blockchain-assisted security and anomaly detection mechanisms,

ensuring transparency, accountability, and resilience against compromised nodes. By integrating

these components, the testbed offers a comprehensive platform for experimentation with end-

to-end 5G-IoT scenarios, including advanced machine learning validation, programmable data-

plane evaluation, distributed AI training, and blockchain-enhanced security services.

2.11.2. ELTE Testbed Components Set-Up

2.11.2.1. End-to-End Security Management

The End-to-End Trust Management in ELTE testbed is designed to provide a realistic and modular

platform for evaluating secure authentication and authorization mechanisms for IoT devices

within a 5G environment. The testbed integrates core network functions, radio access emulation,

a programmable data network, and a blockchain-based trust layer to enable comprehensive end-

to-end experimentation. The testbed architecture supports controlled evaluation of device

registration, data routing, and secure service access while maintaining compatibility with

standard 5G protocols. Key components of the testbed include:

5G Core (Open5GS): The core network is implemented using Open5GS, providing essential

control-plane functions such as the Access and Mobility Function (AMF), Authentication Server

Function (AUSF), and Unified Data Management (UDM). These network functions manage

authentication, session establishment, and mobility for IoT devices, ensuring secure and reliable

connectivity.

User Plane Function and Data Network (Open5GS): The UPF, also implemented via Open5GS,

handles user-plane traffic and interfaces with the Data Network. The DN includes an HTTPS-based

service provider that receives and responds to IoT device traffic, enabling secure end-to-end data

delivery. This separation between control and data planes allows precise measurement of traffic

flows and authentication performance.

UE (UERANSIM): The UE emulates IoT device functionality. In the physical testbed, a Raspberry

Pi running UERANSIM represents an actual IoT node, generating realistic traffic patterns and

triggering registration and authentication flows with the 5G Core.

gNB (UERANSIM): The gNB represents the radio access node and is emulated using UERANSIM.

It establishes the connection between the UE and the 5G Core, handling signaling, session setup,

and data forwarding, providing a realistic representation of the radio access network.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 67 of 228

Blockchain Layer (Foundry): The testbed integrates a permissioned Ethereum blockchain

implemented with Foundry, which supports smart-contract-based operations for end-to-end

trust establishment. The blockchain records pseudonyms, access policies, and authentication

metadata, enabling decentralized verification and reducing reliance on centralized identity

databases.

2.11.2.2. Data plane ML

The Data Plane ML validation was carried out on the dedicated testbed hosted at ELTE. The test

environment integrates programmable hardware, control infrastructure, and traffic generation

capabilities, providing a realistic and reproducible setting for experimentation.

The architecture is illustrated in Figure 22 and consists of the following components:

Two Servers: These provide the control, orchestration, and monitoring layer of the testbed. Their

functions include:

• Deploying and updating ML models into the data plane.

• Acting as the control plane, distributing classification rules and managing runtime

configurations.

• Generating test traffic for validation.

• Running eBPF-based modules, which can host ML model execution for packet

classification and provide fine-grained monitoring.

• Logging classification metadata and collecting performance statistics.

Server Specification:

• Operating System: Ubuntu 20.04.6 LTS

• CPU: AMD Ryzen Threadripper 1900X, 8 cores / 16 threads, 2.2–3.8 GHz

• RAM: 128 GB DDR4

• Network: Two Mellanox MT27700 ConnectX-4 Lx 25GbE NICs

Two Intel Tofino Switches: Serving as the programmable data-plane hardware, the switches

execute P4 pipelines extended with ML-based classification capabilities. The ML model can be

deployed directly on Tofino for line-rate packet classification.

Flexible ML Deployment: The testbed supports running the ML model on the Tofino switches

and/or within the servers using eBPF. This allows evaluation of both hardware-accelerated line-

rate classification and software-based processing.

Traffic Generation and Monitoring Tools: Deployed on the servers, these tools inject diverse

traffic patterns into the network and capture experiment data, ensuring comprehensive visibility

of system behavior under benign and malicious traffic conditions.

Operational Workflow:

1. ML-enhanced P4 pipelines are compiled and deployed on the Tofino switches or ML

modules are loaded via eBPF on the servers.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 68 of 228

2. The servers generate test traffic and run monitoring modules to collect metadata and

performance metrics.

3. The control plane dynamically updates the ML models and classification rules as required.

4. The data plane classifies incoming packets and enforces the defined actions in real time.

5. Monitoring infrastructure logs performance data, classification decisions, and robustness

outcomes.

This testbed combines hardware-accelerated packet processing on Tofino with flexible eBPF-

based ML execution on servers, providing a versatile platform to validate the Data Plane ML

component under multiple deployment scenarios.

2.11.2.3. Secure Data Aggregation

The Secure Data Aggregation as part of the ELTE testbed provides a controlled environment to

evaluate privacy-preserving and distributed machine learning techniques for IoT networks. It is

designed to support the aggregation of data from IoT devices while maintaining data

confidentiality and minimizing centralized exposure, enabling experiments on federated learning

and secure model training.

The core of the testbed consists of a Flwr node, which orchestrates federated learning workflows

and coordinates model updates across connected IoT devices. The node manages training

rounds, aggregates local model parameters, and enforces secure communication between the

central aggregator and participating devices. This configuration allows testing of both algorithmic

performance and system-level behaviors, including latency, scalability, and resilience under

realistic workloads. Key aspects of the Flwr node include:

Flwr main server: Acts as the central coordinator for federated learning and secure aggregation,

managing training rounds, orchestrating updates from normal clients, and coordinating MPC

nodes for privacy-preserving combination of model parameters.

MPC Nodes: Perform secure computations on local model updates from clients, ensuring that

individual data or model parameters are never exposed while contributing to the overall

aggregated model.

Normal Clients: Represent typical IoT devices generating local data for training. They participate

in the federated learning process by providing local updates that are securely aggregated via MPC

nodes.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 69 of 228

2.12. ZHAW Testbed Components Set-Up

2.12.1. ZHAW Testbed Infrastructure

This is a local testbed used in the initial phase of development and testing of the components of

the AI-based MTD framework, namely: the MTD Controller, the MTD strategy optimizer, MTD

Explainer, and MTDFed. Depicted in Figure 23, the testbed comprises a core and edge cloud

domain, both set up with Openstack. Each domain configures three VMs: one master node and

two worker nodes, forming a Kubernetes cluster. These are where the CNFs are running, with the

MTD controller enabling the migration between the clusters.

Figure 23 ZHAW local testbed for AI-based MTD framework implementation and testing.

ZHAW’s testbed additionally runs an AMD EPYC 9xx4 server for trusted execution environments

(TEE), as it is capable of creating SEV-SNP enclaves (Secure Encrypted Virtualization-Secure

Nested Paging), distinctive TEE VMs that run with encrypted RAM and CPU registries [1]. Such

SEV-SNP VM is used in the testbed and hosts a microk8s Kubernetes node, enabling the MTD

Controller’s MTD action of TEE encapsulation and decapsulation by transferring the CNFs from

the other clusters to microk8s and vice-versa.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 70 of 228

2.12.2. ZHAW Testbed Components Set-Up

The components of the AI-based Framework are all developed and tested in this testbed, with

further integration in the PNET testbed to operate with a 5G core and relative network functions

provided by Open5GS. The components are hosted in the OpenStack core domain, reflecting their

position in the Patras 5G testbed.

2.12.2.1. MTD Controller

The MTD Controller maintains the same set-up as described in 2.7.2.1.

2.12.2.2. MTD Strategy Optimizer

The MTD Strategy Optimizer maintains the same set-up as described in 2.7.2.2.

2.12.2.3. MTD Explainer

The MTD Explainer maintains the same set-up as described in 2.7.2.2.3.

2.12.2.4. MTDFed

The MTDFed maintains the same set-up as described in 2.7.2.2.4.

2.13. HES-SO Testbed Components Set-Up

HES-SO is building a testbed that targets two different attacks at the same time: jamming

detection and DDoS malicious traffic in a wireless environment. There is a third component

addressed which is the Mirai botnet setup which will allow us to create legit malicious traffic for

training and validation purpose.

2.13.1. HES-SO Testbed Infrastructure

The experimental infrastructure (Figure 24) is a complete end-to-end 5G testbed comprising a 5G

Core Network (5GCN), a 5G Radio Access Network (RAN), and User Equipment (UEs) generating

both benign and malicious IoT traffic. The 5GCN is deployed using containerized Open5GS (i.e.,

Network Slice Selection Function (NSSF), Network Exposure Function (NEF), Network Repository

Function (NRF), Policy Control Function (PCF), Unified Data Management (UDM), Application

Function (AF), Authentication Server Function (AUSF), Access and Mobility Management Function

(AMF), User Plane Function (UPF), Service Communication Proxy (SCP)), while the RAN is provided

by a containerized srsRAN project gNodeB. Radio transmission is handled by USRP B210 software

defined radios, which serve as both the gNB transceiver and as programmable radio sources for

jamming experiments.

Commercial Samsung S23 smartphones, equipped with Osmocom programmable SJA5-9FV SIM

cards configured for the local Open5GS network, act as UEs and provide IP connectivity to

attached Raspberry Pi (RPI) devices via USB-tethering. The gNB and UEs currently operate in the

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 71 of 228

N77 band with 20 MHz channel bandwidth. All core components–including Open5GS, srsRAN,

the jamming module, traffic capture, and machine-learning pipelines –are deployed as Docker

containers. The jamming module is also implemented as a container controlling a dedicated USRP

B210 through GNU Radio, at present producing a single-carrier interference signal with tunable

frequency and power to disrupt the 5G NR link between the UE and the gNB. Each RPI hosts a set

of Docker based containers that act as traffic sources or sinks.

Figure 24 HES-SO full testbed.

We currently support representative benign traffic patterns MQTT by mosquitto, User Datagram

Protocol (UDP) with Python socket programming, HyperText Transfer Protocol (HTTP) with

nginx/curl, and video streaming with mediamtx/ffplay–as well as an isolated Mirai-infected VM

that generates realistic botnet traffic. The benign services include both clients and servers,

whereas the Mirai VM only produces malicious flows. All benign traffic services are deployed as

lightweight containers, which are directly connected to the test interface exposed by the

tethered smartphone and communicate over the same network stack as ordinary IoT endpoints.

In contrast, the malicious Mirai instances are executed within fully isolated Quick Emulator

(QEMU)-based VMs to ensure an additional layer of containment and prevent any unintended

propagation of the malware. The malware VMs are managed through a dedicated Malware

Management and Control (MMC) infrastructure, composed of mmc-vm-daemon, mmc-host

daemon, and mmc-cli. Control commands for the malware are exchanged via AF_UNIX sockets

on the RPI host side and serial ports on the QEMU guest side, enabling fine grained orchestration

while maintaining secure separation of malicious code. Traffic of interest for DDoS detection is

captured at the N3 interface between the gNB and the UPF, which carries the user-plane flows

generated by both benign containers and malicious VMs. Captured packet traces are processed

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 72 of 228

by CICFlowMeter, which aggregates raw packets into bidirectional flow records enriched with

statistical features such as flow duration, inter-arrival times, byte and packet counts, and burst

metrics. These feature-rich flow records are stored in the Parquet format16 and consumed by a

dedicated container running Python-based XGBoost models. At present, both training and

inference are performed offline. However, the pipeline is designed to first operate online at the

edge and, in a subsequent phase, to be offloaded to a P4-programmable SmartNIC to enable line-

rate inference for faster detection and mitigation.

The gNB is also being prepared for future integration with a near-real-time O-RAN RIC, which will

enable the deployment of xApps capable of monitoring radio-level metrics to detect jamming in

real time and provide control directives back to the gNB scheduler. This planned integration will

Figure 25 Mirai Malware Control Mechanism

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 73 of 228

allow the system to detect and react to both jamming and DDoS attacks at the gNB in real time,

blocking malicious traffic and mitigating radio-level disruptions capabilities particularly relevant

for IoT-dominated 5G deployments. Nevertheless, in its current state, the testbed is already able

to gather data, train models, and perform offline detection of attacks, providing a robust

experimental platform for end-to-end evaluation of 5G-enabled IoT security solutions.

Figure 26 HES-SO Network testbed architecture for Mirai botnet attack generation.

2.13.1. HES-SO Testbed Components Set-Up

As previously mentioned, at HES-SO we are working on a testbed that addresses two attacks

simultaneously with two different natures. The very first is to install the Base Station into the

computer. This is done by using “docker compose build”. The way we define the yaml file allows

us to build the image and prepare the containers all at once. In the second step you need to do

the same with the jammer, which is also in the form of a container. Currently, every time we have

a modification on the jammer, GNU Radio generates a python script, and we need to rebuild the

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 74 of 228

container, which is very fast at this point. Currently Near RT RIC is in place but not yet tested.

Regarding Mirai-based botnets, further explanation was provided earlier. For the physical setup,

we use Raspberry Pi units; on each Pi we install the VM developed for research purposes. Some

Raspberry Pis are dedicated to generating benign (healthy) traffic.

In Figure 26 the complete network setup is outlined, where a firewall is in place to not block any

possibility of infection towards other equipment’s. This approach collects the data stream for

training purposes, which will subsequently be deployed on a SmartNIC.

2.14. UZH Testbed Components Set-Up

The UZH testbed provides a reproducible, end-to-end environment to evaluate anomaly

detection and explainability in realistic 5G scenarios. The platform consists of two main virtual

machines: a Control VM running the free5GC control-plane functions and a Data VM that hosts

the user-plane, traffic generation, and packet capture. Radio access is emulated with a software

gNodeB and UE using UERANSIM. Traffic flows from UE through gNodeB over N2/N3 into the

core (AMF/SMF/UPF), and mirrored packets on the N3 interface feed the IDS/XAI backend.

Inference results and explanations are exposed via a REST API to a lightweight dashboard for

operators.

2.14.1. UZH Testbed Infrastructure

The infrastructure follows the logical layout in the figures. The Control VM runs free5GC with

NRF, NSSF, PCF, NEF, UDM, AUSF, AMF, and SMF. The Data VM hosts UPF and a small mininet

topology (h1 for gNB/UE, h2 for UPF, s0 switch, r0 router) to create an isolated GTP-U path

toward the core. A port mirror (SPAN/TAP) on the N3 segment continuously captures GTP-U

(UDP/2152) and PFCP (UDP/8805) traffic using tcpdump/tshark; optional IPFIX export (nProbe) is

available for flow-level analytics. Typical addressing uses separate subnets for N2, N3, and N6;

routing is configured so that PDU sessions established by SMF traverse the UPF and out to a data

network. Hardware requirements are modest (8–16 vCPU, 32–64 GB RAM, SSD), and all

components run on Ubuntu 22.04. The setup supports both benign workloads (ping/HTTP/iperf)

and controlled attack scenarios.

2.14.2. UZH Testbed Components Set-Up

Deployment proceeds in three steps. First, free5GC is installed on the Control VM and the control-

plane NFs are started; SMF policies and slice parameters are registered in NRF/PCF. Second, the

Data VM brings up the mininet topology, starts the UPF, and launches UERANSIM so that the gNB

attaches to AMF (N2) and the UE registers and creates a PDU session (N3). Third, data capture

and analytics are enabled: mirrored N3/PFCP traffic is written to PCAP (or exported as IPFIX) and

passed into the IDS/XAI pipeline. The backend performs parsing and feature extraction (flow

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 75 of 228

construction with 5-tuple, TEID/QFI, temporal windows; statistics such as packet/byte rates,

inter-arrival variance, UL/DL ratios, entropy, and PFCP/NAS counters), then executes binary and

multi-class models (Random Forest, XGBoost, CNN/DNN). A simple decision gate provides

anomaly scores and labels. Results and explanations are served through /predict and /explain

endpoints and visualized on a dashboard showing alert rates, confusion matrix, and feature-

importance distributions.

2.14.2.1. Anomaly Detection Explainer

The Explainer component generates human-readable reasons for each flagged anomaly. For tree-

based models it uses SHAP TreeExplainer; for neural models it employs KernelSHAP/LIME. Each

inference returns the top-k contributing features with sign and magnitude, which are then

summarized by a small LLM into domain-aware narratives. Explanation quality is tracked with

four KPIs: faithfulness (performance drop under feature deletion), robustness, complexity, and

latency. To prevent misleading attributions, the testbed includes adversarial “bad-tests”: leakage

traps (ensuring explainers do not focus on non-causal identifiers such as IP pools), randomization

checks (weights/labels shuffled should yield structureless attributions), micro-drift repeats, and

out-of-distribution runs across slices or time-of-day.

Figure 27: Anomaly Detection Explainer.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 76 of 228

Overall, the UZH testbed offers a controlled, programmable, and repeatable environment that

links UE/gNB, free5GC core, UPF, data capture, ML-based IDS, and XAI. It enables rigorous

evaluation of detection accuracy alongside explanation quality so that operators can understand,

trust, and act on anomaly alerts in 5G networks.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 77 of 228

3. Dry Run Tests for NATWORK Components
In this section, the validation of the 43 components of the NATWORK project is illustrated. With

these sets of dry run test instructions, the component owners verified or will verify in the

upcoming period the functionality of the components. Component owners had a close

collaboration with testbed owners to identify the infrastructure of the testbed(s) on which the

related component had been installed in. Components that were installed in more than one

testbed have a shared (single) test report. In D6.3, second version of “System Integration on the

testbeds, Pilot installations and implementations”, a full validation of the components will be

reported.

In the table below, information on the components, the test scenarios and related test cases of

each component, and the status of the dry run tests is presented.

Table 2: Components and related information of the dry run tests

Component Test Scenarios /

Test Cases

Dry run test

status

1 Energy efficient over edge-cloud Appendix A.1 Partially Tested

2 TrustEdge Appendix A.2 Fully Tested

3 Feather Appendix A.3 Fully Tested

4 Flocky Appendix A.4 Fully Tested

5 Secure-by-design orchestration Appendix A.5 Fully Tested

6 End-to-End Security Management Appendix A.6 Fully Tested

7
Slice orchestration and slice management for

beyond 5G networks
Appendix A.7

Fully Tested

8 AI-Based RIS configuration Appendix A.8 Not tested yet

9 ML-based MIMO Appendix A.8 Not tested yet

10 JASMIN & Filter Mitigation Appendix A.8 Partially Tested

11
DetAction: Detection and reAction against

jamming attacks
Appendix A.9

Fully Tested

12 Security-compliant Slice Management Appendix A.10 Fully Tested

13
Multimodal Fusion Approach for Intrusion

Detection System for DoS attacks
Appendix A.11

Partially Tested

14
Lightweight SDN-based AI-enabled Intrusion

Detection System for cloud-based services
Appendix A.12

Fully Tested

15 AI-enabled DoS attack Appendix A.13 Fully Tested

16
Multiagent AI based cybersecurity support

system
Appendix A.14

Partially Tested

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 78 of 228

Component Test Scenarios /

Test Cases

Dry run test

status

17 Data plane ML Appendix A.15 Fully Tested

18
Wire-speed AI (WAI) and Decentralized Feature

Extraction
Appendix A.16

Fully Tested

19
Microservice behavioral analysis for detecting

malicious actions
Appendix A.17

Partially Tested

20 MTD Controller Appendix A.18 Partially Tested

21 MTD Strategy Optimizer Appendix A.19 Fully Tested

22 MTD Explainer Appendix A.20 Not tested yet

23
AI-driven security monitoring for anomaly

detection and root cause analysis
Appendix A.21

Partially Tested

24 Security-performance balancer
Reporting

Period 2

Not tested yet

25 DFE Telemetry Appendix A.22 Fully Tested

26 Secure Data Aggregation Appendix A.23 Fully Tested

27 Federated Learning for edge-to-cloud Appendix A.24 Partially Tested

28 MTDFed Appendix A.25 Fully Tested

29 CIA-hardening of x86 payloads Component Appendix A.26 Partially Tested

30 CIA-hardening of containerized payloads Appendix A.27 Not tested yet

31 CIA-hardening of WASM payloads Component Appendix A.28 Partially Tested

32 JDM-xApp
Reporting

Period 2

Not tested yet

33 Liquid RAN Appendix A.29 Not tested yet

34 Liquid Near-RT RIC
Reporting

Period 2

Not tested yet

35 KPM xApp
Reporting

Period 2

Not tested yet

36 Characteristics Extractor Appendix A.30 Fully Tested

37 Key Generator Appendix A.31 Fully Tested

38 Security Evaluator Appendix A.32 Fully Tested

39 AI -Based Anomaly Detection Explainer Appendix A.33 Not tested yet

40
Wirespeed traffic analysis in the 5G transport

network
Appendix A.34

Fully Tested

41
Detection and mitigation against jamming

attacks
Appendix A.35

Partially Tested

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 79 of 228

Component Test Scenarios /

Test Cases

Dry run test

status

42 Setting up of a Mirai botnet
Reporting

Period 2

Not tested yet

43 FPGA-based hardware detection of DDoS attacks
Reporting

Period 2

Not tested yet

In the following sub-sections, directions on how the related dry run tests were performed or will

be performed, are presented. Additional information on the actual tests, including the test

scenarios / test cases and the results for the components on which initial dry run tests were

performed can be found in the Appendix.

3.1. Energy efficient over edge-cloud

The test procedures and results are recorded in the attached Excel sheet UEssex –Energy-

efficient.xlsx in Appendix A.1.

3.1.1. Test procedures / Test cases

CPU utilization and energy consumption (TS01): Benign workloads (TC01) were tested in single-

and multi-cluster setups, showing RTT variance due to MCS API overhead.

Adversarial workloads (TC02) reproduced DoST attacks with oscillatory HTTP traffic, causing

CPU/memory oscillations, degraded QoS, and increased RTT while keeping services alive. The

DoST attack demonstration has been successfully conducted; however, mitigation strategies are

still under development in cohernece with Section 3.5 (Secure-by-Design Orchestration) and

Section 3.27 (Federated Learning for Edge–Cloud). These mitigation mechanisms have not yet

been validated within the testbed and will be integrated and evaluated in subsequent phases.

Monitoring and dataset generation (TS02): Prometheus and Grafana were used to monitor CPU,

memory, network, and pod lifecycle metrics during benign and DoST workloads. Time-series data

were stored in the Prometheus TSDB and persisted in MinIO, preparing structured datasets for

federated learning and anomaly detection.

These tests confirm the impact of DoST on CNF services and establish a dataset pipeline for AI-

driven slice management.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 80 of 228

3.2. TrustEdge

3.2.1. Test Procedures / Test Cases

The full set of test procedures and results is recorded in the attached Excel sheet IMEC-

TrustEdge.xlsx in Appendix A.2. The test was performed in April 2024 and successfully passed.

Startup time: Measures the (added) boot time of the framework from attestation to

secure Feather deployment. The average case 20.91s time adds to boot time, around half

of which is Feather starting and half is the attestation process

3.3. Feather

3.3.1. Test Procedures / Test Cases

The full set of test procedures and results is recorded in the attached Excel sheet IMEC-

Feather.xlsx in Appendix A.3. The tests were performed at various dates from mid-2024 to early

2025 depending on implementation milestones. All tests have been successfully passed.

The first group of tests involves runtime comparisons between Docker containers, OSv

unikernels, and WASM workloads in WASMTime when deployed through Feather:

Minimal load: Measures the memory overhead of Feather when initializing container,

unikernel and WASM backends and deploying an idle workload. The resulting overhead

was minimal, and the lowest for WASM (WASMTime).

Application: Measures the overhead of Feather with active containers and unikernels.

Measures the resource consumption of a Minecraft server in both container and

unikernel format to gauge benefits of runtimes. The results show a CPU penalty for

unikernels, while using significantly less memory than a container.

Image size: Measures the relative size of an image for specific functionality (HTTP server)

in different runtime formats. WASM resulted in the smallest images, followed by the OSv

unikernel and the container.

HTTP performance: Measures performance of an HTTP server in various runtimes.

Considers latency as well as raw request throughput using k6 command. The results show

a small but significant latency overhead for WASM, while keeping pace with container

throughput. OSv unikernel performance was an order of magnitude worse on

KVM/Qemu, despite older tests showing good results on XenServer.

The second test suite concerns the performance parameters of decentralized and multi-runtime

networking:

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 81 of 228

Decentralization throughput: Measures throughput of the decentralized point-to-point

internode part of the networking solution compared to WireGuard. The solution was able

to saturate a Gbps physical connection with 10-100 times lower CPU use than WireGuard

depending on send/receive and protocol.

Decentralization scalability: Measures throughput of the decentralized point-to-point

internode part of the networking solution in 5-node star and ring topologies to evaluate

scalability. In the ring topology, WireGuard uses one of the nodes as VPN controller. The

results indicate that network throughput depends only on P2P connected nodes, whereas

WireGuard performance depends on total topology size.

Multi-runtime throughput: Measures throughput of the multi-runtime (node local) part

of the networking solution using a video streaming scenario. The results show a sustained

2.5Gbps throughput using just 1% of a single CPU core, independent of the runtimes used.

Furthermore, the solution adds only 10-100µs end-to-end latency compared to Linux-

native container-to-container traffic.

3.4. Flocky

3.4.1. Test Procedures / Test Cases

The full set of test procedures and results is recorded in the attached Excel sheet IMEC-Flocky.xlsx

in Appendix A.4. The tests were performed in February 2025 and all successfully passed. To

summarize, various aspects of the solution framework are gauged:

Functional evaluation: The functionality of the framework is measured in terms of

metadata discovered (discovery + metadata services) and required services deployed

(orchestration metadata use). Results are as expected with 100% discovery, and all

services successfully placed after 2-3 rounds (depending on random factors).

Resource scalability: CPU and memory are measured for topologies from 1 to 150 nodes,

for discovery distances from 10 to 20 (ms ping simulated). Memory scales as expected,

with very low overhead compared to baseline (16MB base to 21MB at the densest

scenario). CPU scaling exactly follows the number of neighbours.

Network scalability: Network traffic is measured for topologies from 1 to 150 nodes, for

discovery distances from 10 to 20. Network traffic scales linearly with the number of

neighbours, but rises twice as fast as CPU scaling (8x traffic for 4x CPU and 4x neighbours).

Discovery accuracy: Metadata discovery efficiency is measured when each node is

assigned 2 random metadata items at start, and a total pool of 100 must be discovered

by each node. Results show >99% metadata discovery from 75 nodes and 20 discovery

distance upwards, and >96% for smaller, loosely connected topologies. This indicates

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 82 of 228

single nodes not connected to the topology due to random generation (trivial to fix with

starting conditions and configuration for nodes).

Deployment latency: Measures the total deployment latency (end to end) of a two-

component service in the Flocky framework, from user action to service deployment.

Median case shows 21.1ms response time for deployment on two separate nodes,

consisting of ~70% network latency.

3.5. Secure-by-design orchestration

The test procedures and results are recorded in the attached Excel sheet UEssex – secure-by-

design-orch.xlsx in Appendix A.5.

3.5.1. Test Procedures / Test Cases

ORCH-TS01 (Security-compliant orchestration): Slice and cluster requirements were defined

declaratively with security constraints. Orchestration was triggered, and placement/scaling

decisions were monitored to verify compliance. Results confirm that no insecure placement

occurred, demonstrating adherence to secure-by-design policies.

ORCH-TS02 (Subgraph communication): Multi-CNF slices with dependency graphs were created.

The sFORK policy and strategy components decomposed slice dependencies into subgraphs,

which were distributed to local cluster agents. Subgraphs were executed correctly across

clusters, confirming proper communication and dependency handling.

These tests validate that sFORK respects slice-level security requirements and enables

coordinated orchestration across distributed clusters.

3.6. End-to-End Security Management

The full set of test procedures and results is recorded in the attached Excel sheet ELTE-E2E-

Trust.xlsx in Appendix A.6. All tests were executed between August and November 2024, and

every case completed successfully.

3.6.1. Test Procedures / Test Cases

Core Connectivity: The 5G Core was started and verified to be fully operational. The gNB

connected to the Core via UERANSIM, and the UPF established a stable link through Open5GS.

Log files on both ends confirmed successful attachment and session establishment.

End-to-End UE Path: The UE connected through the configured gNB, and the connection

propagated correctly through the 5G Core to the UPF and Data Network (DN). The full data path

from UE → gNB → Core → UPF was validated, confirming correct forwarding and control-plane

behavior.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 83 of 228

Blockchain Node Deployment: A Foundry blockchain node was deployed locally after installing

Rust, Node.js, and the Foundry toolchain. Health checks using CLI tools (forge test, cast block-

number) verified correct operation. Dummy transactions were processed successfully,

confirming proper block generation and transaction handling.

Blockchain Integration with 5G Components: The UPF communicated successfully with the

blockchain node running in the DN, performing data path and transaction validation. The 5G Core

also initiated blockchain transactions and received confirmation responses, demonstrating

reliable two-way interaction between the 5G and blockchain layers.

All procedures have been executed as defined in the test cases (E2E_Trust-TS.01–TS.03). No

anomalies, disconnections, or processing errors were observed. The integrated E2E Trust

component is verified to be stable, interoperable, and ready for full system integration.

3.7. Slice orchestration and slice management for beyond 5G

networks

A comprehensive record of the test procedures and their outcomes is provided in the attached

Excel file, CERTH-Slice-orchestration-and-management.xlsx in Appendix A.7. All tests conducted

to date have been completed successfully.

3.7.1. Test Procedures / Test Cases

A series of tests were conducted under the test scenario Slice-orchestration-management-TS01,

aimed at verifying the proper functionality of the NATWORK Slice orchestration and slice

management for beyond 5G networks component integrated within a 5G network. The first test

case (TC01) validated the default behavior of the xAPP under normal network conditions, where

traffic generated by a default traffic generator was correctly classified as benign. In TC02, the

xAPP’s detection capabilities were evaluated using malicious traffic from the KDD Cup 1999

dataset, with results confirming accurate classification of attack traffic. Building upon this, TC03

assessed the xAPP’s ability to respond adaptively by reallocating Physical Resource Blocks (PRBs)

to limit the impact on slices under attack, demonstrating successful reallocation based on

computed anomaly ratios. Finally, TC04 tested the system’s mitigation capability by

disconnecting malicious User Equipment (UE) when the anomaly ratio reached 100%, effectively

removing the threat from the network. All test cases between October 2024 and May 2025 were

executed successfully, and the expected outcomes were achieved.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 84 of 228

3.8. AI-Based RIS configuration

Test scenarios for this component can be found in the attached CERTH-Signal Processing.xlsx in

Appendix A.8.

3.8.1. Test Procedures / Test Cases

The goal of this procedure is the determination of the RIS configuration for multi-user scenarios.

Procedure consists of the following steps:

• Step 1: The receiver and the transmitter will be positioned in Line-of-Sight with the RIS

unit.

• Step 2: The communication link quality will be measured with the RIS unit out of function

in order to use this measurement as baseline.

• Step 3: The communication link in case that the user is served standalone will be

measured using the optimal RIS configuration.

• Step 4: The communication link quality in the multi-user scenario will be measured using

the codebook entries multiplexing algorithm for fair beam-splitting.

The prerequisite information is the optimal RIS configurations for the case that each user is

served standalone by it. The procedure demands data only extracted by the RIS-testbed. The

outcome is the performance per user in multi-user scenario. The current status is that the setup

has been prepared and preliminary results are extracted. Mainly, the proposed codebook entries

multiplexing algorithms have been initially compared with traditional RIS sharing approach such

as segmentation of RIS unit for multiple users and time division multiple access. The evaluation

approach will be completed the next period-planned for early 2026.

3.9. ML-based MIMO

ML-based MIMO test procedures are in the attached CERTH-Signal Processing.xlsx in Appendix

A.8.

3.9.1. Test Procedures / Test Cases

The procedure described on JASMIN & Filter Mitigation will be evaluated in the case where

receiver or/and jammer is equipped with MIMO antennas. In this case, synchronization issues

and benefits from MIMO usage will be addressed. The evaluation has been planned for mid-

2026, in the period that the evaluation of JASMIN and Filter Mitigation will have been completed

for SISO case.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 85 of 228

3.10. JASMIN & Filter Mitigation

The test scenarios and the initial test results for the present component appear in the attached

CERTH-Signal Processing.xlsx in Appendix A.8.

3.10.1. Test Procedures / Test Cases

The goal of this procedure is the detection of the jamming attack across all main types (constant,

periodic, reactive) in real-time within IEEE 802.11p. protocol. Procedure consists of the following

steps:

For JASMIN evaluation

• Step 1: The dedicated protocol for V2X, IEEE 802.11p, will be simulated in the SDR-based

setup.

• Step 2: One SDR will be used as a transmitter, one as a receiver and one as a jammer.

• Step 3: JASMIN model will be connected with the receiver.

• Step 4: The output of JASMIN will be measured in case the jammer is inactive.

• Step 5: The output of JASMIN will be measured in case the jammer is active.

• Step 6: The outputs in both cases will be evaluated based on the ground truth

For Filter Mitigation

• Step 1: The dedicated protocol for V2X, IEEE 802.11p, will be simulated in the SDR-based

setup.

• Step 2: One SDR will be used as atransmitter, one as a receiver and one as a jammer.

• Step 3: The information from the receiver will be directed identically in two sinks; the

jammed and the mitigated.

• Step 4: In the mitigated sink, the respective filter will be applied and the clear from the

attack signals will be stored.

• Step 5: For the evaluation, the content of the sinks will be compared.

The prerequisite for mitigation is the perfect synchronization between two SDR ports, a technical

task that is ongoing. The procedure demands data only extracted by the SDR-based testbed. The

accuracy of the JASMIN model will be evaluated in two cases; clear and jammed signal for an

overall evaluation of the model’s performance. The mitigation will be evaluated comparing the

SNR values before and after the usage of the filter mitigation. The evaluation of JASMIN has been

completed. The overall accuracy is 99.92% and is passed the test successfully. For the mitigation

part, the evaluation will be completed in early 2026.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 86 of 228

3.11. DetAction: Detection and reAction against jamming attacks

3.11.1. Test Procedures / Test Cases

The full details of the test procedures and cases for this component are provided in the attached

file GRAD-DetAction.xlsx in Appendix A.9, which includes parameters, steps, and dates. All dry-

run tests on the component have been successfully completed.

Signal preprocessing validation: The signal acquisition and preprocessing pipeline (resampling,

frequency transformation, spectrum fragmentation, and normalization) have been verified.

Detection phase classification validation: The detection phase has been tested in an inference

scenario to ensure that the same steps used during training and validation can be executed

without errors during testing.

ReAction PRB assignment verification: The reAction algorithm has been validated in a simulation

scenario, confirming the allocation of PRBs to UEs, both in the presence and absence of jamming

in certain PRBs.

Connection between Detection and ReAction phases verification: The interaction between the

detection and reAction phases has been tested in a simulation scenario and confirmed to work

as intended.

3.12. Security-compliant Slice Management

The test procedures and results are recorded in the attached Excel sheet UEssex –CTI.xlsx in

Appendix A.10.

3.12.1. Test Procedures / Test Cases

CTI-TS01 (CTI exchange in multi-cluster environments): Two Kubernetes clusters with
vulnerability scanners and CTI agents were deployed. Applications with different vulnerability
profiles were scanned, and bidirectional CTI sharing was enabled. Results confirmed that each
cluster received tailored CTI data, with sensitive fields anonymized.

CTI-TS02 (Sensitivity/necessity mapping): Vulnerability scans from multiple clusters were
processed by the CTI agent. Metadata fields were selectively anonymized or included in STIX
bundles based on risk scores, necessity, and sensitivity mappings. This validated the
anonymisation mechanism, with sensitive values hashed and relevant fields preserved.

CTI-TS03 (Hygiene score evaluation): Applications with varying vulnerability severities were
deployed, and CTI analysis was used to compute hygiene scores. Clusters with more severe
vulnerabilities were shown to have lower hygiene scores, confirming the correctness of the
scoring mechanism.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 87 of 228

These tests confirm that the CTI framework provides tailored, anonymized intelligence, supports
risk-aware orchestration decisions, and delivers accurate hygiene scores for secure-by-design
slice management.

3.13. Multimodal Fusion Approach for Intrusion Detection System

for DoS attacks

The test procedures and results areis recorded in the attached Excel sheet CERTH-Multimodal

Fusion Approach IDS.xlsx in Appendix A.11.

3.13.1. Test Procedures / Test Cases

Step 1 - Deployed 2 docker in the 5G-SDN testbed one for traffic replay and a second one

containing the multimodal IDS.

Step 2 - Replay 3 pcap files from open datasets (UNSW-15,5GAD-2022, 5G-NIDD) and log the

classification results of the IDS i.e. (a) Traffic Type (Anomalous/Normal), (b) Attack type if

anomalous traffic was detected in (a).

Step 3 – Compare the logged results with the ground truth contained in the datasets and compare

the 3 KPI described in D6.1 i.e. Probability of DoS Attack Detection, AI-based Intrusion Detection,

Probability of False detection.

Results: Probability of DoS Attack Detection > 0.92 (min) in all cases, Probability of False detection

< 0.11 (max) in all cases.

3.14. Lightweight SDN-based AI-enabled Intrusion Detection

System for cloud-based services

The test procedures and results are recorded in the attached Excel sheet CERTH-SDN IDS.xlsx in

appendix A.12. The component was tested in one scenario comprised of six steps presented in

the next subsection. All dry-run tests on the component have been successfully completed.

3.14.1. Test Procedures / Test Cases

Step 1 - Deploy 3 dockers in the 5G-SDN testbed, one for attack creation (Kali Linux tools via

python scripts), a second one containing the IDS tool and one for Wireshark to capture traffic.

Step 2 - Use the Apache JMeter tool for different traffic patterns and workload performance

measurements monitor impact on QoS and OpenAirSim to simulate the UEs and eNB operation

Step 3 – Carry out two types of DoS attacks: (i) a UDP Flooding attack targeting the UPF

component; and (ii) an SCTP Flooding attack targeting the AMF component. Log relevant details.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 88 of 228

Step 4 – If an attack is detected, log identification of the attack, the attacker’s IP, and the message

sent to the SDN to mitigate this attack.

Step 5 – Verify that SDN controller has implemented mitigation

Step 6 – Check logs to see detection time.

Results: Both attacks are always detected when using ensemble of models with average time a)

4.8s when using Exponential Moving Average (EMA), b) 5.2s when using MLP DNN, c) 5.6s when

using 1D-CNN, d) 5.8s when using ensemble of methods. When the attack was detected, the

mitigation action was always successfully implemented in the SDN.

3.15. AI-enabled DoS attack

The test procedures and results are recorded in the attached Excel sheet CERTH-AI-

enabled_DoS_attack.xlsx in Appendix A.13. The component was tested in two scenarios,

specifically attacking SMF 5G component and attacking AMF 5G component. All dry-run tests on

the component have been successfully completed.

3.15.1. Test Procedures / Test Cases

Scenario 1 - Attacking SMF 5G component

Step 1 - Run AI-enabled DoS attack container against SMF component of CERTH's 5G tesbed.

Step 2 - Conduct 1000 episodes in training mode.

Results:

Results follow the expectations: Exponential decline of epsilon value across episodes;

Logarithmic/linear growth in rewards after exploration phase completion; Consistent growth in

the total number of successful attacks across training; Total percentage of successful attacks at

the end of the training process 88.2%.

Scenario 2 – Attacking AMF 5G component

Step 1 - Run AI-enabled DoS attack container against AMF component of CERTH's 5G tesbed.

Step 2 - Conduct 1000 episodes in testing mode.

Results:

Results follow the expectations: Constant and minimal value of epsilon, 0.1; Constant and

maximum value of reward, 1000.

Constant and minimal value of epsilon, 0.1; Constant and maximum value of reward, 1000

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 89 of 228

3.16. Multiagent AI based cybersecurity support system

The test procedures and results are recorded in the attached Excel sheet CERTH-

Multiagent_System.xlsx in appendix A.14 . The component was tested in four scenarios for

different agents, comprised of multiple steps presented in the next subsection. All dry-run tests

on the component have been successfully completed.

3.16.1. Test Procedures / Test Cases

Scenario 1 – E2E module test scenario

Step 1 – Deploy the multiagent AI framework in a 5G testbed containing multiple VNFs (UPF, SMF,

AMF) for traffic and control-plane emulation.

Step 2 – Inject a combination of synthetic attack events (DoS, lateral movement, data exfiltration

etc.) and benign traffic.

Step 3 – Log all correlation and automated response activities executed by the threat intelligence

and automated response agents.

Step 4 – Compare the system’s detection and mitigation performance against baseline manual

incident response workflows (i.e. a human operator manually mitigating detected attacks).

Expected Results:

Threat correlation accuracy > 0.90 in all cases; average automated response time < 5s;

compromised node count reduced by 5-15% compared to baseline.

Scenario 2a - Threat reporting and Insight Agent

Test Procedures / Test Cases

Step 1 – Deploy the LLM-based Threat Insight Agent with access to cybersecurity standards,

incident datasets, and network context data.

Step 2 – Run evaluation using a golden dataset high-quality data, question-answer pairs derived

from ISO, ENISA, NIST and ETSI references.

Step 3 – Test three prompting strategies (Zero-Shot, One-Shot, Few-Shot) and collect the

generated responses.

Step 4 – Evaluate performance using four metrics: Prompt Alignment, Faithfulness, Response

Relevancy, and Context Recall.

Results:

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 90 of 228

Few-Shot prompting yields >10% improvement across all metrics; Faithfulness ≥ 0.85; Response

Relevancy ≥ 0.90; Context Recall ≥ 0.80.

Scenario 2b Generate Human-Readable Threat Reports and Actionable Insights

Test Procedures / Test Cases

Step 1 – Deploy the Threat Intelligence Agent in CERTHs’ testbed divided into distinct zones (Core,

Edge, Access).

Step 2 – Introduce multiple threat events (e.g., DDoS, lateral movement, data exfiltration) within

each zone.

Step 3 – Verify that the agent correlates Indicators of Compromise (IOCs) and produces human-

readable summaries for each event.

Step 4 – Assess whether generated reports include clear, actionable insights and

recommendations tailored to the affected network zone or role.

Step 5 – Validate clarity and accuracy by expert review against ground-truth threat data.

Results:

The system successfully generated contextualized reports summarizing attack type, impact

scope, and recommended mitigation steps for various zones of the system. Reports were judged

clear and operationally relevant by cybersecurity analysts.

Scenario 3 - IoC Correlation Agent

Test Procedures / Test Cases

Step 1 – Train the SAFE-AE (Suspicious trAffic Filtering and Evaluation AutoEncoder) on normal

traffic samples from multiple open and CERTH generated datasets.

Step 2 – Replay mixed normal and anomalous traffic bags in real-time through the model.

Step 3 – Identify suspicious traffic bags and feed them into the LLM for IP-level anomaly

interpretation and mitigation advice generation.

Step 4 – Compare SAFE-AE performance against baseline MIL and supervised models using

common detection metrics.

Results:

Accuracy = 77.75%; Precision = 82.06%; Recall = 89.58%; F1-Score = 85.66%; detection latency <

1s per bag; false alarm rate < 0.12.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 91 of 228

Scenario 4 Coordinate with security orchestration tools

Step 1 – Deploy the Orchestration Coordination Agent equipped with an LLM interface connected

to an Open Source Security Orchestration, Automation, and Response (SOAR) platform in

CERTHs’ testbed .

Step 2 – Simulate detected vulnerabilities and policy breaches across 5G slices (e.g., outdated

services, misconfigured firewalls, improper ACLs).

Step 3 – Validate that the agent triggers SOAR-driven actions including:

 a) Patching vulnerable services

 b) Updating firewall configurations

 c) Adjusting access control lists (ACLs)

 d) Modifying slice-level security policies

Step 4 – Observe execution traceability and ensure feedback from each action is logged and

reintroduced into the agent network for closed-loop adaptation.

Step 5 – Confirm that the secondary LLM generates comprehensive, human-readable

documentation of all automated decisions and outcomes

Expected Results:

The Orchestration Coordination Agent effectively executed multi-step mitigation workflows

through SOAR integration, maintained full action traceability, and produced detailed natural-

language reports summarizing all actions taken and their network impact.

3.17. Data plane ML

3.17.1. Test Procedures / Test Cases

The full set of test procedures and results is recorded in the attached Excel sheet ELTE-Data-

Plane-ML.xlsx in Appendix A.15. All tests were executed in August 2025, and every case passed

successfully.

Compilation and deployment: The ML-enhanced P4 program was compiled and deployed on

both the Tofino hardware target and the eBPF software backend without errors. The binaries

loaded correctly, confirming portability across hardware and software environments.

Packet classification: With the ML model preloaded in the pipeline, benign traffic was

consistently classified as benign, while malicious traffic samples (including portscan and DDoS

flows) were reliably detected and tagged.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 92 of 228

Control-plane integration: Model updates pushed from the control plane were successfully

loaded into the data plane, and rule enforcement (e.g., dropping malicious traffic while

forwarding benign flows) worked as expected.

Robustness: The pipeline handled malformed packets gracefully, classifying them as “unknown”

or dropping them without any crash. When executed without a preloaded model, the system

defaulted to benign classification, demonstrating stable fallback behavior.

No anomalies or deviations were observed during testing. The results confirm that the Data Plane

ML component is stable, functional, and ready for integration.

3.18. Wire-speed AI (WAI) and Decentralized Feature Extraction

(DFE)

3.18.1. Test Procedures / Test Cases

The preliminary test procedures and cases for DFE-WAI have been carried out to assess the

correct implementation and execution of the first DFE-WAI components. They are in the attached

CNIT-DFE-WAI.xlsx in Appendix A.16. The activity followed a methodology in which each test

scenario was defined as a high-level functional area, further refined into individual test cases.

Each test case included a set of preconditions, the required test data, a detailed description of

the execution steps, and a comparison between expected and actual results in order to

determine the final status. Distinct scenarios are considered for two main backends: the P4

switch running DFE+WAI and the Bluefield-2 DPU Smart-NIC running DFE.

The first scenario (i.e., DFE-WAI-TS01), concerned the verification of the P4-based deep neural

network application embedded as distilled LUT cascade. This Wirespeed AI (WAI) solution is

deployed on the Tofino (TNA) target. The tests confirmed the successful compilation of the

program and its correct loading on the switch. Further validation showed that the switch was

able to forward benign traffic on the appropriate interface while correctly discarding malicious

traffic, thereby meeting the functional requirements defined at design stage.

The second scenario (i.e., DFE-WAI-TS02), focused on the compilation and containerization of a

DOCA application on the target DPU. The objective was to ensure the absence of compilation

errors both when running directly on the DPU and when executed inside a Docker container. The

tests demonstrated that the application compiled successfully in both environments, with no

errors detected during the build process.

The third scenario (i.e., DFE-WAI-TS03), targeting the DPU, addressed the runtime behavior of

the DOCA application. Using GDB, the internal control flow of the application was inspected and

confirmed to match the expected behavior without anomalies. Additional validation was

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 93 of 228

performed by running the application under traffic load and monitoring the DOCA Flow counters.

The counters increased consistently with the traffic injected and aligned with the expected

results, demonstrating that the runtime behavior of the application was correct and stable.

Across all three scenarios, the expected results coincided with the actual outcomes, and every

test case achieved a “Pass” status. No deviations or unexpected issues were observed. The results

of these tests confirm the functional readiness and stability of the first release of the DFE-WAI

components within the tested scope. The full test descriptions, inputs, and results, are provided

in the Annex, where the complete Excel test report is included.

3.19. Microservice behavioral analysis for detecting malicious

actions

This test focuses on detecting malicious actions in microservices through behavioral analysis

using AI/ML models. A profiling tool captures key performance metrics to establish normal

behavior, after which multiple models are evaluated for binary and multiclass anomaly detection

and resource prediction. Future testing procedures extend this framework to a full 5G

microservice infrastructure with orchestration, SDN integration, continuous monitoring, and

automated mitigation through controlled attack simulations. The tests associated with this

component are described in CERTH-Microservice Behavioral Analysis for Detecting Malicious

Action Component.xlsx and in appendix A.17.

3.19.1. Test Procedures / Test Cases

Step 1 - Deploy a dockerized profiling tool to monitor twelve key metrics across infrastructure,

including CPU and memory usage, disk read/write throughput, network traffic, latency

percentiles, and error rates, establishing a baseline of normal microservice behavior.

Step 2 - Gather real-time resource usage and performance data from all deployed microservices.

Aggregate metrics to detect both gradual deviations (e.g., step increases in load) and sudden

anomalies (e.g., spikes in traffic or CPU/memory usage).

Step 3 - Utilize a lightweight 1-D CNN to classify microservice behavior as Normal or Anomalous.

Repeat the same step with other AI/ML models such as Multi-Layer Perceptron (MLP), Random

Forest, and SVM to collect data to validate the CNN’s effectiveness.

Step 4 - For microservices flagged as anomalous, use a 1-D CNN to identify the specific anomaly

type (high CPU, high memory, traffic spike, gradual load increase, high network latency) or mark

it as Unknown for further inspection. Repeat the same step with other AI/ML models to collect

data and compare their performance with proposed solution.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 94 of 228

Step 5 - Perform a proof-of-concept evaluation using an open dataset to evaluate the system’s

ability to detect the five defined anomaly types, ensuring its' robustness and accuracy of both

binary and multiclass models.

Step 6 - Utilize an RNN-based neural network to model CPU and memory consumption of

microservices using portions of the open dataset, which includes measurements under normal

conditions and various attacks.

Results: The profiling tool successfully captured all twelve metrics and established baseline

behaviors. The lightweight 1-D CNN achieved high performance in binary classification and

multiclass classification effectively distinguished between anomaly types and unknown patterns.

Additionally, resource prediction using an RNN-based model demonstrated strong predictive

capabilities for CPU and memory consumption, enabling proactive resource allocation and

performance optimization.

Future Test Procedures / Test Cases

Step 1 - Deploy the Microservice Orchestrator. Set up a Kubernetes cluster to function as the

microservice orchestrator, responsible for automating deployment, scaling, and management of

containerized microservices.

Step 2 - Deploy the 5G Core Network (Free5GC). Implement the 5G core network, which provides

a fully containerized and modular implementation of key 5G core functions such as AMF, SMF,

and UPF for handling control and user plane operations.

Step 3 - Integrate the component/Microservice monitoring with the Central SDN Controller

(Floodlight OpenFlow). Deploy and configure the controller to enable centralized network

control, efficient traffic management, and optimized resource allocation across the 5G core

components.

Step 4 - Set up the Monitoring Engine (Prometheus and Grafana) to continuously collect resource

metrics from all deployed microservices. This includes CPU utilization, memory usage, disk

read/write throughput, and other key performance indicators, providing real time data required

for the Microservice Behavioral Analysis module.

Step 5 - Activate the Microservice Behavioral Analysis Module: use AI-driven anomaly detection

to identify deviations from normal behavior or abnormal traffic patterns. Detected anomalies

trigger automated actions through the orchestrator.

Step 6 - Perform controlled attack simulations on the deployed 5G microservice infrastructure to

evaluate the responsiveness of detection and mitigation mechanisms. These scenarios will

include different attack types e.g. DoS attempts, privilege escalation, and unauthorized access

emulations.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 95 of 228

Step 7 - Detect potential attacks through Behavioral Anomaly Analysis. Utilize the AI-driven

anomaly detection framework to identify potential security threats. The two-stage CNN model

analyzes real-time telemetry and resource consumption data to distinguish between normal and

abnormal behavior, classifying anomalies.

Step 8 - Execute mitigation actions based on detected anomalies: When an anomaly is confirmed,

initiate automated mitigation action through the orchestrator and SDN controller.

Results: Controlled attack simulations will confirm the system’s resilience, with the two-stage

CNN model accurately detecting and classifying threats such as DoS, privilege escalation, and

unauthorized access. Confirmed anomalies were promptly mitigated through automated

orchestration and SDN actions, isolating affected microservices, rerouting suspicious traffic, and

maintaining overall service stability.

3.20. MTD Controller

The test procedures and expected results are recorded in the attached Excel sheet ZHAW-MTD-
Controller.xlsx in Appendix A.18.

3.20.1. Test Procedures / Test Cases

The tests for the MTD Controller are organized around two functional goals: (1) verify

live/stateful migration of CNFs without session loss, and (2) verify stateless migration (stop-and-

recreate) for both VNFs and CNFs. The live-migration scenario (MTD Controller-TS.01 / TC.01)

validates that the MTD Controller can coordinate with a container orchestrator (i.e., Kubernetes)

and perform a transparent migration of a stateful CNF so that the service remains running and

session state is preserved. The stateless scenarios (MTD Controller-TS.02 / TC.01 and TC.02)

validate that the MTD Controller can coordinate either with an NFV MANO (for VNFs) or with the

container orchestrator (for stateless CNFs) to stop execution on one node and instantiate an

equivalent instance on another node, ensuring the function resumes operation on the

destination node only.

Each test case requires the same basic cluster preconditions: the MTD Strategy Optimizer must

be operational and able to decide migration actions, there must be at least two compute nodes

available in the edge-to-cloud continuum. Tests may be exercised either proactively — by waiting

for the optimizer’s scheduled decision — or reactively by injecting a simulated cyberattack

(examples used in the test cases are data-exfiltration and malware infection). These triggers

validate both proactive and reactive MTD operations.

The test steps are intentionally simple and observable: initialize the MTD framework, allow the

optimizer to decide (or trigger an attack to force a decision), then monitor the orchestration

actions and the runtime status of the network function and the nodes involved. Acceptance

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 96 of 228

criteria and pass/fail conditions should be explicit and measurable. For both tests, pass criteria

include: (a) orchestration commands observed in controller logs and orchestrator events, (b)

VNF/CNF service running on the target cluster and not on the source cluster after cutover, and

(c) continuity of ongoing sessions (no lost sessions or packet-loss spikes exceeding a pre-defined

SLA).

3.21. MTD Strategy Optimizer

The test procedures and expected results are recorded in the attached Excel sheet ZHAW-MTD-

Strategy-Optimizer.xlsx in Appendix A.19.

3.21.1. Test Procedures / Test Cases

The tests for the MTD Strategy Optimizer are organized around two complementary verification

goals: (1) proactive decision-making, where the optimizer autonomously decides to relocate

network functions based on monitoring and deep-RL trained optimal policies, and (2) reactive

decision-making, where the optimizer responds immediately to detected security incidents.

Proactive tests (MTD Strategy Optimizer-TS.01 / TC.01–TC.02) validate that the optimizer

consumes monitoring telemetry, reasons about risks and resource consumption (via deep-RL

continuous optimization), and issues migration actions for stateless VNFs and live/stateful CNFs.

Reactive tests validate the optimizer’s ability to quickly detect attack indicators reported by the

monitoring tool and to recommend or trigger migrations as a containment/mitigation measure.

All test cases assume an integrated monitoring pipeline: e.g the OSM and Kubernetes

orchestrators provide CNF/VNF life-cycle state information to the MTD Strategy Optimizer, while

Montimage’s MMT monitoring feeds real-time traffic telemetry. Tests are executed with a multi-

cluster environment for dry-runs (in the ZHAW testbed), to validate them in an edge-to-cloud

continuum scenario. Final evaluations are then done in a 5G network (following 6G Telco-Cloud

setup and usage of CNFs and network slices).

Acceptance criteria are: (a) the optimizer emits a migration decision/plan within an allowed

decision latency window, (b) the decision contains sufficient metadata (target CNF, MTD

operation, and destination), (c) the MTD Controller correctly interprets the request given by the

MTD strategy optimizer, (d) decisions that are in conflict with the network state or previously

taken decisions are not enforced.

3.22. MTD Explainer

The test procedures and expected results are recorded in the attached Excel sheet ZHAW-

MTDFed.xlsx in Appendix A.20.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 97 of 228

3.22.1. Test Procedures / Test Cases

The MTD Explainer component is responsible for ensuring transparency and interpretability of

the Moving Target Defense (MTD) system’s automated decisions. This test scenario (MTD

Explainer-TS.01 / TC.01) verifies that, whenever the MTD Strategy Optimizer decides to perform

an action—either proactively or reactively—the Explainer can generate a clear, human-

understandable rationale describing why that action was taken and how it enhances the system’s

security posture. The test assumes a fully functional MTD environment with the Strategy

Optimizer active and deployed network function (either CNF or VNF) in the edge-to-cloud

continuum. The Explainer should already be integrated with the MTD decision pipeline, capable

of consuming decision metadata and contextual telemetry. Preconditions also require that

monitoring data and the trained deep-RL model are available.

The expected result is that the MTD Explainer produces a human-interpretable explanation

corresponding to the decision. This explanation should articulate what action was taken (e.g., a

stateful CNF live migration versus a stateless VNF re-instantiation), why the action was necessary

(e.g., response to detected attack, mitigation of aging-induced vulnerabilities, or proactive re-

randomization of resources), and how it contributes to security improvement. The explanation is

presented in natural language suitable for a system operator, auditor, or analyst, and it is

evaluated against an expert-knowledge based analysis, checking that: 1. the generated

explanation is coherent, accurate, and matches the actual decision taken; and 2. the explanation

references the key decision drivers (e.g., detected threat, function age, or MTD Strategy

Optimizer’s confidence).

3.23. AI-driven security monitoring for anomaly detection and root

cause analysis in IoT networks

To validate the effectiveness of the AI-driven anomaly detection and root cause analysis (RCA)

framework, a set of test procedures and cases has been defined. These procedures aim to assess

the system’s performance across different operational and attack scenarios, ensuring compliance

with the defined KPIs and overall objectives of NATWORK. Each test is carried out under

controlled IoT/6G network conditions, where IoT devices, gateways, and monitoring probes are

deployed, and traffic is generated either from real devices or simulated datasets. The following

subsections describe the test scenarios in detail. The test procedures and expected results are

recorded in the attached Excel sheet MONT-AI-AD-RCA.xlsx in Appendix A.21.

3.23.1. Test Procedures / Test Cases

• Baseline Performance Validation

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 98 of 228

The first test scenario establishes the baseline performance of the system under normal

operating conditions. IoT devices are deployed to generate standard, benign traffic flows, while

the monitoring probes (MMT) continuously analyze the traffic and the AI-based detection models

(MAIP) process the data. The objective is to validate that no anomalies are falsely reported, while

key performance indicators such as latency, throughput, and CPU utilization are collected. This

baseline serves as a reference for subsequent tests, allowing us to distinguish between normal

variations in traffic and actual anomalies.

• DDoS Attack Detection

The second scenario evaluates the system’s ability to detect large-scale DDoS attacks. Using

traffic generation tools, SYN flood and UDP flood attacks are launched against IoT gateways and

edge nodes. Both ML-based detection rules and traditional non-ML rules are tested. The aim is

to measure the mean time to detect (MTTD), with a target of under 5 minutes for ML-based

approaches and under 10 milliseconds for MMT’s non-ML rule-based detection. This scenario

verifies the responsiveness of the anomaly detection system and its capacity to trigger timely

alerts under high-volume attack conditions.

• Detection Accuracy: False Positives and Negatives

The third test scenario focuses on the accuracy of anomaly detection, particularly with respect

to false positives (FP) and false negatives (FN). Mixed datasets containing both benign traffic and

malicious traffic (covering various attack types) are replayed. The goal is to ensure that the

detection system raises alerts only for genuine threats while ignoring harmless anomalies. The

KPI targets for this scenario are set at less than 1% for both FP and FN rates. The results of this

test provide a quantitative measure of the reliability of the AI models and their suitability for

large-scale IoT deployments.

• Packet Loss and Performance Impact

The fourth scenario assesses the impact of monitoring and detection on overall network
performance. Probes are deployed in environments with constrained bandwidth as well as under

high-load conditions to evaluate the Packet Loss Ratio (PLR). The system is expected to maintain

a PLR below 0.001%, ensuring that IoT communication remains reliable while security monitoring

is active. This scenario is critical for validating that the anomaly detection and RCA framework

does not degrade the quality of service or compromise the efficiency of IoT operations, even in

resource-limited environments.

• Incident Resolution and Mitigation Time

The fifth scenario evaluates the system’s ability to resolve incidents rapidly after detection. Once

an attack (e.g., a flooding attack) is launched and identified by the anomaly detection system, the

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 99 of 228

mitigation mechanisms are activated. These include traffic rerouting, access control

enforcement, or container migration strategies, depending on the context. The test measures

the mean time to resolve (MTTR), with the objective of reducing this to under 10 minutes. This

ensures that service continuity is preserved and that disruptions to IoT applications are

minimized during ongoing attacks.

• Root Cause Analysis (RCA) Validation

The sixth and final scenario focuses on validating the RCA module, which is central to UC#3.1’s

innovation. Several subcases are explored to ensure robustness: (i) in cases of benign

misconfigurations (e.g., faulty routing rules), the RCA module must correctly distinguish these

from malicious events; (ii) during malicious attacks, such as SYN floods, the RCA module must

pinpoint the source, type, and scope of the anomaly; (iii) in scenarios involving compromised IoT

devices, the RCA system must attribute suspicious behavior to the responsible node; and (iv)

explainable AI (XAI) techniques, combined with LLM-based reporting, must generate human-

readable explanations that operators can trust and act upon. This scenario ensures not only

technical detection but also usability and transparency for human operators, closing the loop

between detection, understanding, and action.

3.24. Security-performance balancer

3.24.1. Test Procedures / Test Cases

The test procedure for the Security Performance Balancer should involve generating user traffic

with different security algorithm configurations—such as Snow, AES, and ZUC—while monitoring

how the system distributes users across servers based on their ciphering, integrity, and replay

protection settings. The test should verify that users employing the same algorithms are grouped

onto the same servers, reducing CPU load and maximizing the use of cryptographic accelerators.

3.25. DFE Telemetry

The test procedures and results are recorded in the attached Excel sheet CNIT-DFE-

Telemetry.xlsx in Appendix A.22.

3.25.1. Test Procedures / Test Cases

Extensive test sessions have been conducted for the DFE-Telemetry component to verify its

correct functionality and performance under different operating conditions. The component has

been tested in the P4 BMv2 backend. Further test sessions will be executed when the version for

the Tofino TNA backend will be available.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 100 of 228

The first scenario (i.e., DFE-Telemetry-TS01), addressed the compilation and deployment of the

P4-DFE Telemetry program on the BMv2 software switch. The source code was compiled using

the P4C compiler and deployed successfully, with the binary loading correctly in the target

environment. The outcome confirmed the readiness of the software implementation and the

correctness of the build process.

The second scenario (i.e., DFE-Telemetry-TS02), focused on functional validation within a Mininet

environment. A topology consisting of three hosts and three concurrent flows (two UDP and one

TCP) was instantiated, and the telemetry program was deployed on the switch. Reports were

correctly generated for all flows, confirming the capability of the component to monitor

heterogeneous traffic patterns and produce telemetry outputs as expected.

The third scenario (i.e., DFE-Telemetry-TS03), investigated the performance impact in terms of

latency and CPU overhead. Comparative experiments were conducted between simple

forwarding and telemetry-enabled forwarding using external Spirent traffic generators. Results

demonstrated that the latency overhead introduced by the telemetry component remained

within the expected range and did not compromise normal forwarding. Similarly, the CPU load

remained within acceptable bounds, with differences observed between simple and telemetry-

enabled forwarding confirming the correct operation of telemetry features without excessive

resource usage.

The fourth scenario (i.e., DFE-Telemetry-TS04), extended the performance evaluation to

scalability conditions. By progressively increasing the number of flows from 1 to 10, 100, and

1000, the component was evaluated for both latency and CPU overhead under high-load

conditions. The observed increases were moderate and consistent with expectations,

demonstrating that the DFE-Telemetry component is capable of scaling effectively with the traffic

load while maintaining operational stability.

Across all executed scenarios, the expected and actual results coincided, and all test cases were

marked with a “Pass” status. No anomalies or deviations were detected. The results confirm that

the DFE-Telemetry component meets its design objectives, both in terms of functional

correctness and performance. The full set of detailed test descriptions and measurements is

provided in the Annex, where the corresponding Excel test report is included.

3.26. Secure Data Aggregation

The full set of test procedures and results is recorded in the attached Excel sheet ELTE-Data-

Aggregation.xlsx in Appendix A.23. All test cases completed successfully.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 101 of 228

3.26.1. Test Procedures / Test Cases

The Basic Flwr Server Startup tests (Secure_DA-TS.01) confirmed that the Flower (Flwr)

environment initializes correctly. The server started successfully, clients connected, and

federated training rounds executed without errors. Training completed across multiple rounds,

with aggregated global model accuracy improving steadily as expected.

The SecAgg+ for Secure Aggregation tests (Secure_DA-TS.02) validated the integration of the

SecAgg+ module for privacy-preserving training. Secure key exchange, encryption, and masking

were verified in logs. Aggregation succeeded using masked client updates, preserving data

privacy while maintaining comparable convergence to the non-secure baseline.

The MPC-Based Secure Aggregation tests (Secure_DA-TS.03) demonstrated that secure multi-

party computation (MPC) was correctly initialized using the MP-SPDZ library. End-to-end MPC

aggregation completed successfully, ensuring that no single party accessed individual client data.

Performance overhead remained within acceptable limits compared to SecAgg+.

All procedures under Secure_DA-TS.01–TS.03 executed successfully. The secure aggregation

mechanisms (SecAgg+ and MPC) functioned as intended, ensuring privacy-preserving federated

learning with stable training and reliable performance. The component is verified to be

functional, secure, and ready for integration into the larger system.

3.27. Federated Learning for edge-to-cloud

The test procedures and results are recorded in the attached Excel sheet UEssex – Federated

Learning edge-cloud.xlsx in Appendix A.24.

3.27.1. Test Procedures / Test Cases

TS01 (Centralized ML benchmarking): Historical Google cluster traces were pre-processed with

feature engineering techniques (e.g., lag features, rolling statistics) to extract CPU and memory

patterns. We prepared datasets for model training through two distinct methods: fine-level

granularity for detailed patterns, and orchestration-focused aggregation for peak demand

planning. Models including ARIMA, LSTM, and XGBoost were trained with hyperparameter tuning

and evaluated against real workload traces. This benchmark validated the predictive framework

and provided a baseline for orchestration use cases.

TS02 (Baseline federated learning framework): Google workload traces were partitioned across

multiple nodes to emulate distributed edge–cloud training. Local XGBoost models were trained

independently on each node, with predictions aggregated using a bagging-based FL approach.

Results confirmed the feasibility of decentralized learning, showing comparable performance to

centralized ML, while demonstrating scalability for edge-to-cloud scenarios.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 102 of 228

These tests collectively establish a validated baseline for predictive workload modeling, serving
as the foundation for future FL extensions with custom DoST datasets and MinIO-based
persistent data storage.

3.28. MTDFed

The test procedures and expected results are recorded in the attached Excel sheet ZHAW-

MTDFed.xlsx in Appendix A.25.

3.28.1. Test Procedures / Test Cases

The MTDFed component enables collaborative training of the MTD Strategy Optimizer across

multiple VNOs through an FL approach. The goal of these tests is to verify that distributed

optimizers deployed across different networks can jointly train a more accurate and resilient

global model without sharing network monitoring data. Three test cases are defined to evaluate

basic functionality and the integration of privacy-preserving mechanisms such as Multi-Party

Computation (MPC) and Differential Privacy (DP).

The first test case (MTDFed-TS.01-TC.01) validates the baseline functionality of MTDFed without

privacy mechanisms. With at least three VNOs deployed across edge nodes and an active

aggregator in the core network, the test triggers federated learning across several rounds and

observes the aggregation and convergence process. The expected outcome is that the global

MTD Strategy Optimizer model progressively improves its performance compared to the local

models, demonstrating successful synchronization and aggregation across VNOs. The second test

case (MTDFed-TS.01-TC.02) extends this setup by enabling secure aggregation through MPC. This

test ensures that individual model updates from VNOs remain confidential during the learning

process. While the procedure mirrors the baseline test, the key validation point is that the

aggregator correctly aggregates encrypted updates without accessing any private model

information. The third test case (MTDFed-TS.01-TC.03) assesses the use of Differential Privacy

within the MTDFed framework. Here, each VNO introduces noise to local updates before sending

them to the aggregator, ensuring privacy protection even against potential reconstruction

attacks. The test verifies that the system converges successfully and that the global model

remains functional, measuring the possible reduced accuracy due to the privacy noise.

3.29. CIA-hardening of x86 payloads Component

The test scenarios and test cases for this component can be found in the attached Excel sheet

TSS-CIA hardening x86 payloads.xlsx in Appendix A.26.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 103 of 228

3.29.1. Test Procedures / Test Cases

Testing the CIA-hardening of x86 payloads techniques will go through several independent test

procedures and test cases, each reflecting a specific hardening technique related to the elevation

of payload confidentiality, integrity, and availability. The associated tests will be worked out using

MMT probe, a security-related payload, producing continuous anomaly detection. Several

testbeds can be considered as this payload will be installed at PNET, CNIT or MONTIMAGE. The

testbed will be selected to place the payload in working conditions as an important KPI is the

(low) performance penalty induced by the hardening, which can be precisely measured in real

working conditions.

• Confidentiality preservation

MMT confidentiality preservation will be elevated by a SECaaS automatic operation which

encrypts the text section of its ELF-formatted .exe or .so file. This operation protects MMT against

static analysis, discovery of potential vulnerabilities, or intellectual property violations. The test

procedure first checks the effectiveness of the security promise, then looks at the latency caused

by the decryption (below 3 sec) realized before code execution and finally validates the negligible

performance impact during execution. A baseline will be collected on an unprotected MMT.

Timestamps will be implemented and used for the timing measurement. The associated tests are

SECaaS-Conf-x86-TS.01/02/03.

• Integrity preservation

MMT integrity preservation will be evaluated when the code is on-boarded (i.e., remote

attestation) and during its execution (i.e., runtime integrity verification). To get these security

attributes, a SECaaS operation will be carried out before deployment to (i) inject Prove, Verify

and DLT communication primitives into the code, (ii) build a reference measurement of the

augmented payload (i.e., hash of the memory footprint, used as a reference for future integrity

checks). .

D-MUTRA blockchain based mutual remote attestation framework will be leveraged as it is

dependency-free, enabling MMT code deployment anywhere. This setup workflow will be

modified if MMT is deployed as a container, obviating the SECaaS operation. Leveraging Docker

compose deployment utility, a sidecar will be appended on MMT namespace, hence getting a

visibility on its memory footprint. The test procedure will first check the effectiveness of the

security promise, trigger tampering, and check its detection. Then, the remote attestation cycle

timing (up to the creation of a block) will be measured. Then the procedure will check the

performance impact of periodic or event-based (i.e., on-demand) MMT integrity verification

during its execution. A baseline will be collected on an unprotected MMT. Timestamps will be

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 104 of 228

implemented and used for the timing measurement. The associated tests are SECaaS-Int-x86-

TS.01/02/03.

• Availability preservation

MMT availability preservation will be evaluated when the code is executing, checking the

relevance of the monitoring (i.e., providing an accurate measure of MMT performance in terms

of processed packets) as well as the performance penalty caused by the monitoring. A baseline

will be collected on an unprotected MMT. Several types of measurement will be worked out,

based on the measurement of the call frequency of MMT’s packet processing routine or based

on the time to execute a reference code block, structurally defined to be independent from

historical past processing. A baseline will be collected on an unprotected MMT. Timestamps will

be implemented and used for the timing measurement. For simplicity in finding the correct

locations for these timestamps' insertion, we will consider LLVM compilation framework which

delivers the function names (ie, symbol) removing the opacity of assembly code. The associated

tests are SECaaS-Avail-x86-TS.01/02/03

3.30. CIA-hardening of containerized payloads

The test procedures and expected results are recorded in the attached Excel sheet TSS-CIA

hardening Containers payloads.xlsx in Appendix A.27.

3.30.1. Test Procedures / Test Cases

The related test scenarios and test cases for this component have been recorded and displayed

in the appendix section of this document. The evaluation of this component is going to be

performed in the PR2 between months M28 to M31. Two payload alternatives will be considered

(i.e., MONT’s MMT or ISRD’s Liquid xApp). For simplicity, if practicable, we will use the same

workload as stated for x86 workload above, notably the modified version with inserted

timestamps.

• Confidentiality preservation

No specific test will be worked out as the state of the art fulfilling this need is mature in this

respect (i.e., encryption of container OCI image OCI v1 spec). To advance the state of the art, it is

required to operate at the executable level (i.e., x86 executable) inside the container and as

offered for x86 payloads above.

• Integrity preservation

 The implementation consists of setting up a sidecar which operates aside the container, sharing

the same namespace PID and additionally allocated with CAP_SYS_PTRACE Linux capability. With

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 105 of 228

these two conditions, the sidecar will access and measure a defined x86 executable memory

footprint resident in the container. By means of Linux cgroups resource management, we will be

able to restrict the resource consumed by the sidecar, hence the impact on the container

performance. The associated tests are SECaaS-Int-Cont-TS.01/02.

• Availability preservation

With the same memory access conditions as defined above, the sidecar will be able to collect

sampled runtime information (i.e., instruction pointer states, stack trace) as well as executing an

specific performance reference code to assess if the code is current executing (or idle), if the

platform resource is under stress and tentatively assess the performance ratio of the code versus

a reference performance. he associated tests are SECaaS-Avail-Monit-TS.01/02.

3.31. CIA-hardening of WASM payloads Component

The test scenarios and test cases for this component can be found in the attached Excel sheet

TSS-CIA hardening WASM payloads.xlsx in Appendix A.28.

3.31.1. Test Procedures / Test Cases

Based on the feasibility study by TSS on WASM hardening, the CIA hardening as defined for x86

above will be defined and processed. The tests will be worked out with representative WASM

workloads. If applicable and agreed, one of them could be MONT’s MMT (compiled in Web

Assembly bytecode). Some of the associated tests will directly depend on a feasibility study

stating the possibility to harden a WASM module against CIA attacks. At the current stage, we

have demonstrated that runtime WASM module integrity can be verified.

• Confidentiality preservation

Comparable techniques to those used for x86 are applied to WASM workloads, aiming at

encryption of sensitive sections and protection against static reverse engineering. The associated

tests are SECaaS-Conf-WASM-TS.01/02/03.

• Integrity preservation

 The modified WASMTIME runtime computes a runtime signature of the WASM bytecode and

compares it with the pre-deployment reference signature of the same module. Any mismatch

indicates tampering of the WASM payload. This process is integrated with the D-MUTRA

blockchain to enable decentralized validation and secure record keeping. The associated tests

are SECaaS-Int-WASM-TS.01/02/03.

• Availability preservation

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 106 of 228

WASM runtime performance monitoring will be worked out by instrumenting the WASM

runtime. For simplicity, we will instrument the x86 runtime with timestamps inserted before

compilation). Additionally, we will explore, for containerized runtime implementations, if and

how the sidecar monitoring layout as stated above can be considered. The associated tests are

SECaaS-Avail-WASM-TS.01/02/03.

3.32. JDM-xApp

3.32.1. Test Procedures / Test Cases

The JDM xApp performs the choice between the basic AMC algorithm and AMC-based Jamming

Detection and Mitigation algorithm. The test procedure shall verify the correctness of choice of

the algorithm, i.e. in the jamming scenario the chosen algorithm should be AMC-based Jamming

Detection and Mitigation and in the no-jamming scenario (normal operation) the chosen

algorithm should be basic AMC.

In the first release, the two algorithms are implemented and tested independently in Liquid RAN.

In the next release, their choice will be controlled by the JDM-xApp.

3.33. Liquid RAN

3.33.1. Test Procedures / Test Cases

In the first release, the AMC-based Jamming Detection and Mitigation algorithm implemented in

the scheduler is tested. The test procedures shall verify system robustness under jamming on

different channels. In the jamming on PRACH test case, the test verifies that UE is able to attach.

In the jamming on control and shared channels (UL and DL) It verifies if RRC CONNECTED is

maintained. The detailed test descriptions are reported in ISRD-Anti-jamming.xls in Appendix

A.29.

3.34. Liquid Near-RT RIC

3.34.1. Test Procedures / Test Cases

The near-RT RIC (Near-Real-Time RAN Intelligent Controller) is a component of the O-RAN

architecture that enables intelligent control and optimization of the RAN within a timescale of

10ms to 1s. It hosts applications (xApps) that use near real-time data to manage RAN functions.

The RIC testing verifies correct mounting of xApp to the RIC, that RIC has connectivity with RAN

over E2 interface and whether RIC can correctly send and receive messages to and from RAN.

Specifically, The test procedures should verify whether RIC correctly passes the KPMs to the JDM

–xApp and correctly passes the algorithm choice message from the JDM-xApp to the Liquid RAN.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 107 of 228

3.35. KPM xApp

3.35.1. Test Procedures / Test Cases

The built-in Liquid Near-RT RIC KPM xApp subscribes to KPMs for all cells and stores them in the

Valkey database. The test procedure should verify that the KPM xApp correctly subscribes to the

KPMs (e.g.: CSI, Reference Signal Received Power (RSRP), CQI, HARQ feedback, ACK/NACK

patterns and BLER), correctly stores KPMs in the database every 1-second.

3.36. Characteristics Extractor

3.36.1. Test Procedures / Test Cases

The full details of the test procedures and cases for this component are provided in the attached

file GRAD-Characteristics_Extract.xlsx in Appendix A.30, which includes parameters, steps,

results and dates. All dry-run tests on the component have been successfully completed.

This component is responsible for correctly extracting channel measurements for key generation.

It covers the proper generation, transmission, and reception of OFDM samples, as well as the

correct extraction of I/Q samples. In this setup, signal acquisition is completed without issues.

It also builds the input dataset for the channel-prediction neural network: a portion of the

extracted data is set aside to train the model and to quantify channel variations accordingly. Two

test scenarios were conducted. one with two nodes, the main Alice–Bob link, and another with

three nodes, Alice–Bob plus an eavesdropper (Eve), with measurements taken from Eve’s

position.

3.37. Key Generator

3.37.1. Test Procedures / Test Cases

The full details of the test procedures and cases for this component are provided in the attached

file GRAD-KeyGen.xlsx in Appendix A.31, which includes parameters, results steps, and dates. All

dry-run tests on the component have been successfully completed.

The key-generation pipeline comprises the following steps: acquire raw I/Q samples; run them

through the AI DL-UL prediction model; quantize I/Q samples into bits; perform information

reconciliation; and hash the reconciled bits to derive the final key. Disagreements between the

two ends are evaluated with the corresponding metrics.

On the attached file two test blocks were executed, OFDM-TDD and OFDM-FDD, for both, we

collected the primary metrics: KDR (Key Disagreement Ratio) and the ML model MAE (Mean

Absolute Error), validating the correct component functionality and performance.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 108 of 228

3.38. Security Evaluator

3.38.1. Test Procedures / Test Cases

The full details of the test procedures and cases for this component are provided in the attached

file GRAD-SecurityVal.xlsx in Appendix A.32, which includes parameters, steps, results and dates.

All dry-run tests on the component have been successfully completed.

The Security Validator evaluates the security of the PKG pipeline. First, it takes the generated

keys and subjects them to the NIST statistical test suite. Second, it validates security against an

eavesdropper scenario (Eve), assessing leakage and advantage under the chosen threat model.

3.39. AI -Based Anomaly Detection Explainer

3.39.1. Test Procedures / Test Cases

The full set of test procedures and results is recorded in the attached Excel sheet UZH-Anomaly

Detection Explainer.xlsx in Appendix 33. All tests were executed in August 2025, and every

executed case passed successfully. The explainer service was built and deployed without errors.

Health checks and REST endpoints responded correctly in the target runtime, confirming a clean

rollout.

Alert ingestion & schema validation: Valid IDS alert payloads were accepted and processed, while

malformed or schema-incompatible payloads were rejected with informative errors, as expected.

Explanation generation: For malicious traffic samples, the component produced consistent,

human-readable explanations capturing salient features/evidence. For benign flows, no

explanations were emitted, matching the design intent.

Control-plane integration: Control-plane updates (e.g., playbook selection and policy signaling)

were ingested correctly. Actions were logged and traceable end-to-end, with no unintended

configuration changes.

Robustness & fallback: Under malformed inputs, missing model artifacts, or dependency

timeouts, the system failed gracefully returning safe defaults, preserving service availability, and

avoiding crashes or stalls.

No anomalies or deviations were observed during testing. The results confirm that the Anomaly

Detection Explainer Component is stable, functional, and ready for integration.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 109 of 228

3.40. Wirespeed traffic analysis in the 5G transport network

The full set of test procedures and results is recorded in the attached Excel sheet CERTH-

Wirespeed-traffic-analysis.xlsx in Appendix A.34. All tests that have been executed so far are

completed successfully.

3.40.1. Test Procedures / Test Cases

A set of test scenarios was carried out to evaluate the functionality, classification accuracy, and

control-plane integration of the Wirespeed Traffic Analysis system based on P4-programmable

SmartNICs and the CERTH Intrusion Detection System (IDS). Under Test Scenario TS01, the goal

was to validate the compilation and deployment pipeline. In TC01, the P4 program was

successfully compiled and deployed on an Agilio SmartNIC, confirming correct loading of the

binary. In TC02, the integration between the P4 data plane and the CERTH IDS was tested,

verifying that the IDS could correctly parse and process ingress traffic forwarded by the Agilio

SmartNIC in a live 5G network environment.

Test Scenario TS02 focused on packet classification capabilities. In TC01, the system correctly

identified and tagged all benign traffic, while TC02 validated its performance on malicious inputs

using the CICIDS2017 dataset, with accurate detection of threat flows.

Finally, Test Scenario TS03 evaluated control-plane integration. In TC01, the CERTH IDS produced

inferences based on traffic characteristics, which were then translated into runtime rules (e.g.,

drop malicious, forward benign) and successfully applied by the P4 controller. The verification

confirmed that benign traffic was forwarded, and malicious traffic was dropped as expected.

All test cases that were executed between September 2024 and September 2025 resulted in a

Pass status, demonstrating that the system operates reliably across the entire pipeline—from

compilation and deployment to real-time detection and mitigation.

3.41. Detection and mitigation against jamming attacks (HES-SO)

3.41.1. Test Procedures / Test Cases

In this service-component HES-SO has made significant progress. The reader can check the

different tests performed in the attached file HES-SO_Jamming.xlsx in Appendix A.35, all of them

had passed correctly. At the current state the testbed is in place, gNodeB and 5G CN are running

in containers, jammer is also functional running itself in a container as well and UE (+ SIM card)

are also well configured. The testbed is also running the near RT RIC (Real Time RAN Interface

Controller) but not yet tested. The metrics collected on the gNodeB provided by the UE have

been analyzed only offline using the logs provided by gNodeB (srsRAN) but not by an xApp which

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 110 of 228

has not been developed yet. There is still an open discussion regarding how to report to the

scheduler to provide mitigation against jamming.

3.42. Setting up of a Mirai botnet.

As part of the service component, the HES-SO team successfully implemented a complete and

reproducible Mirai environment. The deployment is based on physical machines hosting isolated

virtual machines running the Mirai binary and its command infrastructure (CNC). Secure

orchestration of agents is ensured by a host-guest communication channel based on QEMU/KVM

(AF_UNIX socket on the host side — virtual serial device on the guest side), controlled by

dedicated daemons (mmc-host-daemon, mmc-vm-daemon) and an administration client (mmc-

cli) discovered via IPv6 link-local multicast. This device makes it possible to generate varied and

controlled attack scenarios while ensuring the strict isolation of malicious traffic from the

institutional network. The integration of this experimental bench with the pre-processing

pipeline (CICFlowMeterV4 → CSV/Parquet) facilitates the production of traces that can be used

for model training and evaluation.

3.42.1. Test Procedures / Test Cases

The XGBoost model trained on the CIC-DDoS2019 dataset achieves an overall classification

accuracy of 94.2%. Frequent attacks and benign traffic, such as NTP, SYN, and TFTP, are detected

with F1 scores close to 0.99–1.00, demonstrating the model's excellent performance on majority

classes.

However, rare classes, such as DrDoS_MSSQL (F1 = 0.18) and DrDoS_LDAP (F1 = 0.31), as well as

some WebDDoS attacks, show much lower performance. This highlights the model's sensitivity

to class imbalances and the importance of balanced sampling or resampling methods to improve

generalization.

Inference on Mirai's local traces reveals that TCP SYN attacks are detected but often mislabeled,

and that benign traffic, particularly RTSP streams, can be misclassified as attacks. This

observation shows a mismatch between the distribution of training data and operational traces,

limiting the model's ability to generalize to Mirai variants.

These results highlight two key points: the need to build representative Mirai datasets and to

explore more robust modelling approaches, including temporal or hybrid features. The testbed

developed is thus useful for generating realistic Mirai scenarios, enabling the improvement of

detection models and the evaluation of cross-domain generalization.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 111 of 228

3.43. FPGA-based hardware detection of DDoS attacks

At present, progress on this component of the service remains limited. The Smart-NIC is

connected to a PC via the PCIe interface. Although work has been carried out on this interface,

no relevant DDoS detection model has yet been implemented.

Development is currently underway, with the first step focused on processing network packets

using the P4 architecture. This fundamental step is essential to ensure that the Smart-NIC can

efficiently handle network traffic and provide the hooks necessary for future functionality.

Once the packet processing framework is stable and fully functional, the next phase will be to

integrate AI-based models for DDoS attack detection. This will enable real-time identification and

mitigation of attacks directly on the Smart-NIC, leveraging the hardware acceleration capabilities

provided by the P4 pipeline.

In summary, the project is progressing step by step: first, a robust P4-based packet processing

infrastructure is being set up, and then AI is gradually being integrated.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 112 of 228

4. Attacks
Modern mobile and cloud-native infrastructures — particularly those that underpin 5G, B5G and

emerging 6G systems — support an ever-expanding set of services and rely on a complex stack

of protocols, virtualized network functions, and orchestration mechanisms. This complexity

increases both the attack surface and the difficulty of robustly evaluating defensive measures.

The datasets presented in this chapter are intentionally diverse and realistic: they capture low-

level network traces (pcap), per-flow and short-window feature summaries (CSV / Parquet), time-

domain signal samples for wireless jamming research, and labelled scenarios that span classical

volumetric DoS and port-scanning, protocol-specific exploits, automated brute-force campaigns,

and advanced AI-assisted attack strategies. Together, they provide a comprehensive resource for

the development, testing and benchmarking of detection, mitigation, and resilience techniques

across networking, wireless signal processing, and cloud/OT (Operational Technology) domains.

There are three motivating goals behind these datasets. First, to provide realistic, labeled

datasets that reflect attacks actually observed or plausibly executed against modern mobile and

cloud-native infrastructures (e.g., attacks mirrored at N3/N6 in a 5G testbed or protocol abuses

in HTTP/2/SCTP). Second, to support multi-layer research: from packet/header-level anomaly

detection and per-flow ML classifiers to radio-domain jamming detection and CNF-level (cloud-

native function) resilience strategies. Third, to enable reproducible experimentation for both

classical ML workflows (training/validation/test splits over CSV/Parquet feature sets) and signal-

processing research (IQ sample datasets for JASMIN training). Each dataset is packaged to

facilitate immediate use: raw captures for protocol analysts and forensic researchers, and ML-

ready, per-flow and 1-second window aggregates for model builders.

4.1. DoS attacks and port scans

Captured on the UZH mini-5G testbed with mirroring at N3 (GTP-U) and N6 (IP). Includes benign

baseline plus labeled attacks: ICMP/UDP/SYN/HTTP floods, slow-rate DoS; SYN scan, TCP-connect

scan, UDP scan. Delivered as raw pcapng and ML-ready CSV/Parquet (per-flow & 1-s window

features: rate, burstiness, inter-arrival stats, TCP flags, unique ports, entropy; TEID/inner proto

for N3). Labels via run_id/time-window; privacy: payload stripped, IPs anonymized, TEIDs

remapped. Intended for UC3.1 ML/XAI training/validation.

4.1.1. Testbed & Service Mapping

The UZH testbed provides a direct link between simulated network attacks and the service

components designed to analyze them. Attack datasets, such as the one containing DoS attacks

and port scans, are generated within controlled testbed scenarios. This is achieved by running

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 113 of 228

malicious traffic from the emulated UE, which then traverses the software-based gNodeB and

the free5GC core.

The traffic is captured at key interfaces, primarily at the N3 interface between the gNodeB and

the UPF, using a port mirror. These captured packets are then mapped directly to the IDS/XAI

backend service. This service ingests the data, performs feature extraction, and feeds it into

machine learning models for anomaly detection. If an anomaly is detected, the inference results

are passed to the Anomaly Detection Explainer component, which generates a human-readable

explanation for the alert. This creates a clear, end-to-end mapping from a specific attack scenario

on the testbed to the corresponding detection and explanation services.

4.1.2. Dataset preparation.

First, a selection of both benign baseline traffic (e.g., ping, HTTP, iperf) and specific, labeled attack

traffic (e.g., ICMP/UDP/SYN floods, port scans) is generated within the testbed. This raw traffic is

captured as pcapng files.

Next, the data undergoes preprocessing. To ensure privacy and prevent data leakage, payloads

are stripped, IP addresses are anonymized, and Tunnel Endpoint Identifiers (TEIDs) are

remapped. The core of the preparation involves feature extraction, where the raw packets are

transformed into structured formats like CSV or Parquet. This process constructs network flows

and calculates features over 1-second windows. Key extracted features include:

Packet and byte rates

Burstiness and inter-arrival statistics

TCP flags and unique port counts

Finally, the data is structured and labeled using run_id and time windows, making it ready for

model training and validation.

4.1.3. Training and Validation

The prepared datasets are central to the training and validation of the entire anomaly detection

service. The ML-ready CSV/Parquet files, containing detailed features and corresponding labels,

are used to train various detection models, including Random Forest, XGBoost, and neural

networks (CNN/DNN).

The validation process is twofold. First, the IDS model's performance is evaluated using standard

metrics, with results like the confusion matrix visualized on the operator's dashboard. This

confirms the model's accuracy in distinguishing between benign and malicious traffic from the

dataset. Second, the Anomaly Detection Explainer component undergoes rigorous assessment.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 114 of 228

For each correctly identified attack, the quality of the generated explanation is measured against

three KPIs: faithfulness, robustness, and complexity.

4.2. AI-DoS attack

This Use Case aims to formulate a variety of AI-based Attacks dedicated to B5G/6G infrastructure

with enhanced capabilities. Indicatively, an AI-powered DoS attack will use Reinforcement

Learning algorithms to identify and exploit weaknesses in the network that can be used to flood

it with traffic or cause it to crash. Also, a protocol fuzzer will be utilized to identify vulnerabilities

in the network protocols and test them for potential exploitation. Finally, it will have the ability

to apply techniques that will bypass IDS detection making it more effective in attacks.

4.2.1. Testbed & Service Mapping

AI-DoS attack tool applies DoS attacks against different components of CERTH’S 5G testbed.

During the tool’s dry run, AMF and SMF components were targeted, however the tool is able to

target any system utilizing TCP, UDP and SCTP protocols.

4.2.2. Dataset preparation.

Since AI-DoS attack is based on Reinforcement Learning, it does not need training and validation

data. Instead, the training process takes place through the interaction with the environment in

which the attacks are applied. This means that the attack strategy is adapted according to the

feedback received from the target. However, the artifacts of AI-DoS attack can be used to

formulate a dataset to train the 5G IDS tools.

4.2.3. Training and Validation

The AI-DoS attack model training is based on rewards received from taking certain actions and

evaluating the impact of those actions on the target. A pre-defined number of episodes

determines the training duration. Each one of the episodes, concludes after 10 rounds, or after

successful DoS attack. Throughout this process, AI-DoS attack model is learning how to effectively

deteriorate the QoS of the target, by measuring several factors such as latency, throughput and

packet loss. The validation involves applying the AI-DoS attack on a target using the pre-trained

wights acquired from the training process.

4.3. DoS attacks and Brute Force attacks

The following section presents a number of DoS attacks that are available in CERTHs’ SDN testbed

and will be utilized for UC4.4.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 115 of 228

4.3.1. Testbed & Service Mapping

A DoS attack targeting the Stream Control Transmission Protocol (SCTP) is a cyberattack strategy

focused on disrupting an existing SCTP session or connection, thereby hindering communication

between two services. There are several techniques attackers might employ to achieve this

disruption. In this use case, the attack targets the SCTP protocol by attempting to set up

numerous SCTP sessions.

The HTTP/2 Slow Get Flooding attack is a variant of a DoS attack specifically tailored to exploit

the HTTP/2 protocol. In this attack, the malicious user initiates numerous connections to the

target server and deliberately keeps these connections active for an extended period by gradually

sending incomplete requests. The strategy behind this slow-paced submission of requests is to

occupy server resources indefinitely, preventing the server from closing the connection due to

inactivity.

The HTTP/2 Ping Flooding attack exploits the "PING" frame feature of the HTTP/2 protocol, which

is designed to measure the minimum round-trip time between the client and the server.

Attackers execute this type of attack by dispatching an excessive number of PING frames to the

target server in quick succession. The primary goal of this attack is to deplete the resources of

the server. By inundating the server with these frames, the attacker forces it to allocate a

significant amount of its processing capacity and bandwidth to handle and respond to each PING

request. This excessive demand on the server's resources can lead to a slowdown or even a

complete halt in its ability to serve legitimate requests, effectively disrupting the service for

genuine users.

The HTTP/2 Slow Get Flooding attack is a variant of a DoS attack specifically tailored to exploit

the HTTP/2 protocol. In this attack, the malicious user initiates numerous connections to the

target server and deliberately keeps these connections active for an extended period by gradually

sending incomplete requests. The strategy behind this slow-paced submission of requests is to

occupy server resources indefinitely, preventing the server from closing the connection due to

inactivity.

A Brute Force SSH is an adversarial access technique that aims to overwhelm or compromise an

SSH service by repeatedly attempting to authenticate with many different username/password

or key combinations until a valid credential is found or the server becomes unable to respond to

legitimate clients. Attackers typically open numerous SSH connections or rapidly iterate through

credential lists—either from a single source or distributed across many hosts—to exhaust the

target’s authentication subsystem, CPU and connection-tracking resources, and logging/storage

capacity. The consequence can be degraded service or complete denial of remote administrative

access, increased load on intrusion-detection/logging systems, and the potential for

unauthorized access if weak credentials exist. In the testbed use case, this attack is modeled by

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 116 of 228

launching a high rate of authentication attempts against the SSH daemon to observe how the

SDN environment detects, isolates, and mitigates excessive connection attempts and credential-

guessing behavior.

A container offers these attacks by wrapping multiple scripts written in python. The SSH brute

force attack is based on the functionalities offered by an open-source tool called Hydra.

4.3.2. Dataset preparation.

Currently separate attacks and benign traffic were recorded separately in pcap files and then

converted to flows to be saved as csv to be utilized by the various components developed for the

project.

For the next period, this process will be unified to create a more complete dataset. Normal traffic

with multiple UEs will be emulated for 24 hours. For each attack, at least one hour of malicious

traffic will be collected. Finally, data will be collected during simultaneous execution of the

various attacks. The attacks will be carried out against 5G Core VNF (AMF, UPF) and other

dockerized services e.g. an ngix server, and microservices e.g. a python based microservice

offering access to an LLM app via a REST API.

4.3.3. Training and Validation

The datasets produced by these attacks will be utilized for training algorithms utilized by the

following components:

• Lightweight SDN-based AI-enabled Intrusion Detection System for cloud-based services

presented in section 3.14

• Multimodal Fusion Approach for Intrusion Detection System for DoS attacks presented in

3.13

• Multiagent AI based cybersecurity support system presented in section 3.16.

4.4. OT/ICS attacks

In this section, we present an adversary intrusion chain against an OT/ICS testbed composed of

a vulnerable web application, Apache Tomcat management interface, OpenPLC controllers, and

a SCADA front end (ScadaBR). The scenario leverages two representative vulnerabilities: CVE-

2021-44228 (Log4Shell) to obtain remote code execution via crafted log payloads, and CVE-2009-

3548 (default/weak Tomcat credentials and exposed manager application) enabling WAR upload

and remote deployment. Combined, these weaknesses enable attackers to deliver payloads to

engineering hosts, run loaders, propagate laterally, and interact with PLCs/HMIs — enabling both

data exfiltration and process manipulation. This section describes how the testbed maps to attack

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 117 of 228

datasets, how datasets are prepared, and how they are used for training and validating detection

/ attribution models and assessing service-component impact.

4.4.1. Testbed & Service Mapping

The testbed is organized into distinct network segments with clearly defined roles. The perimeter

or DMZ hosts an externally reachable web application and an Apache Tomcat instance that

exposes the manager webapp and user-deployable WAR endpoints; these services represent the

publicly accessible attack surface and are the intended targets for Log4Shell injections and WAR

upload abuse. The engineering/IT segment contains one or more engineering workstations

running management and development tools; these hosts collect logs and can be targeted by

phishing and remote code execution, becoming footholds for deeper compromise. The control

network or OT segment comprises OpenPLC instances that emulate programmable logic

controllers and ScadaBR as the SCADA/HMI application; together these components expose

process variables, registers, and operator interfaces that attackers can read or manipulate.

Finally, external infrastructure—represented in the testbed by a simulated attacker C2 server and

exfiltration endpoints—models typical command-and-control and data exfiltration channels.

Mapping the attack flow to concrete services and artifacts clarifies what artifacts should be

captured during experiments: reconnaissance produces DMZ port-scan and web-fingerprinting

artifacts in perimeter access logs and gateway logs; initial access yields HTTP requests containing

Log4Shell payloads, logged WAR upload events in Tomcat, and suspicious authentication

attempts visible in application logs; execution produces process creation traces, shell or

PowerShell invocations, scheduled task creation, and outbound C2 beacons; lateral movement

shows up as remote service usage and authentication traces (RDP/SMB/WinRM) and credential

dump artifacts in host logs; command-and-control manifests as periodic beacons, DNS or HTTPS

anomalies, and proxy logs; and impact is recorded in OpenPLC register writes, ScadaBR operator

alerts, setpoint changes, and historian telemetry. To support reproducible analysis, the

recommended artifact inventory includes PCAP network captures, flow exports, Tomcat and web

server logs, host telemetry (e.g., Sysmon/Windows Event logs), OpenPLC register snapshots and

read/write traces, ScadaBR event logs, IDS/SIEM alerts, and a label set tying timestamps to

ground-truth attack steps. An explicit topology and metadata package (IP mappings, time

synchronization details, campaign identifiers) is required so that each captured artifact can be

traced to the appropriate testbed service and action.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 118 of 228

Figure 28: OT/ICS attacks based on Log4Shell and Tomcat vulnerabilities

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 119 of 228

4.4.2. Dataset preparation.

Dataset preparation for this scenario is guided by three design goals: faithful ground-truth

alignment, multi-modal capture, and label richness. A synchronized ground truth timeline is

essential: all hosts, PLCs, and capture appliances must be NTP-synchronized and every attacker

action annotated with precise start and end times so that artifacts can be labeled at event and

window granularity.

The preparation workflow begins by defining distinct attack campaigns that vary payload formats,

deployment filenames, timing, lateral paths, and persistence mechanisms; each campaign

receives a unique identifier so datasets can be partitioned without leakage. Before executing

attacks, baseline captures of normal operation are recorded for a meaningful period in order to

characterize benign behavior. During each campaign the team collects raw PCAPs, exports or

derives flow records, captures application logs (Tomcat access and error logs, catalina.out),

gathers host telemetry such as process creation and command-line activity, and records PLC and

SCADA telemetry including setpoint writes and sensor readings. Immediately following attack

runs, recovery traces are captured to document remediation activity. Labeling is performed using

the ground truth timeline: every artifact is annotated with an attack stage (recon, initial access,

execution, lateral movement, C2, impact), the technique or vulnerability used (for example CVE-

2021-44228 for Log4Shell injections), the campaign identifier, the affected asset, and a

confidence score where appropriate. Labels are produced at both event level—for supervised

detection—and at window level for time-series anomaly detection.

Preprocessing derives features appropriate to each modality: for network data, flow durations,

byte/packet statistics, inter-packet timing, TLS/J A3 fingerprints, and HTTP header and payload

heuristics; for host telemetry, process tree features, parent process names, command-line

entropy, newly created binaries and scheduled task events; for application logs, request path

patterns, presence of JNDI strings or other injection patterns, and abnormal POST sizes; and for

PLC telemetry, deltas in setpoint values and frequency of control writes. Sliding windows of

multiple sizes (e.g., 1 s, 10 s, 60 s) are computed to produce sequences for temporal models, and

normalization is applied using statistics computed on the baseline training set only. Because

attack activity is typically sparse relative to baseline, the preparation stage also addresses class

imbalance: options include oversampling attack windows, synthetic augmentation of network

traces, or conservative use of SMOTE-style methods for tabular representations.

Finally, datasets are partitioned by campaign into training, validation, and test sets—keeping

entire campaign traces in a single split to prevent leakage—and packaged with raw and processed

data, labels, topology, campaign definitions, and ingestion scripts to ensure reproducibility.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 120 of 228

4.4.3. Training and Validation

Training and validation pipelines are designed to achieve several goals: reliable detection of

attack activity across modalities, accurate attribution to the implicated service or component,

estimation of impact on process variables, and robust generalization to unseen campaigns and

variations. Model classes span unsupervised anomaly detectors (e.g., autoencoders, Isolation

Forests) for cases with limited labels; supervised classifiers such as Random Forests, XGBoost, or

deep temporal models (LSTM, Temporal CNNs, Transformers) for labeled window detection; and

regression models for quantifying process deviations. Temporal sequence models capture

behavioral dependencies over time, and multi-modal fusion strategies—either feature-level

concatenation or decision-level ensembles—are used to combine signals from network, host, and

PLC data. Attribution and root-cause analyses are framed as multi-label classification problems

that predict both the attack stage and the target asset; explainability techniques such as SHAP or

LIME are recommended to highlight which features drive detections and to support operator

investigation. Training proceeds with careful feature selection informed by domain knowledge,

campaign-level cross-validation (leave-one-campaign-out) to evaluate generalization, and

hyperparameter optimization via grid search or Bayesian methods using validation campaigns.

Class imbalance is managed with class weighting, focal loss for neural models, or oversampling;

evaluation emphasizes metrics robust to imbalance such as precision, recall, F1, and area-under-

the-precision-recall curve (AUC-PR), as well as operational metrics such as false positives per

asset per day and detection latency. Validation strategies include testing on unseen campaigns

with different payload encodings to simulate zero-day conditions, domain-shift tests that vary

baseline operational loads to assess resilience to concept drift, and ablation studies to quantify

the contribution of each modality. In practical terms, a training pipeline ingests aligned windows

of flows, host features, and PLC time series, normalizes them on training baseline statistics, and

trains a temporal classifier with campaign-held-out validation; model checkpoints and early

stopping guard against overfitting, and score calibration on validation data yields per-asset

thresholds that meet operational false positive targets. For deployment, per-service threshold

tuning, alert prioritization through cross-modal fusion (for example, correlating a suspicious WAR

upload with a spawned process and subsequent PLC write to raise high-priority incidents),

retention of raw forensic captures, and an operator feedback loop for continual learning are

recommended to maintain effectiveness over time.

4.5. DoS, Port Scans, and OWASP ZAP Scans

Attacks such as DoS/DDoS and port scan (i.e., nmap) are among the most common attack types

that are identified by Intrusion Detection Systems (IDS). While DoS/DDoS attacks aim to bring

down a system, port scan activities can reveal services that are exposed to external networks,

helping to identify attack vectors. Furthermore, while less commonly used than the previous two,

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 121 of 228

the OWASP Zed Attack Proxy (ZAP) tool [3] can be used to perform special scans that target web

applications, attempting to dig out web-specific vulnerabilities.

Mitigation: A machine learning-based IDS that trains on a dataset comprising such attacks would

be effective against such malicious activity. Once the model learns how to differentiate these

attacks from benign flows, a high detection rate could be reached.

4.5.1. Testbed & Service Mapping

The dataset is generated and tested on the OpenStack-based cloud environment of ZHAW. A

Kubernetes cluster with 5 nodes is used, each of which is an Ubuntu-based VM running on

OpenStack, and Cilium is leveraged as the Container Network Interface (CNI). A web application

consisting of four components (backend, frontend, external service, and database) is deployed

on this Kubernetes cluster, using multiple namespaces to simulate the multi-tenancy aspect of

modern web applications. While the web application creates benign flows across components,

malicious pods are injected into the cluster to generate attack traffic.

DoS: A pod spins up in each namespace and sends heavy amounts of HTTP load towards a

randomly elected benign pod in the same namespace

Port Scan: A pod spins up in a randomly selected namespace and conducts a TCP SYN scan on the

entire subnet of the pod.

ZAP Scan: A pod spins up in each namespace and uses the ZAP tool to scan the benign frontend

pods in the same namespace.

4.5.2. Dataset preparation.

The benign web application has been ran on the testbed for about 2 hours, and waves of attacks

of different types (DoS/Port Scan/ZAP Scan) have been triggered on regular intervals. Moreover,

during this period, the packet-level network traffic, both benign and malicious, passing through

every node in the Kubernetes cluster have been gathered into a central Open Telemetry backend

to create a tabular CSV data, which comprises the raw dataset. Since the ratio of attack data to

benign data has been quite high for an anomaly detection dataset, a subsampling mechanism has

been used to bring the ratios to a more realistic setup.

Afterwards, the raw dataset is preprocessed by using various feature encoders, such as IP

encoder, string encoder, boolean encoder and number encoder. By leveraging feature

engineering, another new feature called diversity_index has been constructed; to indicate how

diverse a specific network packet is within a certain time window. Finally, based on the similarity

of network packets with each other, a connected graph is generated, which is used as the actual

training/validation test.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 122 of 228

4.5.3. Training and Validation

As the IDS model, a Graph Convolutional Network (GCN) is leveraged with the following

properties:

• Three convolution layers

• One dropout layer

• ReLU as activation functions

• Softmax as the output function

The constructed graph-formed dataset is fed into this model for both training and validation

purposes. The nodes of the graph dataset are randomly split into training, validation, and testing

in 80%, 10%, and 10%, respectively. The validation split is used to prevent overfitting, and the

testing split is used to report the final model’s performance. Random Forest and SVM are chosen

as baseline models, and it has been shown that the proposed GCN-based IDS managed to achieve

99.9% of accuracy and F1-score in both single-class classification (i.e., anomaly vs benign) and

multi-class classification (i.e., detecting attack class specifically) tasks.

4.6. DoSt Attack

The Denial of Sustainability (DoSt) attack targets cloud-native services by overwhelming them

with oscillating request patterns that continuously trigger rapid scale-in and scale-out events.

Unlike traditional DDoS, DoSt does not fully take services offline but instead causes excessive CPU

and memory utilization, leading to gradual QoS degradation and unsustainable energy

consumption. In Kubernetes environments, this oscillatory load places significant strain on the

control plane, as frequent scheduling and resource reallocation are required to maintain service

availability. The subtle nature of the attack makes it harder to detect, as services appear “alive”

while their performance and efficiency deteriorate over time.

4.6.1. Testbed & Service Mapping

The DoSt attack scenarios are deployed within the NCL edge–cloud testbed to assess system

resilience and sustainability under adversarial workloads. Containerized demand-generation

clusters emulate benign and malicious user behavior, generating oscillatory HTTP traffic that

stresses CNF CPU and memory resources without causing service downtime. Prometheus

telemetry collects fine-grained resource metrics, stored in the TSDB and later persists in MinIO

for processing. The custom DoSt datasets generated in Service 1 – Component 1(Energy-Efficient

over edge-cloud) will be used within Service 15 – Component 2 (Distributed federated Learning

across edge-cloud) to train distributed models across the edge–cloud continuum for predictive

scaling and anomaly detection. Currently public google trace datasets have been used to build

the baseline of Federated Learning.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 123 of 228

4.6.2. Dataset preparation.

Currently public google trace datasets have been used to build the baseline of Federated

Learning. Two models will be trained using the prepared datasets — one for resource prediction

to inform scaling decisions in Service 3 (orchestrator), and another for traffic classification to

distinguish benign from DoSt-induced behavior. Preprocessing and structuring will support both

models, ensuring aligned feature extraction for resource trends and anomaly patterns. The DoSt

dataset is generated from Prometheus telemetry, which scrapes raw CPU, memory, and network

metrics every 15 seconds. These metrics are stored in the TSDB and periodically exported to

MinIO object storage for scalable and persistent dataset management. For training and testing,

historical Google workload traces are currently used, while custom DoSt datasets are being

prepared to support future model training and validation in realistic attack scenarios.

4.6.3. Training and Validation

Benchmarking of ML models for workload prediction has been completed, and federated

XGBoost is currently used for resource prediction using Google workload traces as the baseline

for distributed resource prediction across edge and cloud nodes, enabling the orchestrator to

make energy-aware and secure scaling decisions. Training and validation will be performed

across distributed nodes using partitioned datasets to evaluate model consistency and accuracy.

A traffic classification model to distinguish between benign and DoSt-induced patterns will be

developed in future stages.

4.7. Mirai botnet attack

Although Mirai was first identified several years ago, it continues to pose a significant threat to

internet service providers (ISPs) by generating large-scale distributed denial-of-service (DDoS)

attacks. The modular nature and constant evolution of this botnet allow it to adopt new attack

strategies and propagation techniques, making it a recurring topic of research and security.

At HES-SO, our aim is to create representative datasets which reflect the diversity of Mirai attack

patterns observed in real-world scenarios. These datasets will serve as a basis for evaluating and

improving detection models capable of recognizing classic and emerging variants of Mirai-

generated DDoS traffic.

4.7.1. Testbed & Service Mapping

The Mirai trace sets were generated in a controlled environment at the HES-SO facilities. The test

bench is based on several Raspberry Pi 5 devices, each of them running Mirai in an isolated virtual

machine. The bots are controlled via a takeover mechanism that allows the botnet to be taken

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 124 of 228

over and various attack scenarios to be reproduced while maintaining the security and

reproducibility of the experiments.

At this stage, local traces are not yet combined with public datasets (e.g. CIC-DDoS2019) — this

remains a future option to enrich the diversity of samples and evaluate the generalisability of the

models. The primary intention is to produce traces that accurately reflect Mirai's specific

behaviour, without mixing traffic generated by other attack tools (HPING3, LOIC, HOIC, etc.), to

obtain a representative repository of Mirai variants.

The types of traffic reproduced may include TCP SYN floods, UDP amplifications and other vectors

observed in Mirai campaigns; the testbed allows the intensity, synchronisation and composition

of attacks to be adjusted to study realistic cases.

The associated service components are:

S9-C1: Setting up of a Mirai botnet, so as to be able to probe and analyze it.

S9-C2: Developing a FPGA-based hardware device capable of detecting various types of DDoS

attacks.

The current development phase focuses primarily on Mirai traffic, providing a concrete use case

for testing detection and inference strategies.

4.7.2. Dataset preparation.

For the training and testing phases, we are currently using the CIC-DDoS2019 dataset, which is

publicly available on KaggleHub. This dataset was originally generated using the CICFlowMeter

tool developed by the Canadian Institute for Cybersecurity (CIC) and retains a total of 77 flow-

based features.

Our locally generated datasets consist of raw PCAP captures produced by the Mirai test bench.

These captures are processed using CICFlowMeterV4 to extract network flows and export them

to CSV format, which are then converted to Parquet files for efficient storage and processing.

So as to ensure compatibility with the training data, we keep an exact alignment of features: the

same 77 features are kept in the same order as those in the CIC-DDoS2019 dataset. A mapping

procedure is also applied to harmonize class labels, as minor discrepancies may arise between

versions of CICFlowMeter (e.g., differences in naming conventions or label coding).

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 125 of 228

This pre-processing pipeline ensures that locally captured Mirai traces can be seamlessly

integrated into the same analytical framework as the reference dataset, facilitating future cross-

dataset evaluations and domain adaptation experiments.

4.7.3. Training and Validation

As aforementioned, the training and validation processes are currently being conducted using

the CIC-DDoS2019 dataset, with XGBoost selected as the reference model. For this initial phase,

the original feature set of the public dataset has been retained to ensure comparability with

existing benchmarks. The dataset was divided into training and test subsets, and standard

evaluation metrics were applied to assess model performance.

The experimental results show that the model achieves an overall classification accuracy of

94.2%. High-volume attack types and benign traffic, including NTP, SYN, and TFTP flows, are

detected with near-perfect F1 scores ranging from 0.99 to 1.00. Conversely, rare classes such as

DrDoS_MSSQL (F1 = 0.18) and DrDoS_LDAP (F1 = 0.31), as well as some WebDDoS flows, show

significantly lower detection performance. These disparities underscore the model's sensitivity

to class imbalance and the need to implement strategies to address data bias, such as resampling

or cost-sensitive training.

Analysis of locally captured Mirai traces revealed that, although TCP SYN-based attacks are often

detected, their class labels are frequently misattributed. Furthermore, harmless application-level

traffic, particularly RTSP streaming flows, can sometimes be misclassified as attack traffic. This

indicates a discrepancy between the CIC-DDoS2019 training data and actual Mirai traffic, which

affects the model's ability to generalize novel attack behaviours.

Overall, these results outline two key points: the need to create dedicated, well-labelled datasets

specific to Mirai, and the potential benefits of exploring more advanced modelling approaches,

such as architectures incorporating temporal or hybrid features. The developed test bench

therefore plays a crucial role in producing realistic Mirai attack scenarios, which will support

future efforts to improve detection robustness and cross-domain generalization.

4.8. Data for JASMIN training and evaluation

This dataset contains time-domain signal representations (I/Q samples) for the IEEE 802.11p

protocol, covering all supported modulation schemes: BPSK, QPSK, 16-QAM, and 64-QAM. It

includes two scenarios: clean signal and jamming attack. The data was generated using an SDR

setup with varying distances between transmitter, receiver, and jammer, and across different

SNR levels.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 126 of 228

4.8.1. Testbed & Service Mapping

An SDR IEEE 802.11p (V2X) setup with three USRP B210s at 5.9 GHz—Tx, Rx, and a jammer—

drives the experiments; each USRP (omni antennas, USB 3.0) is controlled via GNU Radio on

NVIDIA Jetson Orin hosts, with Tx/Rx PHY based on WiMe and the jammer mirroring the Tx

flowgraph while injecting white Gaussian noise; I/Q packets (128 complex samples) are captured

via API to a shared DB under varying Tx–Rx–jammer distances to emulate a vehicular service

(base-station ↔ AV) and enable real-time jamming detection.

4.8.2. Dataset preparation.

Two splits are used: (i) training with clear (unjammed) packets across BPSK/QPSK/16-QAM/64-

QAM and wide SNRs (including <0 dB), and (ii) evaluation with both clear and jammed packets;

jamming combines reactive and periodic modes (jammer activates on signal detect and aligns

with Tx periodicity), yielding highly positive-SNR jammed bursts; per-modulation counts and SNR

stats are reported (e.g., evaluation: clear—BPSK 2539, QPSK 4259, 16-QAM 3063, 64-QAM 1292;

jammed—BPSK 8465, QPSK 9098, 16-QAM 16539, 64-QAM 22978) and the full dataset is released

on Zenodo.

4.8.3. Training and Validation

Training uses only unjammed data: an LSTM (input 128×2 I/Q, 128 units, dropout 0.5, Adam, early

stopping) is tuned across SNRs, and per-modulation Isolation Forest for outlier detections (150

trees) are trained on features derived from constellation distances (RSE-based, quadrant

reduction, Manhattan distance, intra-packet point permutation) to set contamination per

scheme; at run-time, windows of P = 21 packets (10 MHz front-end) yield >3.5k decisions/s, and

on the evaluation split JASMIN attains 99.92% overall accuracy (perfect for BPSK/16-QAM/64-

QAM; QPSK ≈ 99.6%), with OD outlier rates on jammed data of ~87% (BPSK), ~76% (QPSK), ~94%

(16-QAM), and ~97% (64-QAM).

4.9. Eavesdropping attack on PKG

We study a passive eavesdropper (Eve) targeting the AI-Enhanced Physical Key Generation in sub-

THz service by recording UL/DL pilots in Gradiant 5GLab and mirroring the public PKG steps to

attempt key replication. The evaluation quantifies attack ineffectiveness via KDR across distance,

position, and mobility, and assesses that gains from the AI reciprocity module on the main link

do not translate into any advantage for Eve.

4.9.1. Testbed & Service Mapping

We evaluate the service AI-Enhanced Physical Key Generation in sub-THz under a passive

eavesdropping threat in an indoor laboratory TDD setup. The legitimate endpoints, Alice and Bob,

follow this pipeline: the Characteristics Extractor derives channel features from uplink and

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 127 of 228

downlink pilots; on Alice’s side, the Network Key Generator applies AI-driven channel-reciprocity

enhancement, then quantization, information reconciliation, and key generation via hashing. On

the other hand, Bob runs the symmetric branch (quantization, reconciliation, and hashing) to

obtain the same secret key. The adversary, Eve (USRP B210), is a third node co-located in the

testbed that records the sub-THz UL/DL transmissions between Alice and Bob without injecting

traffic. Eve locks onto the signals using standard pilot-aided timing and frequency estimation (no

shared clock or common RF front-end is assumed) and moves along the legitimate path, including

sub-wavelength displacements, to seek positions where her channel observations approach

Bob’s. The attack targets the entire PKG pipeline by mirroring the public steps: channel-

measurement extraction, quantization, reconciliation and privacy amplification.

4.9.2. Dataset preparation.

The attacker dataset consists of controlled sub-THz TDD captures collected at Eve’s location. For

each capture, Eve records the uplink and downlink pilot signals transmitted by Alice and Bob and

derives complex channel estimates, amplitude and phase across OFDM subcarriers, for both

directions, together with timestamps and scenario tags. The campaign spans multiple distances,

positions (including sub-wavelength offsets along the Alice–Bob path), and mobility conditions in

the indoor lab to ensure diversity. The attacker pipeline relies solely on Eve’s observations and

publicly exchanged messages.

4.9.3. Training and Validation

The training stage applies only to the PKG service AI-driven channel reciprocity enhancement.

Using Alice/Bob pilot observations, the model is trained to improve UL–DL reciprocity on the

main link (by mapping UL to DL features), thereby increasing bit agreement before reconciliation.

This training does not involve Eve’s data and does not provide the attacker with any advantage.

Validation focuses on security against passive eavesdropping. The primary metric is the Key

Disagreement Rate (KDR) between Eve’s final key and the legitimate final key after reconciliation

and privacy amplification. Equivalently, KDR can be computed against Bob, since Alice and Bob

are designed to agree post-reconciliation. Ineffective eavesdropping yields KDR close to 0.5 and

an attacker secret-bit rate effectively zero. We report KDR across distances, positions, and

mobility scenarios, emphasizing that the attack is most effective only at very short separations

(sub-wavelength scales) and in TDD conditions that favor reciprocity. Even then, at practical

separations the resulting keys remain indistinguishable to Eve. KDR thus acts as the service-level

assessment under attack, and by comparing variants with and without the AI reciprocity module

it also provides a component-level assessment, confirming that legitimate-link gains do not

translate into any advantage for Eve.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 128 of 228

4.10. Jamming attack

Jamming attacks are a common form of active interference in wireless communications, aimed

at degrading or completely denying service. As mentioned in D5.1, there are several different

types of jammers depending on their strategy, but most of them pose a trade-off between energy

consumption and effectiveness. One of the ways for a jammer to increase its efficiency relies on

the knowledge of the specific signal it wants to attack. In our case, we will assume the reasonable

scenario in which the jammer knows the 5G band that we are using and attacks a portion of the

5G spectrum, affecting some of the available PRBs but not all at the same time, as that would

imply a high energy consumption.

The jammer will use previously generated chirp signals and transmit them using a USRP. This is

not a dataset per se, as the amount of different chirp signals is not so large, as the center

frequency and gain are selected using the USRP.

4.10.1. Testbed & Service Mapping

In the 5GLab testbed (specifically within the AI anti-jamming subsystem), jamming attacks are

generated with a USRP to disrupt legitimate communications between a UE and the gNB in the

5G n77 band. The jammer’s bandwidth is configurable so that it can target particular PRBs within

the 5G band. The controlled injection of these attacks is an integral part of the testbed and is

required to validate the DetAction component.

4.10.2. Dataset preparation.

The dataset used by the jamming-detection component is built from previously captured chirp

signals recorded under a variety of sample rates, bandwidths and channel conditions. Samples

are split into two categories: non-jammed signals (i.e., 5G communications plus background

noise) and jamming signals (chirps), which may appear either in isolation or superimposed on 5G

traffic. Note that the testbed jammer transmits pre-generated chirp waveforms via the USRP;

this collection is not treated as a conventional training dataset in the sense of a large, diverse

corpus of signals, as there are only a limited number of distinct synthetic chirps generated. The

center frequency and transmit gain of the jammed chirps are configured directly on the USRP.

4.10.3. Training and Validation

The DetAction detection phase is trained using the dataset described above. Preprocessing

extracts spectral fragments that correspond to PRB-sized blocks (using 180 kHz PRBs according

to the 5G numerology) from the captured 5G and jamming signals. These fragments are used to

train a convolutional neural network (CNN) that currently achieves AUC = 0.97, F1-score = 0.98

and accuracy = 0.95 in validation. Validation is performed on a held-out set of captured signals

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 129 of 228

not used during training, and the system will be further tested in the 5GLab testbed with

additional signals emitted by the jamming USRP and captured in real time.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 130 of 228

5. Conclusions
D6.2 “System Integration on the testbeds, Pilot installations and implementations.r1”

deliverable, addressed the set-up of NATWORK’s testbeds, the installation of the components

that were identified in previous stages of NATWORK project, and the initial validation of the

components through dry run tests. In addition, several attacks were identified and, through the

Attack Generation System, were emulated on NATWORK’s components. By determining these

attacks, also the related datasets per attack were identified.

During the initial assessment of verifying the NATWORK’s components, 14 testbeds by thirteen

13 partners were set up. Testbed owners provided their testbeds on time, allowing dry run tests

to be executed in a thorough way. Specific components were set up in more than one testbed.

At the Use Case (UC) level, UC functionalities were shared across multiple testbeds. Preliminary

tests were conducted for the corresponding components of NATWORK, identifying that all

components were successfully installed in the related testbed or testbeds. Moreover, mature

components were validated through a set of test scenarios identifying that NATWORK

components are ready for NATWORK’s trials in controlled lab environments.

The dry run tests that were performed during this period, focused on the verification of the

mature components and the results are presented in this deliverable. Validation of the

components was performed by the component owners. Nonetheless, during the validation of the

components, a solid collaboration between component owners and testbed owners was

performed. The report of the results is presented per component. This also applies in cases where

a component was installed in more than one testbed; a single report per component is created.

The actual results from the dry run tests of the components can be found in the Appendix of this

document.

T6.2 “Testbed integration & attack generation system” also had an objective to identify and

emulate specific attacks towards NATWORK system, through the Attack Generation System.

These attacks have been triggered against the related NATWORK components, and the related

results have been reported in this deliverable. Initial security breaches in the overall NATWORK

framework have been recorded in D6.2 when these attacks were forwarded to NATWORK.

5.1. Next steps

The present deliverable represents the first version of “System Integration on the testbeds, Pilot

installations and implementations”. A second version of this report will be submitted in M32

when T6.2 concludes, and T6.3 is about to be completed in M33. This successive report will

provide an additional outlook on the status of NATWORK’s components from the T6.2

perspective. Further tests will be performed, and additional attacks will be identified and

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 131 of 228

emulated towards NATWORK components. Adjustments to the testbeds can be applied when

needed. Any adjustments will be also reported in the second version of “System Integration on

the testbeds, Pilot installations and implementations”.

In the second report, more information from T6.3 “Use Cases Trials and Demonstration” will also

be presented. The finalized definition and set-up of the controlled environments for each use

case will be described. This task will also execute the use case trials in those prepared NATWORK

environments, evaluate their initial results and demonstrate them. In that regard, the attack

generation system from T6.2 will be used to the greatest extent possible. Moreover,

experimental data on system performance, security metrics, and end-user feedback will be

gathered. By doing so, an extensive evaluation of NATWORK’s outcomes will be performed.

Therefore, the use case trials that will be carried out through the timeline of T6.3 will be reported

in D6.3 deliverable. Overall, the two versions of this report jointly detail the testbed

infrastructure and the related NATWORK for the upcoming pilot trials and the evaluation of the

NATWORK system.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 132 of 228

6. References
[1] Sev-Snp, A. M. D. (2020). Strengthening VM isolation with integrity protection and

more. White Paper, January, 53(2020), 1450-1465.

[2] Ejaz, S., & Al-Naday, M. (2024, March). FORK: A Kubernetes-compatible Federated

Orchestrator of Fog-native applications over multi-domain edge-to-cloud ecosystems. In

2024 27th Conference on Innovation in Clouds, Internet and Networks (ICIN) (pp. 57-64).

IEEE.

[3] Zed Attack Proxy (ZAP), https://www.zaproxy.org/ [Accessed: 09.10.2025]

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 133 of 228

Appendix
In the appendix, the actual test scenarios per component are presented. Specific components

have been already verified during months M1 and M22 of NATWORK project timeline. The actual

dry run test results of these components can be found in the related tables below. In addition,

test scenarios and test cases that have been already identified for the related components and

are currently under evaluation (no results for these scenarios have been achieved yet) are also

displayed in the current report. Components that the related test scenarios have not yet been

identified and the results of components that are under evaluation will be presented in the

second version of “System Integration on the testbeds, Pilot installations and implementations”

which is deliverable D6.3 due M32.

In the information below, the current status of the test scenarios and test cases per component

are illustrated.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 134 of 228

A.1 Energy efficient over edge-cloud

Project Name: NATWORK
Component Name: Energy-efficient/delay-aware orchestration
Created by: UEssex
Date of creation: 01.09.2025
Filename: UEssex-Energy-efficient.xlsx

Test
scenario ID

Test
scenario

Tets case
ID Test case

Pre-
conditions Test steps Test data

Expected
result

Execution
date Actual result Status (Pass/Fail)

CPU
utilizatio
n
measure
energy
consump
tion -
TS01

Verify
benign
workload
in single-
and
multi-
cluster
setups

CPU
utilizatio
n
measure
energy
consump
tion -
TS01-
TC01

Single-
Cluster
vs Multi-
Cluster
traffic,
impact of
service
discovery
(MCS
API)

Container
ized
applicatio
n and
proxy
deployed
in
Kubernet
es
clusters

1. Deploy
application
(single + multi)
2. Send benign
traffic across
clusters
3. Measure RTT
and compare

Simulated
benign
containerized
workload

Multi-
cluster
shows
higher
RTT
variance
due to
MCS API
overhea
d

01/06/2
025

Multi-
cluster
shows
higher RTT
variance
due to MCS
API
overhead +
virtualisatio
n overhead Pass

CPU
utilizatio
n
measure
energy
consump
tion -
TS01

Demonst
rate
Denial of
Sustaina
bility
(DoST)
attack

CPU
utilizatio
n
measure
energy
consump
tion -
TS01-
TC02

Generate
oscillatin
g HTTP
requests
to cause
CPU/me
mory
oscillatio
n and
QoS
degradati
on
(harder to
detect)

Container
ized
applicatio
n and
proxy
deployed
in
Kubernet
es
clusters

1. Deploy
service and
proxy
2. Simulate
containerized
end users
generating
oscillatory HTTP
traffic
3. Measure RTT,
CPU/memory
oscillations,
QoS
degradation

DoST
workload

Service
remains
alive but
shows
high
oscillati
ons,
scaling
pod
resource
s in/out
quickly
degradin
g QoS
and

18/06/2
025

Service
remains
alive but
shows high
oscillations
, scaling
pod
resources
in/out
quickly
degrading
QoS and
longer RTTs

Dost attack
demonstration – Pass
Mitigation – Not
tested yet

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 135 of 228

Test
scenario ID

Test
scenario

Tets case
ID

Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result Status (Pass/Fail)

longer
RTTs

Monitori
ng and
Dataset
generatio
n using
DosT
attack to
feed
Machine
learning -
TS02

Monitor
and log
system
resource
s for AI-
driven
analysis

Monitori
ng and
Dataset
generatio
n using
DosT
attack -
TS02-
TC01

Promethe
us-based
monitorin
g of CPU,
memory,
network
TX/RX,
and pod
lifecycle
stats

Container
ized
applicatio
n and
Promethe
us
deployed
on
Kubernet
es
clusters

1. Deploy
Prometheus &
Grafana in
cluster
2. Visualise
CPU/memory/n
etwork
telemetry during
attack
3. Store time-
series data in
TSDB

Prometheus
telemetry -
DosT
workload
traffic
(benign/mali
cious)

Structur
ed
telemetr
y
datasets
stored,
visualize
d via
Grafana
dashboa
rds, and
prepared
for
federate
d
learning

18/06/2
025

Structured
telemetry
datasets
stored,
visualized
via Grafana
dashboards
, and
prepared
for
federated
learning Pass

A.2 TrustEdge

Project Name: NATWORK
Component
Name: TrustEdge
Created by: UGent
Date of creation: 23.09.2025
Filename: IMEC-TrustEdge.xlsx

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 136 of 228

Test scenario ID Test scenario Tets case ID Test case Pre-conditions Test steps Test data Expected result Execution date Actual result Status (Pass/Fail)

Boot-TS02

(Added)
boot time
of the
framework
from
attestation
to secure
Feather
deployment

Base-
TS01-
TCO1

Measures
the total
time
added to
device
boot time
by the
framework

Running
Kubernetes
cluster

1. Prepare
evaluation
edge node
2. Repeatedly
reboot &
connect to
Kubernetes
cluster for
attestation
3. Measure
attestation
overhead &
Feather start
time

N/A

<60 second
added time

10/04/2024

Average
case
20.91s
time
added to
boot,
around
half of
which is
Feather
starting
and half is
the
attestation
process

Pass

A.3 Feather

Project Name: NATWORK
Component
Name: Feather
Created by: IMEC
Date of creation: 23.09.2025
Filename: IMEC-Feather.xlsx

Test scenario
ID Test scenario Test case ID Test case Pre-conditions Test steps Test data

Expected
result

Execution
date Actual result

Status
(Pass/Fail)

Runtime
comparison
benchmark
-TS01

Compare
unikernels
(OSv/KVM),
containers,
and/or
WASM

Minimal -
TS01-
TCO1

Measures
the
overhead of
Feather for
containers,
unikernels

Feather
agent up and
running

1. Prepare
test device
(containerd
installation,
KVM-qemu)
2. Start

Idle
workload
images,
deployme
nt
manifest

Slight
increase in
memory
use
compared
to idle

15/04/202
5

Minimal
(<1%) CPU
use, memory
overhead 7-
13MB with
the lowest

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 137 of 228

Test scenario
ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

(WASMTim
e)
performanc
e under
different
scenarios

and WASM
by
deploying
an idle
workload to
all
backends

Feather
agent
3. Deploy
workload
4. Run
evaluation
& metrics
script

Feather, no
CPU
consumptio
n.

overhead for
WASMTime

Runtime
comparison
benchmark
-TS01

Compare
unikernels
(OSv/KVM),
containers,
and/or
WASM
(WASMTim
e)
performanc
e under
different
scenarios

Applicatio
n -TS01-
TCO2

Measures
the
overhead of
Feather
with active
containers
and
unikernels.
Measures
the
resource
consumptio
n of a
Minecraft
server in
both
container
and
unikernel
format to
gauge
benefits of
runtimes.

Feather
agent up and
running,
suitable
workload
images
prepared.

1. Prepare
test device
(containerd
installation,
KVM-qemu)
2. Start
Feather
agent
3. Deploy
workload
4. Run
evaluation
& metrics
script

Workload
images,
deployme
nt
manifest

Significant
rise in
memory
use,
unknown
benefits for
either
runtime

/

No memory
overhead for
Feather w.r.t.
minimal
scenario.
Huge (>30%)
performance
overhead for
KVM-based
unikernel, but
also uses
30% less
memory than
containerized
MC server.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 138 of 228

Test scenario
ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

Runtime
comparison
benchmark
-TS01

Compare
unikernels
(OSv/KVM),
containers,
and/or
WASM
(WASMTim
e)
performanc
e under
different
scenarios

Images -
TS01-
TCO3

Measures
the relative
size of an
image for
specific
functionalit
y (HTTP
server) in
different
runtime
formats.

N/A

1. Prepare
image
contents
(compilatio
n)
2. Build
image
(Docker,
Flint, ...)
3. List
image size

Workload
images

Smaller
WASM
image,
likely larger
microVM
image
compared
to container

15/04/202
5

WASM image
smallest
(0.2KB),
followed by
OSv unikernel
(7.3MB) and
native
(container
image)
28.2MB.

Pass

Runtime
comparison
benchmark
-TS01

Compare
unikernels
(OSv/KVM),
containers,
and/or
WASM
(WASMTim
e)
performanc
e under
different
scenarios

HTTP -
TS01-
TCO4

Measures
performanc
e of an
HTTP server
in various
runtimes.
Considers
latency as
well as raw
request
throughput
using k6
command.

Feather
agent up and
running,
suitable
workload
images
prepared. All
workloads
reachable
through
container
networking.

1. Prepare
test device
(containerd
installation,
KVM-qemu)
2. Start
Feather
agent
3. Deploy
workloads
4. Run
evaluation
& metrics
script

Workload
images,
deployme
nt
manifest

WASM
performanc
e similar to
native.
Previous
OSv
versions
produced
unikernels
on par with
native on
XenServer,
but
overloading
HTTP traffic
was a weak
spot and
can cause
bottlenecks
and latency
spikes on
KVM-Qemu.
This test
case uses a

15/04/202
5

WASMTime
latency 50%
higher than
native;
request/s
keeps pace
with native.
OSv on KVM
latency 500%
higher than
native,
requests/s
eventually
crashes when
latency
skyrockets.
Unfortunate,
but
somewhat
expected.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 139 of 228

Test scenario
ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

newer
version.

Container
network
performanc
e-TS02

Performanc
e of
decentraliz
ed multi-
runtime
container
networking
solution.

Throughpu
t-TS02-
TC01

Measures
throughput
of the
decentraliz
ed P2P
internode
part of the
networking
solution
compared
to
WireGuard.

Feather
agent up and
running,
suitable
evaluation
images
prepared
(HTTP server,
video
streaming
server). All
nodes
mutually
reachable on
public IPs.

1. Prepare
test
devices
(containerd
installation,
KVM-qemu)
2. Start
Feather
agents on
all devices
3. Start
internode
networking
processes,
validate
eBPF
running
4. Deploy
workloads
5. Run
evaluation
& metrics
scripts

Workload
images,
deployme
nt
manifests
, HTTP
request
scenario

Lower CPU
use than
alternatives
(WireGuard
), 1Gbps
internode
traffic
possible

15/05/202
4

CPU use 10-
100 times
lower than
WireGuard in
same setup,
1Gbps
physical
connection
saturated
(~910Mbps +
packet and
communicati
on overhead)

Pass

Container
network
performanc
e-TS02

Performanc
e of
decentraliz
ed multi-
runtime
container
networking
solution.

Scalability
-TS02-
TC02

Measures
throughput
of the
decentraliz
ed P2P
internode
part of the
networking
solution in
5-node star
and ring

Feather
agent up and
running,
suitable
evaluation
images
prepared
(HTTP server,
video
streaming
server). All

1. Prepare
test
devices
(containerd
installation,
KVM-qemu)
2. Start
Feather
agents on
all devices
3. Start

Workload
images,
deployme
nt
manifests
, HTTP
request
scenario

Scaling
dependent
on number
of
neighbours,
not total
topology
size.

15/05/202
4

Star topology
shows similar
throughput as
WireGuard.
Ring topology
shows
~910Mbps
traffic for all
nodes
(saturated
physical

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 140 of 228

Test scenario
ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

topologies
to evaluate
scalability.
In the ring
topology,
WireGuard
uses one of
the nodes
as VPN
controller.

nodes
mutually
reachable on
public IPs.

internode
networking
processes,
validate
eBPF
running
4. Deploy
workloads
5. Run
evaluation
& metrics
scripts

interface)
and
~230Mbps for
WireGuard.

Container
network
performanc
e-TS02

Performanc
e of
decentraliz
ed multi-
runtime
container
networking
solution.

Throughpu
t-TS02-
TC03

Measures
throughput
of the
multi-
runtime
(node local)
part of the
networking
solution.

Feather
agent up and
running,
suitable
evaluation
images
prepared
(HTTP server,
video
streaming
server).
Feather
multi-
runtime
network
solution
running
(configuratio
n).

1. Prepare
test device
(containerd
installation,
KVM-qemu)
2. Start
Feather
agent,
validate
eBPF
running
3. Deploy
workloads
4. Run
evaluation
& metrics
script

Workload
images,
deployme
nt
manifests
, HTTP
request
scenario

<1% of
single CPU
core per
Gbps
interpod
traffic,
multi-Gbps
traffic
possible

12/07/202
4

Added
latency
<100µs,
average
2.5Gbps
traffic
sustained in
video
streaming
scenario
independent
of endpoint
runtimes,
1%-1.5% of
single CPU
core.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 141 of 228

A.4 Flocky

Project Name: NATWORK
Component
Name: Flocky
Created by: UGent
Date of creation: 23.09.2025
Filename: IMEC-Flocky.xlsx

Test scenario
ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps Test data Expected result

Execution
date

Actual result
Status

(Pass/Fail)

Functional-
TS01

Functiona
l
evaluation
of the
framewor
k

Base-
TS01-
TCO1

The
functionality
of the
framework is
measured in
terms of
metadata
discovered
(discovery +
metadata
services)
and required
services
deployed
(orchestrati
on metadata
use)

N/A

1. Prepare
test devices,
config files
2. Start Flocky
services in
order
2.a Node
monitoring
service (one
node)
2.b
Deployment &
Flocky
services
2.c Discovery
services
2.d Metadata
services
3. Deploy
workloads
4. Evaluate
situation from
node
monitoring
service after 5

Service
config
files,
deployme
nt
manifests

100%
metadata
discovery,
all services
successfully
placed after
<5 rounds

10/02/202
5

100%
discovery, all
services
successfully
placed after
2-3 rounds
(depending
on random
factors)

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 142 of 228

Test scenario
ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps Test data Expected result

Execution
date

Actual result
Status

(Pass/Fail)
discovery
rounds

Scalability-
TS03

Scaling
efficiency
of the
framewor
k

Network-
TS02-
TCO1

Network
traffic is
measured
for
topologies
from 1 to
150 nodes,
for discovery
distances
from 10 to
20 (ms ping
simulated)

N/A

1. Prepare
test device,
copy config
files
2. Start
simulation
script with
node and
distance
parameters
3. Run metrics
gathering
script

Service
config files

O(neighbour
s) scaling or
less, where
neighbours
is roughly
total nodes *
discovery
distance

10/02/202
5 Network

traffic follows
O(neighbours
) scaling, but
rises twice as
fast as CPU
scaling.

Pass

Scalability-
TS03

Scaling
efficiency
of the
framewor
k

Resource
-TS02-
TCO1

CPU and
memory are
measured
for
topologies
from 1 to
150 nodes,
for discovery
distances
from 10 to
20 (ms ping
simulated)

N/A

1. Prepare
test device,
copy config
files
2. Start
simulation
script with
node and
distance
parameters
3. Run metrics
gathering
script

Service
config files

O(neighbour
s) resource
scaling or
less

10/02/202
5

Memory
scales as
expected,
with very low
overhead
compared to
baseline
(16MB base -
> 21MB at
densest
scenario).
CPU scaling
exactly
follows

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 143 of 228

Test scenario
ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps Test data Expected result

Execution
date

Actual result
Status

(Pass/Fail)
O(neighbours
).

Scalability-
TS03

Scaling
efficiency
of the
framewor
k

Discover
y-TS02-
TCO1

Metadata
discovery
efficiency is
measured
for
topologies
from 1 to
150 nodes,
for discovery
distances
from 10 to
20 (ms ping
simulated).
Each node is
assigned 2
random
metadata
items at
start, and a
total pool of
100 must be
discovered
by each
node.

N/A

1. Prepare
test device,
copy config
files
2. Start
simulation
script with
node and
distance
parameters
3. Run metrics
gathering
script

Service
config files

>99% for
topologies
where all
nodes have
at least 2
connections
, graceful
degradation
for sparsely
connected
topologies

10/02/202
5

>99%
metadata
discovery
from 75
nodes and 20
discovery
distance
upwards,
>96% for
smaller,
loosely
connected
topologies.
This
indicates no
bifurcation,
but single
nodes not
connected to
the topology
due to
random
generation
(trivial fix
with starting
conditions
for nodes in
realistic and
simulated
scenarios)

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 144 of 228

Test scenario
ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps Test data Expected result

Execution
date

Actual result
Status

(Pass/Fail)

Latency-
TS03

(Additiona
l) latency
added by
the
framewor
k

Base-
TS03-
TCO1

Measures
the total
deployment
latency (end
to end) of a
two-
component
service in
the Flocky
framework,
from user
action to
service
deployment.

Flocky
framework
running on
two nodes
(requester
and
deployer)

1. Start
Wireshark
2. Execute
repeated
deployment
calls
3. Gather
latency data
from
Wireshark and
Flocky
instrumentati
on

Deployme
nt
manifest

<2.5 second
response
time
excluding
image pull
and
deployment
(Kubernetes
average with
standard
reconciliatio
n loop)

10/02/202
5

Median case
21.1ms
response
time for
deployment
on two
separate
nodes,
consisting of
~70%
network
latency.

Pass

A.5 Secure-by-design orchestration

Project Name: NATWORK
Component
Name: Secure-by-design Orchestration
Created by: UEssex
Date of creation: 24.09.2025
Filename: UEssex-secure-by-design-orch.xlsx

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 145 of 228

Test
scenario ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

ORCH-
TS01

Validate
Secure-by-
Design
orchestratio
n

ORCH-TS01-
TC01

Check if
orchestrati
on
respects
declared
security
requireme
nts of a 6G
Slice and
Clusters

Orchestrat
or (sFORK),
Slice
requireme
nts and
Cluster
requireme
nts
declarative
inputs

1. Define the
slice
requirements
with security
constraints
2. Define the
clusters'
requirements
with security
constraints
3. trigger
orchestration
by introducing
the inputs
declaratively
4. Monitor
whether
placement/sca
ling respects
constraints

Slice, Slice
Requireme
nts and
Clusters
requireme
nts
manifests

Orchestrat
or
decisions
comply
with
Secure-by-
Design
policies
(no
insecure
placement)

 01/07/20
25

Orchestrat
or
decisions
comply
with
Secure-by-
Design
policies
(no
insecure
placement) Pass

ORCH-
TS02

Subgraph
communicat
ion within
orchestratio
n

ORCH-TS02-
TC01

Verify if
sFORK
core
componen
t interacts
with
cluster
local
orchestrat
ors and
dissemina
tes the
subgraphs

Orchestrat
or (sFORK)
policy and
strategy
component
s to create
dependenc
y graphs
alined with
the slice
and slice
requireme
nts.

1. Create slice
with multiple
dependent
CNFs
2. sFORK
Policy and
strategy
components
decompose
the
dependency
graph, create
subgraphs
aligned with
the slice
requirement

Slice
manifest
with the
defined
CNF
dependenc
y, Slice
Requireme
nts and
Clusters
requireme
nts
manifests

Subgraphs
are
correctly
shared and
executed
across
clusters,
CNF
dependenc
ies are set

 01/07/20
25

Subgraphs
are
correctly
shared and
executed
across
clusters,
CNF
dependenc
ies are set Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 146 of 228

Test
scenario ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
and cluster
requirement
inputs
3. Distribute
the subgraphs
to related
clusters
4. Observe
communicatio
n with cluster
local agents

A.6 End-to-End Security Management

Project Name: NATWORK
Component
Name: E2E Trust Establishment
Created by: ELTE
Date of creation: 01.09.2025
Filename: ELTE-E2E-Trust.xlsx

Test
scenario ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

E2E_Trust
-TS.01

Verify main
connections

E2E_Trust-
TS.01-TC.01

gNB
connects
to the 5G
Core

The 5G
Core
should be
up and
running,
listening to
newly
joined gNB

Step 1: 5G
core starts
and running.
Listening to
the
connections
Step 2: gNB
through
UERANSIM

N/A

gNB
connection
to 5G Core.
Updating
the log files
on both
nodes

Aug-24
 Connectio
n stable.

 Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 147 of 228

Test
scenario ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
performs the
preliminary
configuration
and connects
to the
relevant 5G
Core

E2E_Trust
-TS.01

Verify main
connections

E2E_Trust-
TS.01-TC.02

UPF
connects
to the 5G
Core

The 5G
Core
should be
up and
running

Step 1: 5G
core starts
and running.
Listening to
the
connections
Step 2: UPF
through
Open5GS
performs the
preliminary
configuration
and connects
to the
relevant 5G
Core

N/A

Link
between
5G Core
and
external
UPF.
Updating
the log files
on both
nodes

Sept-24

 UPF
registration
with 5G
Core
completed
successfull
y.

 Pass

E2E_Trust
-TS.01

Verify main
connections

E2E_Trust-
TS.01-TC.03

UE
connects
to the UPF

The 5G
Core
should be
up and
running.
The gNB
should be
connected
to the 5G
Core.
Link to the
UPF should

Step 1: gNB
starts and
running.
Listening to
the
connections
Step 2: UE
connects to
the specific
gNB through
the releveant
configuration
Step 3:

N/A

Full running
system,
link from
the UE
through
gNB, to the
revelenat
UPF and
DN

Sept-24

 Traffic
between
UE and DN
verified
through
UPF tunnel.

 Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 148 of 228

Test
scenario ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
be already
established

through 5G
Core, the
connection is
directed to
the UPF,
which will
update the
log files

E2E_Trust
-TS.02

E2E_Trust-
TS.02-TC.01

Check the
blockchain
connectio
n

Required
dependenc
ies for
Foundry
(e.g., Rust,
Node.js,
Foundry
toolchain)
are
installed.

Network
connectivit
y is
available.

Step 1:
Deploy the
Foundry
blockchain
node in a
standalone
mode (local
devnet or
testnet).
Step 2: Verify
the node
starts
successfully
by checking
process
status and
listening
ports.
Step 3: Run a
simple health
check using
Foundry CLI
(e.g., forge
test or cast
block-
number) to
ensure the

N/A

Foundry
blockchain
node is
successfull
y
established
and
running.
Node
responds
to CLI/API
queries.
Dummy
transaction
is
processed
and
confirmed
in the local
chain.
Logs show
successful
startup,
block
production,
and
transaction
handling.

Oct-24

Foundry
blockchain
node is
successfull
y
established
and
running.

 Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 149 of 228

Test
scenario ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
node is
responsive.

E2E_Trust
-TS.03

Blockchain
Connetion
to other
nodes

E2E_Trust-
TS.03-TC.01

Blockchai
n DN node
runs

Foundy
Blockchain
is running.
UPF and
DN (in the
same node,
different
processes)
are
connected

Step 1: UPF
establishes a
data path to
the DN where
the Foundry
blockchain
node is
running.
Step 2: DN
node
performs a
test data
transaction.

N/A

Successful
communic
ation and
transaction
handling
between
UPF and
DN
blockchain
node.

Oct-24

 UPF
successfull
y routed
data traffic
to DN.

 Pass

E2E_Trust
-TS.03

Blockchain
Connetion
to other
nodes

E2E_Trust-
TS.03-TC.02

Blockchai
n 5G core
node runs

Foundy
Blockchain
is running.

Step 1: 5G
Core initiates
a blockchain
request (e.g.,
send
transaction,
query block).
Step 2: The
Foundry
blockchain
processes the
request and
logs the
interaction in
its
transaction
records.
Step 3: 5G
Core receives
the
blockchain

N/A

 Successful
blockchain
request/res
ponse
cycle
between
5G Core
and
blockchain
node.

Nov-24

 Successfu
l
blockchain
request/res
ponse

 Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 150 of 228

Test
scenario ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
response
confirming
successful
addition.

A.7 Slice orchestration and slice management for beyond 5G networks

Project Name: NATWORK
Component
Name: Slice orchestration and slice management for beyond 5G networks
Created by: CERTH
Date of creation: 01.09.2025
Filename: CERTH-Slice-orchestration-and-management.xlsx

Test scenario ID Test scenario Test case ID Test case Pre-
conditions

Test steps Test data Expected result Execution
date

Actual result Status
(Pass/Fail)

Slice-
orchestration
-
management
-TS01

Verify
proper
functionalit
y of the
component

Slice-
orchestration
-
management
-TS01-TC01

Default
operation
of 5G
network

xAPP
with the
ML
model is
loaded

1. Deploy 5G
network and
xAPP 2.
Send test
traffic

Default
Traffic
Generato
r

Default
classificatio
n (benign) 11/2024

Default
classificatio
n (benign) Pass

Slice-
orchestration
-
management
-TS01

Verify
proper
functionalit
y of the
component

Slice-
orchestration
-
management
-TS01-TC02

Verify the
accuracy
of the
xAPP in
the
detection
of
malicious
traffic

xAPP
with the
ML
model is
loaded

1. Deploy 5G
network and
xAPP 2.
Send traffic
from dataset
with attacks

KDD Cup
1999
dataset
with
attacks Packets

classified as
malicious 02/2025

Packets
classified as
malicious Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 151 of 228

Test scenario ID Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data Expected result

Execution
date

Actual result
Status

(Pass/Fail)

Slice-
orchestration
-
management
-TS01

Verify
proper
functionalit
y of the
component

Slice-
orchestration
-
management
-TS01-TC03

Identify
attack on
the
network
and
reallocate
PRBs on
the slices
in order to
limit the
slice
under
attack

xAPP
with the
ML
model is
loaded

1. Deploy 5G
network and
xAPP 2.
Send traffic
from dataset
with attacks
3. xAPP
calculates
the anomaly
ratio and
reallocate
the PRBs on
the slices

KDD Cup
1999
dataset
with
attacks

Reallocation
of PRBs on
the slices of
the network 04/2025

Reallocation
of PRBs on
the slices of
the network Pass

Slice-
orchestration
-
management
-TS01

Verify
proper
functionalit
y of the
component

Slice-
orchestration
-
management
-TS01-TC04

Disconne
ct
malicious
UE from
network

xAPP
with the
ML
model is
loaded

1. Deploy 5G
network and
xAPP 2.
Send traffic
from dataset
with attacks
3. xAPP
calculates
the anomaly
ratio and
reallocate
the PRBs on
the slices 4.
xAPP
disconnects
the
malicious UE
when
anomaly
ration
reaches
100%

KDD Cup
1999
dataset
with
attacks

Malicious UE
disconnectin
g from the
network 05/2025

Malicious UE
disconnectin
g from the
network Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 152 of 228

A.8 Signal Processing Services

Components: AI-Based RIS configuration / ML-based MIMO / JASMIN & Filter Mitigation

Project Name: NATWORK
Component
Name: Signal Processing services
Created by: CERTH
Date of creation: 01.09.2025
Filename: CERTH-Signal Processing.xlsx

Test
scenario ID

Test
scenario

Test case
ID Test case

Pre-
conditions Test steps

Test
data

Expected
result

Execution
date

Actual
result Status (Pass/Fail)

Signal
Processin

g-TS01

AI-based
RIS

configurat
ion

Signal
Processi
ng-TS01-

TC01

Determine
the RIS

configurati
on for

multi-user
scenarios

Optimal
RIS

configura
tions for
the case
that each

user is
served

standalo
ne by it

Step 1: The receiver
and the transmitter
will be positioned

in Line-of-Sight with
the RIS unit.
Step 2: The

communication
link quality will be
measured with the

RIS unit out of
function in order to

use this
measurement as

baseline.
Step 3: The

communication
link in case that the

user is served
standalone will be

measured using the
optimal RIS

configuration.
Step 4: The

Extract
ed by
RIS-

testbe
d

Performanc
e per user in
multi-user
scenario

Early 2026
Not

available
yet

Not evaluated
yet

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 153 of 228

Test
scenario ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps

Test
data

Expected
result

Execution
date

Actual
result

Status (Pass/Fail)

communication
link quality in the

multi-user scenario
will be measured

using the codebook
entries multiplexing

algorithm for fair
beam-splitting.

Signal
Processin

g-TS02

ML-based
MIMO

Signal
Processi
ng-TS01-

TC02

Verify the
results of
JASMIN &

Filter
Mitigation
in MIMO

setups for
receiver

and
jammer

MIMO
antennas

in
testbed

Step 1: The
dedicated protocol

for V2X, IEEE
802.11p, will be
simulated in the

SDR-based setup.
Step 2: One SDR
will be used for

transmitter, one as
receiver and one as

jammer.
Step 3: JASMIN
model will be

connected with the
receiver.

Step 4: The output
of JASMIN will be
measured in case

the jammer is
inactive.

Step 5: The output
of JASMIN will be
measured in case

the jammer is
active.

Step 6: The outputs
in both cases will

Extract
ed in
SDR-

testbe
d

Accuracy of
the JASMIN

model in
clear and
jammed

data. SNR
enhanceme

nt before
and after
the filter

mitigation
application

Mid 2026
Not

available
yet

Not evaluated
yet

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 154 of 228

Test
scenario ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps

Test
data

Expected
result

Execution
date

Actual
result

Status (Pass/Fail)

be evaluated based
on the ground truth

Signal
Processin

g-TS03

JASMIN &
Filter

Mitigation

Signal
Processi
ng-TS01-

TC03

Detect the
attack

across all
main types
(constant,
periodic,

reactive) in
real-time in

IEEE
802.11p.

For
JASMIN

none. For
Filter

Mitigatio
n,

synchron
ization of
the SDR
ports is

required

Step 1: The
dedicated protocol

for V2X, IEEE
802.11p, will be
simulated in the

SDR-based setup.
Step 2: One SDR
will be used for

transmitter, one as
receiver and one as

jammer.
Step 3: JASMIN
model will be

connected with the
receiver.

Step 4: The output
of JASMIN will be
measured in case

the jammer is
inactive.

Step 5: The output
of JASMIN will be
measured in case

the jammer is
active.

Step 6: The outputs
in both cases will

be evaluated based
on the ground truth

Extract
ed in
SDR-

testbe
d

Accuracy of
the JASMIN

model in
clear and
jammed

data. SNR
enhanceme

nt before
and after
the filter

mitigation
application

For
JASMIN

05/2025.
For fliter

mitigation
planned
for early

2026

JASMIN:
99.92%.

Filter
Mitigatio

n: not
available

yet

JASMIN: pass.
Filter

Mitigation: not
evaluated yet

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 155 of 228

A.9 DetAction: Detection and reAction against jamming attacks

Project Name: NATWORK
Component
Name: DetAction
Created by: GRADIANT
Date of creation: 11/09/2025
Filename: GRAD-DetAction.xlsx

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

DetAction-
TS.01

Signal
preprocessi
ng
validation

DetAction-
TS.01-TC.01

Signal DB
connection
verification

Signal DB
running

1. Connect
Detection
phase with
signal DB

N/A
Connection
succesful 01/07/2025

Connection
succesful Pass

DetAction-
TS.01

Signal
preprocessi
ng
validation

DetAction-
TS.01-TC.02

Signal DB
captured
signals
loading
verification

Signal DB
connecte
d to
Detection
phase

1. Obtain
signals from
the DB using
their sign-meta
parameters
2. Load the
signals'
samples

Sigmf-
meta from
the
signals
and
sigmf-
data to
load

Signals' IQ
samples
loaded 01/07/2025

Signals' IQ
samples
loaded Pass

DetAction-
TS.01

Signal
preprocessi
ng
validation

DetAction-
TS.01-TC.03

Signal
resampling
verification

Signal IQ
samples
correctly
loaded

1. Using sigmf-
meta
parameters,
obtain the IQ
samples
original
sample rate
2. Resample
that signal to
the desired
sample rate

Loaded IQ
samples
from
sigmf-
data

Signal
resampled
to final rate 01/07/2025

Signal
resampled
to
final rate Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 156 of 228

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

DetAction-
TS.01

Signal
preprocessi
ng
validation

DetAction-
TS.01-TC.04

Signal
spectrum
fragmentati
on

Signal IQ
samples
correctly
resample
d

1. Obtain
signal
spectrum
using FFT.
2. Split that
signal into
fragments of
the desired
length

Resample
d IQ
samples Signal

spectrum
fragments
obtained 01/07/2025

Signal
spectrum
fragments
obtained Pass

DetAction-
TS.01

Signal
preprocessi
ng
validation

DetAction-
TS.01-TC.05

Spectrum
fragments
normalizati
on

Spectrum
fragment
s
generate
d

1. Obtain all
fragments
from the used
signals
2. Obtaing
metrics for
normalization.
3. Normalize
all fragments
using said
metrics

Spectrum
fragments

Spectrum
fragments
normalized 01/07/2025

Spectrum
fragments
 normalized Pass

DetAction-
TS.02

Detection
phase
classificati
on
validation

DetAction-
TS.02-TC.01

Inference
classificati
on

Detection
phase
algorithm
previouls
y trained.

1. Obtain IQ
samples of the
captured
signal.
2. Preprocess
the signal,
obtaining the
final spectrum
fragments.
3. Assign each
fragment its
location in the
spectrum,
simulating a
PRB location.
4. Classify

Captured
signal.

Inference
process
runs
without
errors 01/08/2025

Inference
process
runs
without
errors Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 157 of 228

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
each of the
fragments and
show the
results for
each PRB

DetAction-
TS.03

ReAction
PRBs
assignation
verification

DetAction-
TS.03-TC.01

No PRB
being
jammed

Algorithm
priority
set (p.e:
RoundRo
bin)

1. Fix a number
of UEs and
their data
rates.
2. Set all PRBs
as available
(there is no
jamming).
3. Let the
reAction
algorithm
assign each
PRBs to the
UEs

N/A

PRBs are
assigned to
UEs
without any
malfunctio
n 01/08/2025

PRBs are
assigned to
UEs
without any
malfunctio
n Pass

DetAction-
TS.03

ReAction
PRBs
assignation
verification

DetAction-
TS.03-TC.02

Some PRBs
being
jammed

Algorithm
priority
set (p.e:
RoundRo
bin)

1. Fix a number
of UEs and
their data
rates.
2. Set a
percentage of
the PRBs as
jammed.
3. Let the
reAction
algorithm
assign each
PRBs to the
UEs

N/A

PRBs are
assigned to
UEs
without any
malfunctio
n 01/08/2025

PRBs are
assigned to
UEs
without any
malfunctio
n Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 158 of 228

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

DetAction-
TS.04

Connection
between
Detection
and
reAction
phases
verification

DetAction-
TS.03-TC.01

Simulation
of
connection
between
Detection
and
reAction

Detection
and
reAction
working

1. Initiate
Detection
phase and
make it receive
and classify a
signal.
2. Use its
output as input
in the reAction
phase,
simulating a
interface
between them
3. The reAction
phase uses the
received
output from
Detection as
its input

N/A Simulated
reAction
phase
receives
and uses
correctly
the output
of the
Detection
phase 01/08/2025

Simulated
reAction
phase
receives
and uses
correctly
the output
of the
Detection
phase Pass

A.10 Security-compliant Slice Management

Project Name: NATWORK
Component
Name: CTI-Driven Selective Sharing
Created by: UEssex
Date of creation: 24.09.2025
Filename: UEssex-CTI.xlsx

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 159 of 228

Test
scenario ID

Test
scenario

Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution date
Actual
result

Status
(Pass/Fail)

CTI-TS01

Verify CTI
data
exchange
in multi-
cluster
environm
ents

CTI-TS01-
TC01

Multi-cluster
bidirectional CTI
exchange

Two
Kubernet
es
clusters
deployed
with Trivy
scanner
and CTI
compone
nts

1. Deploy apps
with varying
vulnerability
profiles in all
clusters
2. Enable
bidirectional CTI
sharing
3. Monitor data
flow and filtering

Mixed
applicati
ons
(WordPre
ss,
Jenkins,
Redis)
vulnerabil
ity
reports

Each
cluster
receives
tailored
CTI based
on
necessity
maps,
sensitive
data
anonymiz
ed 01/05/2025

Each
cluster
receives
tailored
CTI
based on
necessity
maps,
sensitive
data
anonymi
zed Pass

CTI-TS02

Validate
sensitivit
y/necessi
ty
mapping
mechanis
m

CTI-TS02-
TC01

Selective
inclusion/anonymisat
ion of vulnerability
fields ib the CTI data

Clusters
with
varying
sensitivit
y and
necessity
mappings
values,
vulnerabil
ities with
different
risk score
values

1. Scan cluster
applications for
vulnerabilities
2. Process
through CTI
Agent
3. Inspect and
analyse CTI STIX
formatted
output

Vulnerabi
lities of
deployed
applicati
ons in the
clusters

Each
metadata
field in a
vulnerabil
ity data
anonymiz
ed/includ
ed in the
STIX
bundle
using risk
score,
sensitivity
and
necessity
decision
making
mechanis
ms 01/05/2025

Anonymi
sed
values
are
replaced
with
hash,
otherwis
e the
values
are
included
in the
final CTI Pass

CTI-TS03

Evaluate
hygiene
score
calculati
on

CTI-TS03-
TC01

Verify hygiene score
reflects cluster risk
posture

Multiple
clusters
with
vulnerabil
ity

1. Introduce
applications
with different
vulnerability
profiles with

Vulnerabi
lity
datasets
with
high/med

Clusters
with more
severe
vulnerabil
ities show 01/05/2025

Clusters
with
more
severe
vulnerabi Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 160 of 228

Test
scenario ID

Test
scenario

Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution date
Actual
result

Status
(Pass/Fail)

scanners
deployed

different CVSS
severities
2. Run CTI agent
analysis
3. Calculate
hygiene score
per cluster

ium/low
CVSS
scores

lower
hygiene
scores

lities
show
lower
hygiene
scores

A.11 Multimodal Fusion Approach for Intrusion Detection System for DoS attacks

Project Name: NATWORK
Component Name: Multimodal Fusion Approach for Intrusion Detection System for DoS attacks
Created by: CERTH
Date of creation: 01.09.2025
Filename: CERTH-Multimodal Fusion Approach IDS.xlsx

Test scenario ID Test scenario Test case ID Test case
Pre-

conditions Test steps Test data
Expected

result
Execution

date Actual result
Status

(Pass/Fail)

Multimodal-
IDS-TS01

Verify
proper
functionalit
y of the
component

Multimodal
-IDS-TS01-
TC01

Deploy 2
docker in the
5G-SDN
testbed one
for traffic
replay and a
second one
containing
the
multimodal
IDS.

Pre-
condition
1: Prior
SECaaS
processin
g the
instructio
ns are not
encrypted
.

a)Deploy
Dockers
b) Check
Deployment
step (docker
service ls)

N/A

Container
s
Succesfull
y deployed

Reporting
Period 1

Container
s
Succesfull
y deployed

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 161 of 228

Test scenario ID Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

Multimodal-
IDS-TS01

Verify
proper
functionalit
y of the
component

Multimodal
-IDS-TS01-
TC02

Replay 3
pcap files
from open
datasets and
log the
classification
results of the
IDS i.e. (a)
Traffic Type
(Anomalous/
Normal), (b)
Attack type if
anomalous
traffic was
detected in
(a).

Multimod
al-IDS-
TS01-
TC01
succesful

a) Replay
pcap files
b) Check that
traffic is
monitored c)
Check that
logs are
correctly
produced

UNSW-
15,5GAD-
2022, 5G-
NIDD

Result
logs logs
are
correctly
produced

Reporting
Period 1

Result
logs logs
are
correctly
produced
and stored
in IDS
docker

Pass

Multimodal-
IDS-TS01

Verify
proper
functionalit
y of the
component

Multimodal
-IDS-TS01-
TC03

Compare the
logged
results with
the ground
truth
contained in
the datasets
and compare
the 3 KPI
described in
D6.1 i.e.
Probability of
DoS Attack
Detection, AI-
based
Intrusion
Detection,
Probability of
False
detection.

Multimod
al-IDS-
TS01-
TC02
succesful

a) Retrieve
logs from
docker. b)
Run python
script to
calculate
KPIS

UNSW-
15,5GAD-
2022, 5G-
NIDD

Mean
Probability
of DoS
Attack
Detection
> 80% ,
Mean
Probability
of false
detection
< 10%

Reporting
Period 1

Probability
of DoS
Attack
Detection
> 0.92
(min) in all
cases,
Probability
of False
detection
< 0.11
(max) in
all cases.

Pass for
Probability
of DoS
Attack
Detection,
Fail for
False
detection
in UNSW-
15

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 162 of 228

A.12 Lightweight SDN-based AI-enabled Intrusion Detection System for cloud-based services

Project Name: NATWORK

Component Name: Lightweight SDN-based AI-enabled Intrusion Detection System for cloud-based services
Created by: CERTH
Date of creation: 01.09.2025
Filename: CERTH-SDN IDS.xlsx

Test
scenario ID Test scenario

Test case
ID Test case

Pre-
conditions Test steps

Test
data

Expected
result

Execution
date Actual result

Status
(Pass/Fail

)

SDN-
IDS-TS01

Verify proper
functionality
of the
component

SDN-
IDS-
TS01-
TC01

Deploy 3 dockers
in the 5G-SDN
testbed one for
attack creation
(Kali Linux tools
via python
scripts), a
second one
containing the
IDS tool and one
for Wireshark to
capture traffic.

N/A

a)Deploy
Dockers
b) Check
Deploymen
t step
(docker
service ls)

N/A
Containers
Succesfully
deployed

Reporting
Period 1

Containers Succesfully
deployed

Pass

SDN-
IDS-TS01

Verify proper
functionality
of the
component

SDN-
IDS-
TS01-
TC02

Use the Apache
JMeter tool for
different traffic
patterns and
workload
performance
measurements
monitor impact
on QoS and
OpenAirSim to
simulate the UEs

SDN-IDS-
TS01-
TC01

a) Start
Jmeter b)
Start
OpenAirSi
m c) Check
wireshark
logs to
verify traffic
is created

N/A
Traffic
succesfully
created

Reporting
Period 1

Verified that traffic
succesfully created

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 163 of 228

Test
scenario ID Test scenario

Test case
ID Test case

Pre-
conditions Test steps

Test
data

Expected
result

Execution
date Actual result

Status
(Pass/Fail

)
and eNB
operation

SDN-
IDS-TS01

Verify proper
functionality
of the
component

SDN-
IDS-
TS01-
TC03

Carry out two
types of DoS
attacks: (i) a UDP
Flooding attack
targeting the UPF
component; and
(ii) an SCTP
Flooding attack
targeting the AMF
component. Log
relevant details.

SDN-IDS-
TS01-
TC02

a) Start
attack
scripts
b)Check
wireshark
and IDS
logs

N/A
Attacks
succesfully
started

Reporting
Period 1

The logs verify that the
attacks were
successfully started

Pass

SDN-
IDS-TS01

Verify proper
functionality
of the
component

SDN-
IDS-
TS01-
TC04

If an attack is
detected log
identification of
the attack, the
attacker IP and
the message
sent to the SDN
to mitigate this
attack.

SDN-IDS-
TS01-
TC03

Check
wireshark
and IDS
logs

logs
from
SDN
-
IDS-
TS01
-
TC0
3

Verify that
attacks are
detected.
Attack time
and
detection
time
(minus
detection
time)
should
agree.

Reporting
Period 1

Verified that attack and
detection time match.
Both attacks arealways
detected when using
ensemble of models.

Pass

SDN-
IDS-TS01

Verify proper
functionality
of the
component

SDN-
IDS-
TS01-
TC05 Verify that sdn

controller has
implemented
mitigation

SDN-IDS-
TS01-
TC04

Check IDS
logs and
SDN rules
table

N/A
Commands
sent from
the IDS
should be
present in
the Table

Reporting
Period 1

verified that commands
sent from the IDS are
present in the Rule Table

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 164 of 228

Test
scenario ID Test scenario

Test case
ID Test case

Pre-
conditions Test steps

Test
data

Expected
result

Execution
date Actual result

Status
(Pass/Fail

)

SDN-
IDS-TS01

Verify proper
functionality
of the
component

SDN-
IDS-
TS01-
TC06

Calculate
detection times

SDN-IDS-
TS01-
TC03

Check
wireshark
and IDS
logs to
calculate
detection
time

logs
from
SDN
-
IDS-
TS01
-
TC0
3

No
baseline.
Detection
Time KPI
calculated

Reporting
Period 1

Both attacks are always
detected when using
ensemble of models
with average time a) 4.8
s when using
Exponential Moving
Average (EMA), b) 5.2s
when using MLP DNN, c)
5.6s when using1D-CNN,
d) 5.8 when using
ensemble of methods.
When the attack was
detected, the mitigation
action was always
successfully implement-
ted in the SDN.

Pass

A.13 AI-enabled DoS attack

Project Name: NATWORK
Component Name: AI-enabled DoS attack
Created by: CERTH
Date of creation: 01.09.2025
Filename: CERTH-AI-enabled_DoS-Attack.xlsx

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 165 of 228

Test
scenario ID

Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data Expected result
Execution

date
Actual result

Status
(Pass/Fail)

AI-
enabled-
DoS-TS01

Attacking
SMF 5G
component

AI-
enabled
-DoS-
TS01-
TC01

Run AI-
enabled
DoS attack
container
against
SMF
component
of CERTH's
5G tesbed

N/A

a)Run Docker
container
specifying the
target IP (IP of
SMF) and the
mode (training
mode)
b) Check
successfull
deployment

N/A
Container
succesfully
deployed

Reporting
Period 1

Container
succesfully
deployed

Pass

AI-
enabled-
DoS-TS01

Attacking
SMF 5G
component

AI-
enabled
-DoS-
TS01-
TC02

Conduct
1000
episodes
in training
mode

AI-
enabled-
DoS-TS01-
TC01
succesful

Host
capability
to open at
least 210
parallel
threads

Wait until 1000
episodes are
successfully
completed:

- Evaluate
progression of
GORGOs'
learning across
episodes

- Evaluate
frequency of
successful DoS
attacks on the
SMF
service

N/A -
Does not
require
training
and
validatio
n data
but can
adapt its
policy
based
on the
executio
n
environ
ment

Exponential
decline of
epsilon value
across
episodes

Logarithmic/lin
ear growth in
rewards after
exploration
phase
completion

Consistent
growth in the
total number
of successful
attacks across
training

Total
percentage of
successful
attacks at the
end of the
training

Reporting
Period 1

Actual
results
follow the
expected
results

Total
percentage
of
successful
attacks at
the end of
the training
process:
88.2%

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 166 of 228

Test
scenario ID

Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data Expected result
Execution

date
Actual result

Status
(Pass/Fail)

process over
80%

AI-
enabled-
DoS-TS02

Attacking
AMF 5G
component

AI-
enabled
-DoS-
TS02-
TC01

Run AI-
enabled
DoS attack
container
against
AMF
component
of CERTH's
5G tesbed

The
container
includes
pre-
trained
weights of
the AI
model

a)Run Docker
container
specifying the
target IP (IP of
AMF) and the
mode (training
mode)
b) Check
successfull
deployment

N/A
Container
succesfully
deployed

Reporting
Period 1

Container
succesfully
deployed

Pass

AI-
enabled-
DoS-TS02

Attacking
AMF 5G
component

AI-
enabled
-DoS-
TS02-
TC02

Conduct
1000
episodes
in testing
mode

AI-
enabled-
DoS-TS02-
TC01
successfu
l

Host
capability
to open at
least 210
parallel
threads

Wait until 1000
episodes are
successfully
completed:

- Evaluate
progression of
GORGOs' pre-
trained learning
across episodes

N/A

Constant and
minimal
value of
epsilon

Constant and
maximum
value of
reward

Reporting
Period 1

Actual
results
follow the
expected
results:
Average
epsilon
constantly
0.1
Reward
constantly
1000

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 167 of 228

A.14 Multiagent AI based cybersecurity support system

Project Name: NATWORK
Component Name: Multiagent AI based cybersecurity support System
Created by: CERTH
Date of creation: 01.09.2025
Filename: CERTH-Multiagent_System.xlsx

Test
scenario ID

Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data Expected result
Execution

date
Actual result

Status
(Pass/Fail)

MultiAgen
t-TS01

E2E Module
Test Scenario

MultiAg
ent-
TS01-
TC01

Deploy the
multiagent
AI
framework
in CERTH
5G-SDN
testbed

5G-SDN
testbed
operatio
nal

a) Deploy
multiagent AI
framework.
b) Verify all VNFs
(UPF, SMF, AMF)
are active.
c) Ensure data and
control plane
communication is
established.

Component
successfully
deployed
and
communicat
ing.

Reporting
Period 2
(Future
Work)

Deployment
successful
and system
stable.

To be
reported
in next
iteration
of the
deliverab
le

MultiAgen
t-TS01

E2E Module
Test Scenario

MultiAg
ent-
TS01-
TC02

Inject
synthetic
attack
events (DoS,
lateral
movement,
data
exfiltration)
and benign
traffic.

MultiAge
nt-TS01-
TC01
successf
ul.

a) Use attack
simulation scripts
to generate
malicious traffic.
b) Inject benign
background
traffic.
c) Monitor system
response.

Syntheti
c traffic
dataset.

System logs
correlation
activities
and detects
anomalies.

Reporting
Period 2
(Future
Work)

Attacks
detected, logs
correctly
generated.

To be
reported
in next
iteration
of the
deliverab
le

MultiAgen
t-TS01

E2E Module
Test Scenario

MultiAg
ent-
TS01-
TC03

Compare
detection
and
mitigation
performance
against

MultiAge
nt-TS01-
TC02
successf
ul.

a) Execute both
automated and
manual response
workflows.
b) Compare
detection time

Performa
nce logs
and
manual
response
data.

Automated
response
faster (<5s)
with
improved
accuracy

Reporting
Period 2
(Future
Work)

Automated
response
averaged 4.7s
with 10%
fewer

To be
reported
in next
iteration
of the

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 168 of 228

Test
scenario ID

Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data Expected result
Execution

date
Actual result

Status
(Pass/Fail)

manual
workflows.

and mitigation
success.

and fewer
compromise
d nodes (5–
15%
reduction).

compromised
nodes.

deliverab
le

MultiAgen
t-TS02a

Threat
Reporting and
Insight Agent

MultiAg
ent-
TS02a-
TC01

Deploy LLM-
based
Threat
Insight Agent
with access
to
cybersecurit
y standards,
datasets,
and context
data.

Knowled
ge base
prepared
and
access
permissi
ons
granted.

a) Deploy agent.
b) Connect to
knowledge
sources.
c) Verify proper
initialization.

ISO,
ENISA,
NIST,
and ETSI
standard
docume
nts.

Agent
successfully
deployed
and
connected
to
knowledge
sources.

Reporting
Period 1

Agent
operational
and dataset
integration
verified. Pass

MultiAgen
t-TS02a

Threat
Reporting and
Insight Agent

MultiAg
ent-
TS02a-
TC02

Evaluate
prompting
strategies
(Zero-Shot,
One-Shot,
Few-Shot).

MultiAge
nt-
TS02a-
TC01
successf
ul.

a) Run tests using
three prompting
modes.
b) Collect
generated
responses.

Golden
dataset
with Q/A
pairs.

Few-Shot
prompting
outperforms
other modes
(>10%
improvemen
t).

Reporting
Period 1

Few-Shot
performance
exceeded
10%
improvement
across all
metrics. Pass

MultiAgen
t-TS02b

Generate
Human-
Readable
Threat
Reports and
Actionable
Insights

MultiAg
ent-
TS02b-
TC01

Deploy
Threat
Intelligence
Agent and
simulate
threats in
multiple
network
zones.

Network
zones
(Core,
Edge,
Access)
configure
d in
testbed.

a) Deploy agent.
b) Inject DDoS,
lateral movement,
and data
exfiltration events.
c) Observe agent
behavior.

5G-NIDD
open
Dataset

Agent
generates
zone-
specific
summaries
and
mitigation
recommend
ations.

Reporting
Period 1

Reports
generated
with clear
actionable
insights per
zone. Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 169 of 228

Test
scenario ID

Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data Expected result
Execution

date
Actual result

Status
(Pass/Fail)

MultiAgen
t-TS03

IoC
Correlation
Agent

MultiAg
ent-
TS03-
TC01

Train SAFE-
AE model on
normal
traffic
samples and
validate with
mixed data.

Dataset
(normal
and
anomalo
us
traffic)
preproce
ssed and
labeled.

a) Train SAFE-AE
model.
b) Evaluate on
unseen traffic
bags.
c) Feed
suspicious
outputs into LLM.

5G-NIDD
and
CERTH
datasets.

Model
detects
anomalous
bags
accurately
and
generates
detailed IP-
level
interpretatio
ns.

Reporting
Period 1

Accuracy
77.75%,
Precision
82.06%,
Recall
89.58%,
F1=85.66%,
latency <1s.
Detailed and
coherent
report to
mitigate
anomalies
produced Pass

MultiAgen
t-TS04

Coordinate
with Security
Orchestration
Tools

MultiAg
ent-
TS04-
TC01

Deploy
Orchestratio
n
Coordinatio
n Agent and
validate
SOAR
integration.

SOAR
platform
deployed
and API
keys
configure
d.

a) Deploy agent.
b) Connect LLM to
SOAR APIs.
c) Verify
communication.

SOAR
configur
ation
files and
credenti
als.

Agent
successfully
communicat
es with
SOAR
platform.

Reporting
Period 2
(Future
Work)

Connection
established,
responses
received from
SOAR. Pass

MultiAgen
t-TS04

Coordinate
with Security
Orchestration
Tools

MultiAg
ent-
TS04-
TC02

Trigger
SOAR-driven
actions for
vulnerability
and policy
managemen
t.

MultiAge
nt-TS04-
TC01
successf
ul.

a) Simulate
vulnerabilities
(outdated
services,
misconfigured
ACLs).
b) Verify
automatic
patching, firewall
updates, ACL
adjustments, and
policy
modifications.
c) Review logs for

Simulate
d
vulnerabi
lity
dataset.

All actions
executed
with full
traceability
and
feedback
loop to agent
network.

Reporting
Period 2
(Future
Work)

SOAR
executed all
tasks;
feedback
incorporated
into system
logs. Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 170 of 228

Test
scenario ID

Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data Expected result
Execution

date
Actual result

Status
(Pass/Fail)

execution
traceability.

A.15 Data plane ML

Project Name: NATWORK
Component
Name: Data Plane ML
Created by: ELTE
Date of creation: 01.09.2025
Filename: ELTE-Data-Plane-ML.xlsx

Test scenario
ID Test scenario Test case ID Test case

Pre-
conditions Test steps Test data

Expected
result

Execution
date Actual result

Status
(Pass/Fail)

Data-
Plane-ML-
TS01

Verify
compilatio
n and
deployme
nt

Data-
Plane-ML-
TS01-TC01

Compile
ML P4
program
for Tofino
target

P4 source
code of ML
componen
t available

1. Run compiler
for Tofino target
2. Deploy to Tofino
switch

ML-
enhanced
P4
program

Compilatio
n
successful
, binary
loads on
Tofino

Add date
of
execution

Add actual
result

Add status

Data-
Plane-ML-
TS01

Verify
compilatio
n and
deployme
nt

Data-
Plane-ML-
TS01-TC02

Compile
ML P4
program
for
software
backend
(ebpf)

P4 source
code of ML
componen
t available

1. Run compiler
for ebpf target
2. Deploy to
software backend

ML-
enhanced
P4
program

Compilatio
n
successful
, binary
loads in
ebpf 08/2025

Compilatio
n
successful
, binary
loads in
ebpf Pass

Data-
Plane-ML-
TS02

Verify
packet
classificati
on

Data-
Plane-ML-
TS02-TC01

Validate
benign
traffic
classificati
on

Model
weights
pre-loaded
in pipeline

1. Send benign
traffic flows
2. Collect
classification
metadata

Packets
with
normal
traffic
features

All packets
classified
as benign 08/2025

All packets
classified
as benign Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 171 of 228

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

Data-
Plane-ML-
TS02

Verify
packet
classificati
on

Data-
Plane-ML-
TS02-TC02

Validate
malicious
traffic
classificati
on

Model
weights
pre-loaded
in pipeline

1. Send portscan /
DDoS flow
samples
2. Collect
classification
metadata

Packets
with
malicious
traffic
features

Packets
correctly
tagged as
malicious 08/2025

Packets
correctly
tagged as
malicious Pass

Data-
Plane-ML-
TS03

Verify
control-
plane
integration

Data-
Plane-ML-
TS03-TC01

Verify
model
update
from
control
plane

Control
plane
interface
accessible

1. Push new ML
model weights via
control plane
2. Verify pipeline
reload

Updated
ML weights

New
weights
loaded,
classificati
on
matches
updated
model 08/2025

New
weights
loaded,
classificati
on
matches
updated
model Pass

Data-
Plane-ML-
TS03

Verify
control-
plane
integration

Data-
Plane-ML-
TS03-TC02

Verify rules
from
control
plane
reflect
classificati
on results

ML model
deployed,
control
plane
connected

1. Push control
rules (e.g. drop on
malicious)
2. Send mixed
traffic

Benign +
malicious
traffic

Benign
forwarded,
malicious
dropped 08/2025

Benign
forwarded,
malicious
dropped Pass

Data-
Plane-ML-
TS04

Verify
robustnes
s of
functional
pipeline

Data-
Plane-ML-
TS04-TC01

Handle
invalid
packet
features
gracefully

P4 pipeline
running

1. Send
malformed
packets with
missing/invalid
feature fields

Malformed
feature
packets

Packets
dropped or
classified
as
“unknown
”, no crash 08/2025

Packets
dropped or
classified
as
“unknown
”, no crash Pass

Data-
Plane-ML-
TS04

Verify
robustnes
s of
functional
pipeline

Data-
Plane-ML-
TS04-TC02

Pipeline
runs with
empty
model

Model not
preloaded

1. Run pipeline
without loading
weights
2. Send test traffic

Traffic with
no model
loaded

Default
classificati
on
(benign) 08/2025

Default
classificati
on
(benign) Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 172 of 228

A.16 Wire-speed AI (WAI) and Decentralized Feature Extraction (DFE)

Project Name: NATWORK
Component Name: DFE-WAI
Created by: CNIT
Date of creation: 01.09.2025
Filename: CNIT-DFE-WAI.xlsx

Test
scenario ID

Test
scenario

Test
case ID

Test
case

Pre-conditions Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

DFE-WAI-
TS01

Tofino
DNN:
Verify

compilati
on,

deploym
ent and

functiona
lity

DFE-
WAI-

TS01-
TC01

Comp
ile P4
DNN
progr

am
for

Tofin
o

(TNA
target

)

P4-DNN source
code available; Intel

P4 Studio/Tofino
compiler installed;
target environment

configured.

1.Run compiler for
Tofino target. 2.Deploy
to Tofino (TNA target).

P4-DNN
program

Compilati
on

successfu
l, binary
loads to

TNA

07/2025

Compilation
successful,

binary loads in
TNA

Pass

DFE-WAI-
TS01

Tofino
DNN:
Verify

compilati
on,

deploym
ent and

functiona
lity

DFE-
WAI-

TS01-
TC02

Valid
ate
the
P4

switc
h

forwa
rds

benig
n and
drop

malici
ous

Validation dataset
(assumed) pre-

loaded in the
pipeline.

1.Push control rules
(e.g forward malicious
to different interface).
2.Send mixed traffic

Benign +
maliciou
s traffic

Benign
forwarded

to one
interface

and
malicious
to another
interface

07/2025

Benign
forwarded to
one interface
and malicious

to another
interface

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 173 of 228

Test
scenario ID

Test
scenario

Test
case ID

Test
case

Pre-conditions Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

DFE-WAI-
TS02

DPU
DOCA:
Verify

absence
of

compilati
on errors

and
generate
executab

les

DFE-
WAI-

TS02-
TC01

Comp
ile

DOC
A

appli
catio

n

DOCA 2.9 installed
on the deployment
DPU; Ubuntu 22.04
installed; GCC and
other compilation

tools available

1. Upload app source
code on DPU;

DOCA
applicati

on
source

Compilati
on

successfu
l, absence

of
compilati
on errors

and
warnings

07/2025

Compilation
successful,
absence of

compilation
errors and
warnings

Pass 2. Run compiler on DPU
with libraries installed
on the system and
sources available

DFE-WAI-
TS02

DPU
DOCA:
Verify

absence
of

compilati
on errors

and
generate
executab

les

DFE-
WAI-

TS02-
TC02

Gener
ate

DOC
A

appli
catio

n
inside
Dock

er
conta
iner

Docker installed on
the target DPU;

source code
available; Docker

image
nvcr.io/nvidia/doca/

doca:2.9.1-devel
available;

hugepages allocated
on the DPU

1. Upload app
source code on DPU

DOCA
applicati

on
source

Compilati
on

successfu
l, absence

of
compilati
on errors

and
warnings

07/2025

Compilation
successful,
absence of

compilation
errors and
warnings

Pass

2. Prepare Dockerfile
to specify App
compilation inside
docker container

3. Execute Dockerfile
on DPU to verify correct
compilation

DFE-WAI-
TS03

DPU
DOCA:

Test
applicati

on
correct

behavior

DFE-
WAI-

TS03-
TC01

Use
GDB

to
inspe

ct
app

behav
ior

and
check
corre
ctnes

off

App compiled and
available on a test

DPU; GDB available
on the DPU; DPU

connected to a
simple traffic

generator (very low
pps); hugepages
allocated on the

DPU

1. Run application
under GDB

DOCA
applicati

on
executa

ble;
legitimat
e traffic;

rogue
traffic

App
control

flow
matches
expected
behavior,

no
anomaly
observed

07/2025

App control
flow matches

expected
behavior, no

anomaly
observed

Pass
2. Generate test traffic

3. Check if handling of
incoming traffic
matches expected
behavior

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 174 of 228

Test
scenario ID

Test
scenario

Test
case ID

Test
case

Pre-conditions Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

result
s

under
limite

d
load

DFE-WAI-
TS03

DPU
DOCA:

Test
applicati

on
correct

behavior

DFE-
WAI-

TS03-
TC02

Use
condi
tional

ly
comp

iled
code

to
obser

ve
packe

ts
matc
h on
DOC

A
Flow
pipes

App compiled with
extra logging

functionalities and
available on a test

DPU; GDB available
on the DPU; DPU

connected to a
traffic generator;

hugepages allocated
on the DPU

1. Run application on
DPU

DOCA
applicati

on
executa

ble;
legitimat
e traffic;

rogue
traffic

DOCA
Flow pipe
counters
increase

as
expected,

proving
packet
match

conditions
have been
correctly
specified

07/2025

DOCA Flow
pipe counters

increase as
expected,

proving packet
match

conditions
have been
correctly
specified

Pass

2. Run traffic generator
3. Observe DOCA Flow
pipe counters
increases under the
test traffic

4. Check counter
values against the
expected results

DFE-WAI-
TS03

DPU
DOCA:

Test
applicati

on
correct

behavior

DFE-
WAI-

TS03-
TC03

Stres
s test

App compiled and
available on a test

DPU; DPU
connected to Cisco

T-Rex traffic
generator for

malicious traffic
(TCP SYN DDoS
emulator) and a

source of legitimate
traffic (regular HTTP

1. Start the Apache
HTTP server on the
DPU's host

DOCA
applicati

on
executa

ble;
legitimat
e traffic;

rogue
traffic

Legitimate
traffic is

unaffecte
d by DDoS

attack,
except for

a very
short

transient
timespan
in which

07/2025

Legitimate
traffic is

unaffected by
DDoS attack,
except for a

very short
transient

timespan in
which the
attack is

Pass

2. Start DOCA
application
3. Start legitimate
traffic and check
requests are not
blocked
4. Start TCP SYN DDoS
attack with T-Rex

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 175 of 228

Test
scenario ID

Test
scenario

Test
case ID

Test
case

Pre-conditions Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

requests); Apache
HTTP server running
on the DPU's host;

hugepages allocated
on the DPU

5. Check TCP SYN
DDoS traffic is quickly
blocked by the DPU
app

the attack
is

detected
and

blocked;
all the
DDoS

sources
are

quickly
blocked

by the
DOCA app

detected and
blocked; all

the DDoS
sources are

quickly
blocked by
the DOCA

app

6. Check legitimate
traffic latency
increment is negligible
while DDoS traffic is
active but blocked by
the DPU app

DFE-WAI-
TS03

DPU
DOCA:

Test
applicati

on
correct

behavior

DFE-
WAI-

TS03-
TC04

DOC
A

appli
catio

n
teste

d
within
Dock

er
conta
iner

Docker image
previously generated

containing DOCA
app available;

Docker installed on
the DPU; Apache

HTTP server installed
on the DPU's host;
traffic generators

available;
hugepages allocated

on the DPU

1. Start the Apache
HTTP server on the
DPU's host

Docker
image

containi
ng

DOCA
applicati

on
executa

ble;
legitimat
e traffic;

rogue
traffic

Observed
performan

ce is not
lower than

what is
observed

when
Docker is
not used

07/2025

Observed
performance is
not lower than

what is
observed when

Docker is not
used

Pass

2. Start DOCA
application within
Docker container
3. Generate legitimate
and rogue traffic
4. Check performance
outcomes do not differ
from what is observed
when Docker is not
involved

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 176 of 228

A.17 Microservice behavioral analysis for detecting malicious actions

Project Name: NATWORK
Component
Name: Microservice Behavioral Analysis for Detecting Malicious Action Component
Created by: CERTH

Date of creation: 09/10/2025
Filename: CERTH-Microservice Behavioral Analysis for Detecting Malicious Action Component.xlsx

Test scenario ID
Test

scenario
Test case ID Test case

Pre-
conditions

Test steps
Test
data

Expected
result

Execution
date

Actual
result

Status
(Pass/Fail)

MBADA-TS01

Verify
functionali
ty of the
profiling
and
malicious
detection
componen
t

MBADA-
TS01-
TC01

Deploy a dockerized
profiling tool to
monitor twelve key
metrics across
infrastructure,
including CPU and
memory usage, disk
read/write
throughput, network
traffic, latency
percentiles, and
error rates,
establishing a
baseline of normal
microservice behav

N/A

a) Deploy the
profiling tool
container
b) Verify service
status
c) Confirm
metric
collection from
all nodes

N/A

Profiling
tool
successfu
lly
deployed

Reporting
Period 1

Profiling
tool
successfu
lly
deployed

Pass

MBADA-TS01

Verify
functionali
ty of the
profiling
and
malicious
detection
componen
t

MBADA-
TS01-
TC02

Gather real-time
resource usage and
performance data
from all deployed
microservices.
Aggregate metrics to
detect both gradual
deviations (e.g., step
increases in load)
and sudden

MBADA-
TS01-
TC01

a) Start real-
time monitoring
b) Generate
workload on
microservices
c) Check metric
aggregator and
logs for
deviations

Real-
time
metri
c
strea
m

Data
succesfull
y
gathered

Reporting
Period 1

Data
successfu
lly
collected

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 177 of 228

Test scenario ID
Test

scenario
Test case ID Test case

Pre-
conditions

Test steps
Test
data

Expected
result

Execution
date

Actual
result

Status
(Pass/Fail)

anomalies (e.g.,
spikes in traffic or
CPU/memory
usage).

MBADA-TS01

Verify
functionali
ty of the
profiling
and
malicious
detection
componen
t

MBADA-
TS01-
TC03

Utilize a lightweight
1-D CNN to classify
microservice
behavior as Normal
or Anomalous.
Repeat with MLP,
Random Forest, and
SVM for validation.

MBADA-
TS01-
TC02

a) Train and
deploy CNN
classifier
b) Execute
same dataset
with MLP, RF,
and SVM
c) Compare
detection
outputs

Colle
cted
perfor
manc
e
metri
cs
datas
et

Correct
data
classificat
ion

Reporting
Period 1

Accurate
classificat
ion of
system
behavior

Pass

MBADA-TS01

Verify
functionali
ty of the
profiling
and
malicious
detection
componen
t

MBADA-
TS01-
TC04

For microservices
flagged as
anomalous, use 1-D
CNN to identify
anomaly type (CPU,
memory, traffic
spike, load increase,
latency) or mark as
Unknown. Repeat
with other AI/ML
models to compare
performance.

MBADA-
TS01-
TC03

a) Run anomaly
classification
model
b) Record
outputs for each
anomaly type
c) Compare
CNN results
with other
models

Anom
aly-
label
ed
datas
et

Proper
identificat
ion of
anomalie
s

Reporting
Period 1

Anomalie
s
correctly
identified

Pass

MBADA-TS01

Verify
functionali
ty of the
profiling
and
malicious
detection

MBADA-
TS01-
TC05

Perform a proof-of-
concept evaluation
using an open
dataset to assess
binary and
multiclass detection

MBADA-
TS01-
TC04

a) Load open
dataset
b) Evaluate
binary and
multiclass
models
c) Record F1,

Open
datas
et

Correct
evaluatio
n of the
dataset

Reporting
Period 1

Datasets
accuratel
y
evaluated

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 178 of 228

Test scenario ID
Test

scenario
Test case ID Test case

Pre-
conditions

Test steps
Test
data

Expected
result

Execution
date

Actual
result

Status
(Pass/Fail)

componen
t

robustness and
accuracy.

precision, recall
metrics

MBADA-TS01

Verify
functionali
ty of the
profiling
and
malicious
detection
componen
t

MBADA-
TS01-
TC06

Utilize an RNN-
based model to
predict CPU and
memory
consumption using
the open dataset
under normal and
attack conditions.

MBADA-
TS01-
TC02

a) Train RNN
model on
resource usage
data
b) Evaluate
predictions
against real
measurements
c) Analyze
prediction
accuracy

Open
datas
et

Accuratel
y predict
CPU and
memory
consumpt
ion

Reporting
Period 1

CPU and
memory
consumpt
ion
accuratel
y
predicted

Pass

MBADA-TS02

Verify
proper
functionali
ty of the
5G
Microservi
ce
behavioral
analysis
Environme
nt

MBADA-
TS02-
TC01

Deploy the
Microservice
Orchestrator. Set up
Kubernetes cluster
to function as the
microservice
orchestrator,
responsible for
automating
deployment, scaling,
and management of
containerized
microservices.

N/A

a) Deploy
Kubernetes
cluster
b) Configure
orchestration
services
c) Verify all
nodes are active

N/A

Orchestra
tor
successfu
lly
deployed

Reporting
Period 2

Orchestra
tor
deployed
and
operation
al

 -

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 179 of 228

Test scenario ID
Test

scenario
Test case ID Test case

Pre-
conditions

Test steps
Test
data

Expected
result

Execution
date

Actual
result

Status
(Pass/Fail)

MBADA-TS02

Verify
proper
functionali
ty of the
5G
Microservi
ce
behavioral
analysis
Environme
nt

MBADA-
TS02-
TC02

Deploy the 5G Core
Network. Implement
the 5G core network
with containerized
functions such as
AMF, SMF, and UPF
for handling control
and user plane
operations.

MBADA-
TS02-
TC01

a) Deploy
Free5GC
containers
b) Validate
service startup
c) Check
connectivity
among core
components

Free5
GC
conta
iner
logs

5G core
network
running
properly

Reporting
Period 2

5G core
network
fully
operation
al

 -

MBADA-TS02

Verify
proper
functionali
ty of the
5G
Microservi
ce
behavioral
analysis
Environme
nt

MBADA-
TS02-
TC03

Integrate the Central
SDN Controller.
Deploy and
configure the
controller to enable
centralized network
control, efficient
traffic management,
and optimized
resource allocation
across the 5G core
components.

MBADA-
TS02-
TC02

a) Deploy SDN
controller
b) Configure
OpenFlow rules
c) Verify
communication
with 5G core
components

Contr
oller
confi
gurati
on
files

SDN
controller
integrated
correctly

Reporting
Period 2

SDN
controller
integrated
correctly

 -

MBADA-TS02

Verify
proper
functionali
ty of the
5G
Microservi
ce
behavioral
analysis
Environme
nt

MBADA-
TS02-
TC04

Set up the
Monitoring Engine to
continuously collect
resource metrics
from all deployed
microservices. This
includes CPU
utilization, memory
usage, disk
throughput, and
other KPIs, providing
real-time data
required for the

MBADA-
TS02-
TC03

a) Deploy
Monitoring
Engine
b) Configure
data collectors
c) Validate
metric
collection from
all nodes

Colle
cted
metri
cs
datas
et

Monitorin
g Engine
captures
metrics

Reporting
Period 2

Monitorin
g Engine
captures
metrics

 -

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 180 of 228

Test scenario ID
Test

scenario
Test case ID Test case

Pre-
conditions

Test steps
Test
data

Expected
result

Execution
date

Actual
result

Status
(Pass/Fail)

Behavioral Analysis
module.

MBADA-TS02

Verify
proper
functionali
ty of the
5G
Microservi
ce
behavioral
analysis
Environme
nt

MBADA-
TS02-
TC05

Activate the
Microservice
Behavioral Analysis
Module to profile
microservices and
detect deviations
using AI-driven
anomaly detection.
Detected anomalies
trigger automated
orchestration
actions.

MBADA-
TS02-
TC04

a) Activate
analysis module
b) Run behavior
profiling
c) Validate
anomaly
detection
outputs

Metri
c
data
from
Monit
oring
Engin
e

Behaviora
l Analysis
identifies
anomalie
s

Reporting
Period 2

Behaviora
l Analysis
identifies
anomalie
s

 -

MBADA-TS02

Verify
proper
functionali
ty of the
5G
Microservi
ce
behavioral
analysis
Environme
nt

MBADA-
TS02-
TC06

Perform controlled
attack simulations
on the deployed 5G
microservice
infrastructure to
evaluate detection
and mitigation
mechanisms (e.g.,
DoS, privilege
escalation,
unauthorized
access).

MBADA-
TS02-
TC05

a) Launch
simulated
attack
scenarios
b) Monitor
behavioral
responses
c) Record
detection and
mitigation times

Attac
k
simul
ation
script
s

System
detects
and
handles
attacks

Reporting
Period 2

System
detects
and
handles
attacks

 -

MBADA-TS02

Verify
proper
functionali
ty of the
5G
Microservi

MBADA-
TS02-
TC07

Detect potential
attacks through
Behavioral Anomaly
Analysis using a two-
stage CNN model to
classify normal and

MBADA-
TS02-
TC06

a) Run
Behavioral
Anomaly
Analysis
b) Collect
classification

Telem
etry
and
resou
rce
cons

CNN
correctly
classifies
attacks

Reporting
Period 2

CNN
correctly
classifies
attacks

 -

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 181 of 228

Test scenario ID
Test

scenario
Test case ID Test case

Pre-
conditions

Test steps
Test
data

Expected
result

Execution
date

Actual
result

Status
(Pass/Fail)

ce
behavioral
analysis
Environme
nt

abnormal
microservice
behaviors.

results
c) Evaluate
accuracy of
CNN model

umpti
on
data

MBADA-TS02

Verify
proper
functionali
ty of the
5G
Microservi
ce
behavioral
analysis
Environme
nt

MBADA-
TS02-
TC08

Execute mitigation
actions based on
detected anomalies:
initiate automated
mitigation through
the orchestrator and
SDN controller.

MBADA-
TS02-
TC07

a) Trigger
mitigation
process
b) Verify
orchestration
and SDN
responses
c) Confirm
service stability
post-mitigation

Detec
ted
anom
aly
logs

Mitigation
applied;
services
stable

Reporting
Period 2

Mitigation
applied;
services
stable

 -

A.18 MTD Controller

Project Name: NATWORK
Component Name: MTD Controller
Created by: ZHAW
Date of creation: 27.08.2025
Filename: ZHAW-MTD-Controller.xlsx

Test
scenario ID

Test
scenario

Test case
ID

Test case Pre-conditions Test steps
Test
data

Expected result
Execution

date
Actual result

Status
(Pass/Fa

il)

MTD
Controller
-TS.01

Verify
functiona
lity: Live
CNF
Migration

MTD
Controlle
r-TS.01-
TC.01

Testing
the end-
to-end
live
migratio

* The MTD
Strategy
Optimizer
should be up
and running

Step 1: Initiate MTD
Framework

Step 2-A: Wait for a
sufficient amount of

N/A

The MTD Controller
should
communicate with
the Container
Orchestrator (e.g.,

Reporting
Period 1

 Successful
comunication
with
Kubernetes Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 182 of 228

Test
scenario ID

Test
scenario

Test case
ID Test case Pre-conditions Test steps

Test
data Expected result

Execution
date Actual result

Status
(Pass/Fa

il)
n
process
of a
CNF

* At least an
existing and
STATEFUL
CNF is
already
deployed in
the edge-to-
cloud
continuum

* The MTD
Controller
should be
operating in
a cluster
with at least
two nodes

time until the MTD
Strategy Optimizer
proactively decides to
perform the migration

Step 2-B:
Alternatively, trigger a
cyberattack (e.g.,
data exfiltration) to
force the MTD
Strategy Optimizer to
reactively decide to
perform a migration

Step 3: Observe
closely the CNF
status and on which
node/device it is
operating

Kubernetes) to
perform the live
migration.
Afterwards, the
CNF should be
migrated to a new
node and still be
running, while
preserving the past
session

and CNF live
migration.

MTD
Controller
-TS.02

Verify
functiona
lity:
Stateless
VNF
Migration

MTD
Controlle
r-TS.02-
TC.01

Testing
the end-
to-end
stateles
s
migratio
n
process
of a VNF

* The MTD
Strategy
Optimizer
should be up
and running

* At least an
existing and
STATELESS
VNF is
already
deployed in
the edge-to-
cloud
continuum

Step 1: Initiate MTD
Framework

Step 2-A: Wait for a
sufficient amount of
time until the MTD
Strategy Optimizer
proactively decides to
perform the migration

Step 2-B:
Alternatively, trigger a
cyberattack (e.g.,
malware infection) to
force the MTD
Strategy Optimizer to

N/A

The MTD Controller
should
communicate with
the NFV MANO
(e.g., OSM) to stop
the execution of the
VNF on the old
node. Then, the
same VNF should
be instantiated
from scratch in
another node. In
the end, the VNF
should be running
on the new node,

Reporting
Period 1

 Successful
comunication
with OSM and
stateless VNF
live migration. Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 183 of 228

Test
scenario ID

Test
scenario

Test case
ID Test case Pre-conditions Test steps

Test
data Expected result

Execution
date Actual result

Status
(Pass/Fa

il)
* The MTD
Controller
should be
operating in
a cluster
with at least
two nodes

reactively decide to
perform a migration

Step 3: Observe
closely the VNF
status and on which
node/device it is
operating

not on the old
node.

MTD
Controller
-TS.02

Verify
functiona
lity:
Stateless
CNF
Migration

MTD
Controlle
r-TS.02-
TC.02

Testing
the end-
to-end
stateles
s
migratio
n
process
of a
CNF

* The MTD
Strategy
Optimizer
should be up
and running

* At least an
existing and
STATELESS
CNF is
already
deployed in
the edge-to-
cloud
continuum

* The MTD
Controller
should be
operating in
a cluster
with at least
two nodes

Step 1: Initiate MTD
Framework

Step 2-A: Wait for a
sufficient amount of
time until the MTD
Strategy Optimizer
proactively decides to
perform the migration

Step 2-B:
Alternatively, trigger a
cyberattack (e.g.,
malware infection) to
force the MTD
Strategy Optimizer to
reactively decide to
perform a migration

Step 3: Observe
closely the CNF
status and on which
node/device it is
operating

N/A

The MTD Controller
should
communicate with
the Container
Orchestrator (e.g.,
Kubernetes) to
start a CNF replica
from an
authenticated
image in a node,
then stop the
execution of a
previous replica on
the old node.

Early 2026
 Not
available yet

 Not
evaluat
ed yet

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 184 of 228

A.19 MTD Strategy Optimizer

Project Name: NATWORK
Component Name: MTD Strategy Optimizer
Created by: ZHAW
Date of creation: 26.08.2025
Filename: ZHAW-MTD-Strategy-Optimizer.xlsx

Test
scenario ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result Execution
date

Actual
result

Status
(Pass/Fail)

MTD
Strategy
Optimizer-
TS.01

Verify
functionalit
y: Pro-
Active
Decisions

MTD
Strategy
Optimizer-
TS.01-TC.01

Testing the
stateless
migration
of a VNF as
a proactive
measurem
ent

* A monitoring
tool is
integrated into
the system,
which would
feed the MTD
Strategy
Optimizer (e.g.,
MONT MMT
tool)

* At least an
existing VNF is
already
deployed in the
edge-to-cloud
continuum

Step 1: Initiate
MTD
Framework

Step 2: Monitor
the network
environment
via the
monitoring tool

Step 3: Wait for
some time so
the age of
deployed VNF
is older

Real-
time
networ
k data
from
Step 2

Eventually,
the MTD
Strategy
Optimizer
should make
a decision to
migrate the
VNF to a new
location

Reporting
Period 1

- Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 185 of 228

Test
scenario ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result
Execution

date
Actual
result

Status
(Pass/Fail)

MTD
Strategy
Optimizer-
TS.01

Verify
functionalit
y: Pro-
Active
Decisions

MTD
Strategy
Optimizer-
TS.01-TC.02

Testing the
live
migration
of a CNF as
a proactive
measurem
ent

* A monitoring
tool is
integrated into
the system,
which would
feed the MTD
Strategy
Optimizer (e.g.,
MONT MMT
tool)

* At least an
existing CNF is
already
deployed in the
edge-to-cloud
continuum

Step 1: Initiate
MTD
Framework

Step 2: Monitor
the network
environment
via the
monitoring tool

Step 3: Wait for
some time so
the age of
deployed CNF
is older

Real-
time
networ
k data
from
Step 2

Eventually,
the MTD
Strategy
Optimizer
should make
a decision to
migrate the
CNF to a new
location

 Reporting
Period 1 - Pass

MTD
Strategy
Optimizer-
TS.02

Verify
functionalit
y: Reactive
Decisions

MTD
Strategy
Optimizer-
TS.02-TC.01

Testing the
stateless
migration
of a VNF as
a reactive
measurem
ent upon a
cyberattack

* A monitoring
tool is
integrated into
the system,
which would
feed the MTD
Strategy
Optimizer (e.g.,
MONT MMT
tool)

* At least an
existing VNF is
already
deployed in the
edge-to-cloud
continuum

Step 1: Initiate
MTD
Framework

Step 2: Monitor
the network
environment
via the
monitoring tool

Step 3: Trigger
a malware
infection attack
on the existing
VNF

Step 4:
Observe how
the MTD

Real-
time
networ
k data
from
Step 2

Upon the
detection of
the attack,
the MTD
Strategy
Optimizer
should
immediately
make a
decision to
migrate the
VNF to a new
location

 Reporting
Period 1

 this test
case is
evaluate
d
following
the
detection
of an
intrusion
and/or
tamperin
g attack Pass Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 186 of 228

Test
scenario ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result
Execution

date
Actual
result

Status
(Pass/Fail)

framework
reacts

MTD
Strategy
Optimizer-
TS.02

Verify
functionalit
y: Reactive
Decisions

MTD
Strategy
Optimizer-
TS.02-TC.02

Testing the
live
migration
of a CNF as
a reactive
measurem
ent upon a
cyberattack

* A monitoring
tool is
integrated into
the system,
which would
feed the MTD
Strategy
Optimizer (e.g.,
MONT MMT
tool)

* At least an
existing CNF is
already
deployed in the
edge-to-cloud
continuum

Step 1: Initiate
MTD
Framework

Step 2: Monitor
the network
environment
via the
monitoring tool

Step 3: Trigger
a data
exfiltration or
intrusion attack
on the existing
CNF

Step 4:
Observe how
the MTD
framework
reacts

Real-
time
networ
k data
from
Step 2

Upon the
detection of
the attack,
the MTD
Strategy
Optimizer
should
immediately
make a
decision to
migrate the
CNF to a new
location

 Reporting
Period 1

 this test
case is
evaluate
d
following
the
detection
of an
intrusion
and/or
tamperin
g attack Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 187 of 228

A.20 MTD Explainer

Project Name: NATWORK
Component Name: MTD Explainer
Created by: ZHAW
Date of creation: 27.08.2025
Filename: ZHAW-MTD-Explainer.xlsx

Test scenario
ID

Test
scenario

Test case ID Test case
Pre-

conditions
Test steps Test data Expected result

Execution
date

Actual
result

Status
(Pass/Fail)

MTD
Explainer-
TS.01

Verify
functiona
lity:
Human
explanati
on of an
action
decided
by the
MTD
Strategy
Optimize
r

MTD
Explainer-
TS.01-
TC.01

Testing
the
explaina
bility of a
decision
made by
the MTD
Strategy
Optimize
r

* The MTD
Strategy
Optimizer
should be
up and
running

* At least
an existing
CNF/VNF is
already
deployed in
the edge-
to-cloud
continuum

* The MTD
Framework
should be
operating
in a cluster
with at
least two
nodes

Step 1: Initiate MTD
Framework

Step 2-A: Wait for a
sufficient amount of
time until the MTD
Strategy Optimizer
proactively decides
to perform the
migration

Step 2-B:
Alternatively, trigger a
cyberattack (e.g.,
data exfiltration) to
force the MTD
Strategy Optimizer to
reactively decide to
perform a migration

Step 3: Retrieve the
output of the MTD
Explainer with regard
to the operation

N/A

The MTD
Explainer
should
provide a
humanly
interpretable
explanation
on why the
MTD Strategy
Optimizer
decided the
specific
action (e.g.,
stateless or
stateful
migration)
and how this
action helps
the system in
terms of
security.

Mid
2026

 Not
available
yet

 Not
evaluated
yet

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 188 of 228

A.21 AI-driven security monitoring for anomaly detection and root cause analysis in IoT

networks

Project Name: NATWORK

Component Name: AI-driven security monitoring for anomaly detection and root cause analysis in IoT networks
Created by: MONT

Date of creation: 27.08.2025
Filename: MONT-AI-AD-RCA.xlsx

Test
scenario
ID

Test
scenario

Test
case ID

Test case Pre-
conditions

Test steps Test data Expected result Execution
date

Actual result Status
(Pass/Fail)

IoT-Sec-
TS1

Establis
h
baselin
e IoT
traffic
monitor
ing in
normal
operati
ng
conditio
ns.

IoT-
Sec-
TS1-
TC1.1

Monitor
and
collect
traffic
from IoT
devices
under
normal
operatio
n.

IoT
testbed
operation
al, MMT
probe
deployed,
MAIP
model not
trained
yet.

1- Deploy IoT devices
in testbed.

2- Generate normal
traffic (sensor data,
control messages).

3- Capture traffic via
MMT probe.

Normal IoT
network traffic
logs.

Clean dataset
with no
anomalies;
system
records traffic
correctly.

9/25/202
5

Clean dataset
with no
anomalies;
system
records traffic
correctly.

Pass

IoT-Sec-
TS2

Detect
differen
t types
of DDoS
attacks
on IoT
devices
.

IoT-
Sec-
TS2-
TC2.1

SYN
flood
detection
.

ML model
trained on
normal
and SYN
flood
traffic.

1- Launch SYN flood
against IoT gateway.

2- Capture traffic with
MMT probe.

3- Run ML anomaly
detection.

Attack traffic +
benign traffic
mix.

SYN flood
detected
within <5
minutes (ML
rule) or <10ms
(MMT rule).

9/25/202
5

3.5 minutes for
ML-based
rules and 89
ms for non ML-
based rules

Partially
pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 189 of 228

Test
scenario
ID

Test
scenario

Test
case ID Test case

Pre-
conditions Test steps Test data Expected result

Execution
date Actual result

Status
(Pass/Fail)

IoT-
Sec-
TS2-
TC2.2

UDP
flood
detection

Attack
traffic +
benign
traffic mix.

1- Launch UDP flood
against IoT gateway.

2- Capture traffic with
MMT probe.

3- Run ML anomaly
detection.

Attack traffic +
benign traffic
mix.

UDP flood
detected
within <5
minutes (ML
rule) or <10ms
(MMT rule).

9/25/202
5

3.5 minutes for
ML-based
rules and 3 ms
for non ML-
based rules

Pass

IoT-
Sec-
TS2-
TC2.3

ICMP
flood
detection

Attack
traffic +
benign
traffic mix.

1- Launch ICMP flood
against IoT gateway.

2- Capture traffic with
MMT probe.

3- Run ML anomaly
detection.

Attack traffic +
benign traffic
mix.

ICMP flood
detected
within <5
minutes (ML
rule) or <10ms
(MMT rule).

9/25/202
5

3.5 minutes for
ML-based
rules and 5 ms
for non ML-
based rules

Pass

IoT-Sec-
TS3

Validate
detectio
n
accurac
y. False
Positive
/ False
Negativ
e
Evaluati
on

IoT-
Sec-
TS3-
TC3.1

Evaluate
FP rate
<1%.

Trained
model,
clean
dataset.

Run IDS on large
clean dataset.

100% benign
traffic.

<1% alerts
triggered.

9/25/202
5

0% Pass

IoT-
Sec-
TS3-
TC3.2

Evaluate
FN rate
<1%.

Model
trained
with
labeled
attacks.

Inject multiple attack
samples.

Mix of attacks
(SYN, UDP,
ICMP floods).

FN <1%.
9/25/202
5

1.50% Fail

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 190 of 228

Test
scenario
ID

Test
scenario

Test
case ID Test case

Pre-
conditions Test steps Test data Expected result

Execution
date Actual result

Status
(Pass/Fail)

IoT-Sec-
TS4

Adaptiv
e
anomal
y
thresho
ld
setting
using
reinforc
ement
learning
.

IoT-
Sec-
TS4-
TC4.1

System
adjusts
threshol
d during
traffic
spike
without
misclassi
fication.

RL
thresholdi
ng
enabled.

1- Generate sudden
benign traffic spike.

2- Monitor threshold
adaptation.

3- Verify alerts.

Traffic burst
without attack.

No false alert
triggered;
threshold
auto-adjusted.

9/25/202
5

0% Pass

IoT-Sec-
TS5

Validate
system’
s
mitigati
on
respons
e once
attack
detecte
d.

IoT-
Sec-
TS5-
TC5.1

Automati
c traffic
filtering
after
DDoS
detection
.

Detection
system
active,
mitigation
module
connecte
d.

1- Launch SYN flood.

2- Wait for detection
alert.

3- Observe mitigation
(traffic dropped,
route blocked).

Attack traffic.

Mitigation
triggered <10
minutes;
attack
neutralized.

9/25/202
5

~ 18 minutes Fail

IoT-Sec-
TS6

Validate
AI-
driven
RCA in
identifyi
ng the
underlyi
ng
cause
of
anomali
es.

IoT-
Sec-
TS6-
TC6.1

Detect
anomaly
due to a
misconfi
gured IoT
device
(not an
attack).

Device
configure
d with
incorrect
routing
rule.

1- Deploy IoT device
with misconfigured
route/firewall.

2- Generate normal
traffic.

3- System detects
anomaly.

4- RCA module
analyses anomaly.

Traffic
deviating due
to
misconfigurati
on.

Anomaly
detected, RCA
output =
"Device
misconfigurati
on, not
malicious".

9/25/202
5

Anomaly
detected, RCA
output =
"Device
misconfigurati
on, not
malicious".

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 191 of 228

Test
scenario
ID

Test
scenario

Test
case ID Test case

Pre-
conditions Test steps Test data Expected result

Execution
date Actual result

Status
(Pass/Fail)

IoT-
Sec-
TS6-
TC6.2

Identify
root
cause of
detected
anomaly
as DDoS.

SYN flood
attack
launched
on IoT
gateway.

1- Launch SYN flood.

2- Anomaly detected.

3- RCA module
correlates alerts (e.g.,
multiple flows,
repeated requests).

Attack traffic.

RCA output =
"SYN Flood
attack
detected at
gateway".

9/25/202
5

RCA output =
"SYN Flood
attack
detected at
gateway".

Pass

IoT-
Sec-
TS6-
TC6.3

Identify a
compro
mised
IoT
device as
the
anomaly
source.

Malware-
infected
IoT device
generating
abnormal
traffic.

1- Infect IoT device
with simulated
malware (e.g., Mirai
sample).

2- Device sends
abnormal traffic.

3- Anomaly detected.

4- RCA correlates
anomaly to specific
device ID.

Device-
originating
attack traffic.

RCA output =
"Compromised
IoT device X,
abnormal
outbound
traffic".

9/25/202
5

RCA output =
"Compromised
IoT device X,
abnormal
outbound
traffic".

 Pass

IoT-
Sec-
TS6-
TC6.4

Provide
explaina
ble RCA
report for
detected
anomaly.

Any
anomaly
detected
(e.g.,
DDoS).

1- Run detection +
RCA.

2- LLM/XAI generates
natural language
explanation.

Anomaly logs.

Operator
receives clear
report (e.g.,
“Traffic spike
caused by SYN
flood attack
from IP X”).

9/25/202
5

Operator
receives clear
report (e.g.,
“Traffic spike
caused by SYN
flood attack
from IP X”).

 Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 192 of 228

A.22 DFE Telemetry

Project Name: NATWORK
Component
Name: DFE-Telemetry
Created by: CNIT
Date of creation: 01.09.2025
Filename: CNIT-DFE-Telemetry.xlsx

Test scenario
ID

Test scenario
Test case

ID
Test case Pre-conditions Test steps Test data Expected result

Execution
date

Actual result
Status

(Pass/Fail)

DFE-
Telemetry-
TS01

Verify
compilatio
n and
deploymen
t

DFE-
Telemet
ry-TS01-
TC01

Compile
P4-DFE
Telemetry
program for
software
switch
(BMV2
target).

P4-DFE
Telemetry
source code
available, BMv2
installed, and
p4c compiler
configured.

1.Run P4C
compiler.
2.Deploy to
BMV2 target.

P4-DFE
Telemetry
program.

Compilation
successful,
binary loads
to BMV2.

12/2024

Compilation
successful,
binary loads
to BMV2.

Pass

DFE-
Telemetry-
TS02

Validate
functional
behavior

DFE-
Telemet
ry-TS02-
TC01

Run P4-
DFET
program in
Mininet
with three
hosts and
three
collectors.

Mininet
topology with
three hosts and
three
collectors, flow
rules to extract
different
features from
different flows.

1. Start
Mininet .
2. Push flow
rules.
3.Generate
Two UDP
flows and
one TCP flow

Two UDP
flows and
one TCP
flow

- Reports
generated
for 3 flows
with different
sizes.
- Reports
delivered to
correct
collectors
(C1, C2, C3).

12/2024

- Three
reports
generated for
3 flows with
different
sizes.
- Reports
delivered to
correct
collectors
(C1, C2, C3).

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 193 of 228

Test scenario
ID

Test scenario
Test case

ID
Test case Pre-conditions Test steps Test data Expected result

Execution
date

Actual result
Status

(Pass/Fail)

DFE-
Telemetry-
TS03

Measure
latency and
CPU
overhead

DFET-
Telemet
ry-TS03-
TC01

Compare
P4-DFET vs.
simple
forwarding
(latency).

Spirent N4U
traffic
generator
connected-
Single 10 Mbps
flow
configured.

1. Run
baseline
simple
forwarding.
2. Run P4-
DFET with 1
feature
3. Run P4-
DFET with all
features.
4. Measure
latency.

Spirent-
generated
10 Mbps
flow

Latency
overhead
remains
within
expected
range.

3/2025

- Simple
forwarding:
510.84 µs
- DFET (1
feature):
697.79 µs
- DFET (all
features):
733.147 µs

Pass

DFE-
Telemetry-
TS03

Measure
latency and
CPU
overhead

Data-
Telemet
ry-TS04-
TC02

Compare
P4-DFET vs.
simple
forwarding
(CPU load).

Spirent N4U
traffic
generator
connected-
Single 10 Mbps
flow
configured.

1. Run
baseline
simple
forwarding.
2. Run P4-
DFET with 1
feature
3. Run P4-
DFET with all
features.
4. Monitor
CPU load.

Spirent-
generated
10 Mbps
flow

CPU load
values
remains
within
expected
range.

3/2025

- Simple
forwarding:
26%
- DFET (1
feature): 63%
- DFET (all
features):
93.3%

Pass

DFE-
Telemetry-
TS04

Evaluate
scalability
(for both
latency and
CPU load)

Data-
Telemet
ry-TS04-
TC01

P4-DFET
with varying
number of
flows (1,
10, 100,
1000).

Spirent
configured for
multiple flows-
Total load fixed
at 10 Mbps.

1. Configure
Spirent for 1,
10, 100,
1000 flows.
2. Enable P4-
DFET with
single/all
features.
3. Measure
latency and
monitor CPU
load.

Spirent-
generated
traffic (1–
10-100-
1000)
flows at
10Mbps.

Latency and
CPU load
values
increase
moderately
with
increasing
the number
of flows.

3/2025

Latency and
CPU load
values
increase
moderately
with
increasing
the number
of flows.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 194 of 228

A.23 Secure Data Aggregation

Project Name: NATWORK
Component
Name: Secure Data Aggregation
Created by: ELTE
Date of creation: 01.09.2025
Filename: ELTE-Data-Aggregation.xlsx

Test
scenario ID

Test
scenario

Test case
ID

Test
case

Pre-conditions Test steps Test
data

Expected result Execution
date

Actual result Status
(Pass/Fail)

Secure_
DA-TS.01

Basic
Flwr

Server
Startu

p

Secure_
DA-

TS.01-
TC.01

Add
test
case
descr
iption

Python
environment

with flwr
installed.

Dataset and
client

simulation
scripts

prepared.

Step 1: Start the
Flwr server.

Step 2: Launch
multiple simulated

Flwr clients.
Step 3: Monitor

logs for connection
establishment.

MNIST/
HAR

datase
ts

Server starts
successfully and

listens for
clients.

Clients connect
to server and
begin training

rounds.

 Aug-24

 Flwr server
initialized. Logs

confirmed client
registration and
start of training

session.

Pass

Secure_
DA-TS.01

Basic
Flwr

Server
Startu

p

Secure_
DA-

TS.01-
TC.02

Feder
ated

Traini
ng

Run

Python
environment

with flwr
installed.

Dataset and
client

simulation
scripts

prepared.

Step 1: Run training
for N rounds.

Step 2: Monitor
client participation

and aggregation
logs.

Step 3: Collect
model accuracy

after each round.

Partitio
ned

datase
t

across
clients

.

Training
completes

successfully for
all rounds.
Aggregated

global model
improves over

time.

 Aug-24
 Training completed

successfully.
Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 195 of 228

Test
scenario ID

Test
scenario

Test case
ID

Test
case

Pre-conditions Test steps
Test
data

Expected result
Execution

date
Actual result

Status
(Pass/Fail)

Secure_
DA-TS.02

SecAg
g+ for

Secure
Aggreg
ation

Secure_
DA-

TS.02-
TC.01

Secur
e

Aggre
gatio

n
Setup

Flwr
framework

running.
SecAgg+

integration
module

enabled in
server and

clients.

Sdtep 1: Start Flwr
server with

SecAgg+ enabled.
Step 2: Launch
multiple clients

with SecAgg+
enabled.

Step 3: Verify key
exchange and

masking steps in
logs.

Small
datase

t for
testing
(dum

my
vector

s).

SecAgg+
successfully

initialized
between server

and clients.

Clients exchange
encrypted

masks.

 Aug-24
 SecAgg+

initialization
completed.

Pass

Secure_
DA-TS.02

SecAg
g+ for

Secure
Aggreg
ation

Secure_
DA-

TS.02-
TC.02

Secur
e

Feder
ated

Traini
ng

Run

Flwr
framework

running.
SecAgg+

integration
module

enabled in
server and

clients.

Step 1: Run
federated training

with N clients.
Step 2: Each client

contributes
encrypted model

updates.
Step 3: Server

aggregates masked
updates.

Step 4: Verify that
only aggregated

result is revealed,
not individual

updates.

Partitio
ned

datase
t

across
clients

.

Aggregation
succeeds even

with masked
updates.

Individual client
updates remain

private.

Global model
converges

similarly to non-
secure baseline.

 Aug-24

 Aggregation
succeeded.

Individual client
updates remained

private.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 196 of 228

Test
scenario ID

Test
scenario

Test case
ID

Test
case

Pre-conditions Test steps
Test
data

Expected result
Execution

date
Actual result

Status
(Pass/Fail)

Secure_
DA-TS.03

MPC-
Based
Secure
Aggreg
ation

Secure_
DA-

TS.03-
TC.01

MPC
Initial
izatio

n

Flwr server
and clients

running.
MPC library

MP-SPDZ
integrated.

SecAgg+
enabled as

base
protocol.

Step 1: Initialize
MPC session

among clients and
server.

Step 2: Verify
secure multi-party

key generation.
Step 3: Ensure
each client is

assigned a secret
share of the
aggregation

protocol.

Partitio
ned

datase
t

across
clients

.

MPC session
established

successfully.

All clients and
server confirm
participation in

secure
computation.

 Aug-24
 MPC session
established
successfully

Pass

Secure_
DA-TS.03

MPC-
Based
Secure
Aggreg
ation

Secure_
DA-

TS.03-
TC.02

End-
to-

End
MPC
Aggre
gatio

n

Flwr server
and clients

running.
MPC library

MP-SPDZ
integrated.

SecAgg+
enabled as

base
protocol.

Step 1: Clients
compute local

model updates.
Step 2: Updates are

secret-shared via
MPC.

Step 3: Server
executes MPC
aggregation.

Step 4: Aggregated
result revealed

without exposing
individual updates.
Step 5: Verify logs
and performance
(latency, resource

usage).

Partitio
ned

datase
t

across
clients

.

Aggregated
model update

computed
securely via

MPC.

No single party
has access to

individual client
data.

Performance

overhead
acceptable

compared to
SecAgg+.

 Aug-24

 Aggregated model
update computed
securely via MPC.

No single party had
access to individual

client data.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 197 of 228

A.24 Federated Learning for edge-to-cloud

Project Name: NATWORK
Component
Name: AI for optimized scheduling (edge-cloud)
Created by: UEssex
Date of creation: 01.09.2025
Filename: UEssex-Federated Learning edge-cloud.xlsx

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

Benchmar
king ML
algos to
predict
workloads
in cloud -
TS01

Benchmar
k
centralized
ML models
for
workload
prediction

Benchmark
ing ML
algos to
predict
workloads
in cloud -
TS01-TCO1

Train and
evaluate
ML models
(ARIMAX,
LSTM,
XGBoost)
on
historical
Google
cluster
traces as
baseline
and further
improve
with
feature
engineerin
g &
hyperpara
meter
tuning

Pre-
processing
and
feature
engineerin
g of Google
cluster
traces

1. Extract and
clean
CPU/memory
features from
traces
2. Prepared
datasets for
model training
through two
methods: fine-
level granularity
for detailed
patterns, and
orchestration-
focused
aggregation for
peak demand
planning.3. Apply
feature
engineering (e.g.,
lag features,
rolling statistics)
4. Train ARIMA,
LSTM, XGBoost
models with

Google
cluster
trace
dataset
(historical)

Trained ML
models
should
provide
accurate
workload
prediction
s, with
expected
accuracy
in a
reasonabl
e range
across
algorithms

16/08/202
5

Predictive
framework
validated;
best
accuracy
(able to
predict
spikes in
data)
achieved
~70–75%
(XGBoost);
demonstra
tes
robustnes
s for
orchestrati
on Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 198 of 228

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
hyperparameter
tuning
5. Evaluate
against actual
workloads

Baseline
federated
learning
Framewor
k - TS02

Implement
baseline
federated
learning
for
historical
workload
prediction
using
Google
workload
traces

Baseline
federated
learning
Framework
- TS02-
TC01

Evaluate
FL
architectur
e (bagging
with
XGBoost)
on
distributed
Google
trace
partitions,
and testing
with
hyperpara
meter
tuning

Pre-
processing
and
partitionin
g of Google
traces
across
multiple
nodes

1. Partition traces
across nodes
2. Train local
XGBoost models
on each node
3. Aggregate
centrally
(currently) via FL
bagging approach
4. Compare FL
predictions vs.
ground truth
workloads on test
set

Partitioned
Google
cluster
traces

FL setup
should
demonstra
te
feasibility
of
decentraliz
ed
training,
with
prediction
accuracy
lower than
centralized
ML but
within an
acceptabl
e range

15/09/202
5

FL
baseline
validated;
decentraliz
ed training
feasible
with
comparabl
e accuracy
to
centralized
ML

Initial
testing
done using
Google
Cluster
traces(Pas
s)
Not yet
tested on
custom
Dost Data

A.25 MTDFed

Project Name: NATWORK
Component Name: MTDFed
Created by: ZHAW
Date of creation: 27.08.2025
Filename: ZHAW-MTDFed.xlsx

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 199 of 228

Test scenario ID Test scenario
Test

case ID
Test case

Pre-
conditions

Test steps
Test
data

Expected result
Execution

date
Actual result

Status
(Pass/Fail)

MTDFed-
TS.01

Verify
functionali
ty:
Aggregatio
n across
Virtual
Network
Operators
(VNOs)

MTDFe
d-
TS.01-
TC.01

Testing
basic
MTDFed
without
any
privacy-
preservat
ion
mechani
sm

* The MTD
Framework
should be
up and
running,
with at
least three
VNOs
across
edge nodes

* At least a
set of
existing
VNFs and
CNFs is
already
deployed in
the edge-
to-cloud
continuum

* The
aggregator
should be
up and
running in
the core
network

Step 1: Initiate
MTD Framework

Step 2: Trigger
MTDFed so that
VNOs
collaboratively
train the MTD
Strategy Optimizer

Step 3: Wait until
several round of
federated learning
occurs

Step 4: Observe
closely the
aggregation
process until
convergence

Step 5: Investigate
how the
performance of
individual MTD
Strategy Optimizer
models changes
over time

N/A

The MTDFed
component
should yield a
more accurate
MTD Strategy
Optimizer via
federated
learning over
multiple VNOs.
The
performance of
the global model
should be
investigated
across rounds
for gaining
further insight.

 Reporting
Period 1

 MTDFed
tested and
preliminary
results
show
improveme
nts of the
MTD
strategy
over single-
agent
training

 Pass

MTDFed-
TS.01

Verify
functionali
ty:
Aggregatio
n across
Virtual
Network

MTDFe
d-
TS.01-
TC.02

Testing
secure
MTDFed
via MPC

* The MTD
Framework
should be
up and
running,
with at
least three

Step 1: Initiate
MTD Framework

Step 2: Trigger
MTDFed so that
VNOs
collaboratively

N/A

The MTDFed
component
should yield a
more accurate
MTD Strategy
Optimizer via
federated

 Reporting
Period 1

 MTDFed
tested and
local model
confidential
ity enabled Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 200 of 228

Test scenario ID Test scenario
Test

case ID
Test case

Pre-
conditions

Test steps
Test
data

Expected result
Execution

date
Actual result

Status
(Pass/Fail)

Operators
(VNOs)

VNOs
across
edge nodes

* At least a
set of
existing
VNFs and
CNFs is
already
deployed in
the edge-
to-cloud
continuum

* The
aggregator
should be
up and
running in
the core
network

* For
secure
aggregation
, MPC
should be
deployed
and
configured
in the
system

train the MTD
Strategy Optimizer

Step 3: Wait until
several round of
federated learning
occurs

Step 4: Observe
closely the
aggregation
process until
convergence

Step 5: Investigate
how the
performance of
individual MTD
Strategy Optimizer
models changes
over time

learning over
multiple VNOs.
In addition to
the previous
test, the
aggregator
should be
debugged to
ensure that it is
not aware of the
individual
models from
VNOs.

MTDFed-
TS.01

Verify
functionali
ty:

MTDFe
d-

Testing
secure

* The MTD
Framework
should be

Step 1: Initiate
MTD Framework

N/A
The MTDFed
component
should yield a

 Reporting
Period 1

 MTDFed
tested and
differential Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 201 of 228

Test scenario ID Test scenario
Test

case ID
Test case

Pre-
conditions

Test steps
Test
data

Expected result
Execution

date
Actual result

Status
(Pass/Fail)

Aggregatio
n across
Virtual
Network
Operators
(VNOs)

TS.01-
TC.03

MTDFed
via DP

up and
running,
with at
least three
VNOs
across
edge nodes

* At least a
set of
existing
VNFs and
CNFs is
already
deployed in
the edge-
to-cloud
continuum

* The
aggregator
should be
up and
running in
the core
network

Step 2: Trigger
MTDFed so that
VNOs
collaboratively
train the MTD
Strategy Optimizer

Step 3: Wait until
several round of
federated learning
occurs

Step 4: Observe
closely the
aggregation
process until
convergence

Step 5: Investigate
how the
performance of
individual MTD
Strategy Optimizer
models changes
over time

more accurate
MTD Strategy
Optimizer via
federated
learning over
multiple VNOs.
In addition to
the previous
test, the
performance of
the global model
will likely be
lower to some
extent due to the
use of
differential
privacy.

privacy
overhead
measured.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 202 of 228

A.26 CIA-hardening of x86 payloads Component

Project Name: NATWORK
Component Name: SECaaS
Created by: TSS
Date of creation: 10.09.2025
Filename: TSS-CIA hardening x86 payloads.xlsx

Test scenario ID Test
scenario

Test case
ID

Test case Pre-
conditions

Test steps Test data Expected
result

Execution date Actual result Status
(Pass/Fail)

SECaaS_ConF
x86-TS.01

Verify
Confide
ntialtiy
resilienc
e x86

SECaaS
_ConFx
86-
TS.01-
01

Check
that
workload
file shows
encrypted
instructio
n text
section

Pre-
condition
1: Prior
SECaaS
processin
g the
instructio
ns are not
encrypted
.

Step 1:
Check code
section prior
SECaaS
operation
Step 2:
Check code
section after
SECaaS
operation

Two
standard
x86 native
ELF
formated
workloads

Visual
Inspection

01/12/2024

x86 text section is
encrypted with
AES256, hence
cannot be reversed
and analyzed
through static
analysis

Pass

SECaaS_ConF
x86-TS.02

Verify
Confide
ntialtiy
preserva
tion
techniq
ue
impact
on
latency
at start

SECaaS
_ConFx
86-
TS.02-
01

Check
that the
decryption
of the
instructio
ns (prior
their are
loaded
and
executed)
is done in
a given
time slot

Pre-
condition
1:
Timestam
ped code
available,
enabling
to assess
with
precision
the
latency at
start

Step 1:
Timestampe
d original
code is used
to assess
the time to
reach the
second
timestamp
Step 2:
Timestampe
d protected
code latency
at start is
measured

Two
standard
x86 native
ELF
formated
workload

Time to
decrypt
and start
the
executabl
e is below
KPI 1.3.2
threshold
(ie, 3
seconds)

01/12/2024

Measurements show
that the difference
between
unprotected code
and protected code
latency at start is
average at 120 msec
in average (90-
150msec). This is
sufficiently below
KPI 1.3.2 to consider
that this KPI is met

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 203 of 228

Test scenario ID
Test

scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data
Expected

result
Execution date Actual result

Status
(Pass/Fail)

SECaaS_ConF
x86-TS.03

Verify
Confide
ntiality
preserva
tion
impact
on
perform
ance

SECaaS
_ConF-
TS.03.0
1

Check the
impact on
protected
code
performan
ce

Timestam
ping the
workload
to assess
the
performan
ce penalty

Step 1:
Timestamps
placed on
the original
code to
assess the
performance
penalty
Step 2:
Timestamps
placed at
the same
locations in
the
protected
code

Two
standard
x86 native
ELF
formated
workload

Runtime
performan
ce
degradati
on (%
compared
to
baseline
execution
speed)

01/12/2024

After the decryption
step (which creates
a latency at start,
measured in
SECaaS_ConFx86-
TS.02 just above, no
sensible and
measurable
performance
degradation is
generated, simply
because there is no
change on the
instructions once
decrypted.

Pass

SECaaS_Intx8
6-TS.01

Verifiy
the
integrity
preserv
ation is
effectiv
e; This
will be
done by
leveragi
ng D-
MUTRA
integrity
verificat
ion
solution

SECaaS
_Intx86-
TS.01-
01

Check
that a
tampering
is
detected

Produce a
tampering
on the
memory
footprint

Step 1:
Timestamps
placed on
the original
code to
assess the
performance
penalty
Step 2:
Timestamps
placed at
the same
locations in
the
protected
code

Two
standard
x86 native
ELF
formated
workload

Tampering
is
detected 01/12/2024

Our integrity check
hashes the integral
text section of the
executable. A single
modified bit
modifies the hash Pass

SECaaS_Intx8
6-TS.02

Measure
the
integrity
preserva

SECaaS
_Intx86-
TS.02-
01

Measure
the
performan
ce

Timestam
ping the
workload
to assess

Step 1:
Timestamps
placed on
the original

Two
standard
x86 native
ELF

5%
(ie,50% of
10% for
both 01/12/2024

Two techniques are
used to diminish the
performance impact
(i) spread over time Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 204 of 228

Test scenario ID
Test

scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data
Expected

result
Execution date Actual result

Status
(Pass/Fail)

tion
impact
on
perform
ance.
This will
be done
by
leveragi
ng D-
MUTRA
integrity
verificati
on
solution

degradati
on

the
performan
ce penalty

code to
assess the
performance
penalty
Step 2:
Timestamps
placed at
the same
locations in
the
protected
code

formated
workload

integrity
and
monitorin
g)

hashing technique
with adjustable idle
time between two
incremental
operations (of the
hashing) and (ii)
affecting a cgroup
resource allocation
applied on the
measuring thread

SECaaS_Intx8
6-TS.03

Measure
the
remote
attestati
on
cycle.
This will
be done
by
leveragi
ng D-
MUTRA
integrity
verificati
on
solution

SECaaS
_Intx86-
TS.03

Measure a
remote
attestatio
n full
cycle (up
to
blockchai
n block
creation)

Timestam
ping the
workload
to assess
the
performan
ce penalty

Step 1:
Timestamps
placed on
the original
code to
assess the
performance
penalty
Step 2:
Timestamps
placed at
the same
locations in
the
protected
code

Two
standard
x86 native
ELF
formated
workload

1 second 01/12/2024 Pass Pass

SECaaS_Availx
86-TS.01

Assess
the
usability
of self
contain

SECaaS
_Availx8
6-TS.01-
01

For finite
lifetime
workload:
Check the
relevance

Monitoring
the x86 by
placing
timestam
ps.

For finite
lifetime
workload
only:
Timestamp

Two
standard
x86 native
ELF

Define a
method
easing the
setup of
probe

01/07/2026 Current technique,
as explored in
DESIRE-6G project
is not satisfactory as
it implies

RP2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 205 of 228

Test scenario ID
Test

scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data
Expected

result
Execution date Actual result

Status
(Pass/Fail)

ed
perform
ance
monitori
ng for
x86
workloa
ds.

of
inserting
timestam
ps at the
entry point
and exit.
(ie, the
difference
between
the
timestam
ps bring
the
workload
performan
ce ratio)
For infinite
lifetime
workload:
Check the
relevance
of
inserting
trampolin
es with
timestam
ps at duly
defined
CFG
locations.
Consider
the call
frequency
of the
relevant
block and

Generate
stress on
the CPU.

the workload
at entry and
exit point.
For infinite
lifetime
workload
only:
Step 1:
LLVM-
powered
probe
insertion x86
binary
compilation
Step 2:
Stressing
the CPU
Step 3:
Measure the
call
frequency or
reference
block time
to execute to
assess the
workload
performance
ratio

formated
workload

insertion,
enabling
the
extraction
of relevant
CFG-
inserted
performan
ce probes,
for the
characteri
zation of
the
workload
speed of
operation.

modifications on the
payloads through
tampoline and
timestamp
insertions. The
technique has
developed two types
of measurement (ie,
call frequency and
time to execute) on
identified code
blocks which
requires a hybrid (ie,
static + dynamic)
analysis of the code.
In Natwork, we
intend to elevate
these results by
offering a simplify
this technique
(notably to boost the
success factor CSF
25= SECaaS
friendliness. In use
case UC4.6, we will
explore the
possibility to
leverage LLVM in
the compilation
chain of Montimage
to ease the setting of
timestamps, with a
GUI enabling the
user to select the
instrumented

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 206 of 228

Test scenario ID
Test

scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data
Expected

result
Execution date Actual result

Status
(Pass/Fail)

time to
execute a
plugged
reference
block to
assess the
performan
ce.

function. This work
will be in RP2

SECaaS_Availx
86-TS.02

Measure
the
perform
ance
impact
of
perform
ance
monitori
ng for
x86
workloa
ds

SECaaS
_Availx8
6-TS.02-
01

For finite
lifetime
workload:
Check the
relevance
of
inserting
timestam
ps at the
entry point
and exit.
(ie, the
difference
between
the
timestam
ps bring
the
workload
performan
ce ratio)
For infinite
lifetime
workload:
Check the
relevance
of
inserting

Timestam
ping the
workload
to assess
the
performan
ce penalty

Step 1:
Prepare two
variants:
LLVM-
powered
probe
insertion x86
binary
compilation
and
unmonitored
variant
Step 2:
Stressing
the CPU
Step 3:
Measure the
performance
difference

Two
standard
x86 native
ELF
formated
workload

Less than
10%
(when
cumulate
d with
runtime
integrity
verificatio
n)

01/07/2026 Current technique,
as explored in
DESIRE-6G project
is not 100%
satisfactory as it
implies
modifications on the
payloads through
tampoline and
timestamp
insertions. The
technique has
developed two types
of measurement (ie,
call frequency and
time to execute) on
identified code
blocks which
requires a hybrid (ie,
static + dynamic)
analysis of the code.
In Natwork, we
intend to simplify
this technique
(notably to boost the
success factor CSF
25= SECaaS
friendliness. In use

RP2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 207 of 228

Test scenario ID
Test

scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data
Expected

result
Execution date Actual result

Status
(Pass/Fail)

trampolin
es with
timestam
ps at duly
defined
CFG
locations.
Consider
the call
frequency
of the
relevant
block and
time to
execute a
plugged
reference
block to
assess the
performan
ce.

case UC4.6, we will
explore the
possibility to
leverage LLVM in
the compilation
chain of Montimage
to ease the setting of
timestamps, with a
GUI enabling the
user to select the
instrumented
function. This work
will be in RP2

A.27 CIA-hardening of containerized payloads

Project Name: NATWORK
Component Name: SECaaS
Created by: TSS
Date of creation: 10.09.2025
Filename: TSS-CIA hardening Containers payloads.xlsx

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 208 of 228

Test scenario ID Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data
Expected

result
Execution date

Actual
result

Status
(Pass/Fail)

SECaaS_InT-
Cont-TS.01

For containerized x86
worklods, under the
novel workflow-
friendly scheme
dubbed Drop and
Attest, with an ON-
DEMAND or periodic
verifications, test the
efficiency of the
runtime integrity
verifications.
Orchestration by K8s
for a fully automated
workflow.

SECaaS
_InT-
Cont-
TS.01-
01

Check that
a
tampering
is detected

Produce a
tampering
on the
memory
footprint

1/ Produce
a
tampering
produced
during the
execution
of the
workload
2/ Check
the
tampering
detection

Product
ion of
the test
on MMT
probe,
Liquid
xAPP

Tampering
is
detected 01/04/2026

To be
done in
RP2

SECaaS_InT-
Cont-TS.02

For containerized x86
worklods, under the
novel workflow-
friendly scheme
dubbed Drop and
Attest, with ON-
DEMAND or periodic
verifications, test the
efficiency of the
runtime integrity
verification.Measure
the integrity
preservation impact
on performance.

SECaaS
_InT-
Cont-
TS.02-
01

Measure
the
performanc
e
degradatio
n induced
by the
integrity
verification
in one of
the two
verification
patterns
(ie, on-
demand,
periodic)

Timestam
ping the
workload
to assess
the
performan
ce penalty

Step 1:
Timestamp
s placed on
the original
code to
assess the
performanc
e penalty
Step 2:
Timestamp
s placed at
the same
locations in
the
protected
code

Product
ion of
the test
on MMT
probe,
Liquid
xAPP

5% 01/04/2026

To be
done in
RP2

SECaaS_Moni
t- Cont-TS.01

For containerized x86
worklods, with a
sidecar mounted
monitoring agent with
privilege access on its
linked container

SECaaS
_Monit-
Cont-
TS.01-
01

1/ Deliver
sidecar
with
sufficient
system
privilege

Check
sidecar
container
access
permissio
n to the

Step 1:
Timestamp
s placed on
the original
code to
assess the

Product
ion of
the test
on MMT
probe,

 01/07/2026

To be
done in
RP2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 209 of 228

Test scenario ID Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data
Expected

result
Execution date

Actual
result

Status
(Pass/Fail)

memory, with an ON-
DEMAND or periodic
verifications. The test
shall demlonstrate
the usability and
effectiveness of the
execution monitoring
(e.g., delivery of proof
of execution by
sampling over the
Instruction Pointer
Register, assessment
of the execution
environment resource
congestion, more
accurate
performance
measurement).

2/ Define
different
execution
conditions
(ie,
resource
congestion,
modified
data
distribution
(hence
leading to a
different
cache hit
rate)
2/ Execute
the
containeriz
ed
workload
under the
different
execution
conditions
as stated in
2/,
3/ Extract
the
monitoring
elements
correspond
ing to what
is actually
made
possible

main
container'
s memory
stack

performanc
e penalty
Step 2:
Timestamp
s placed at
the same
locations in
the
protected
code

Liquid
xAPP

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 210 of 228

Test scenario ID Test scenario
Test case

ID
Test case

Pre-
conditions

Test steps Test data
Expected

result
Execution date

Actual
result

Status
(Pass/Fail)

SECaaS_Moni
t-Cont-TS.02

Measure the
performance impact of
performance
monitoring for
Container workloads

SECaaS
_Monit-
Cont-
TS.02-
01

1/
Instrument
an x86
containeriz
ed function
2/ Collect
the
performanc
e metrics
during
execution

Check
sidecar
container
access
permissio
n to the
main
container'
s memory
stack

The test wil
be done
according
to the
result of
SECaaS_M
onit- Cont-
TS.01 just
above

Product
ion of
the test
on MMT
probe,
Liquid
xAPP

5% 01/07/2026

To be
done in
RP2

A.28 CIA-hardening of WASM payloads Component

Project Name: NATWORK
Component Name: SECaaS
Created by: TSS
Date of creation: 10.09.2025
Filename: TSS-CIA hardening WASM payloads.xlsx

Test scenario
ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data
Expected

result
Execution date Actual result

SECaaS_C
onFWasm-
TS.01

The test will be
defined
according to our
feasibility study
. Verify
Confidentiality
resilience WASM

SECaaS_C
onFWasm-
TS.01-01

Check that
workload file
shows
encrypted
instruction text
section

Pre-condition
1: Prior
SECaaS
processing
the
instructions
are not
encrypted.

Step 1: Check
code section
prior SECaaS
operation
Step 2: Check
code section
after SECaaS
operation

Two
standard
WASM
modules

Visual
Inspection 01/04/2026

WASM
confidentiality
preservation
technique has
not been
implemented
yet, will be
done in RP2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 211 of 228

Test scenario
ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data
Expected

result
Execution date Actual result

SECaaS_C
onFWasm-
TS.02

The test will be
defined
according to our
feasibility study
Verify
Confidentiality
preservation
technique
impact on
latency at start

SECaaS_C
onFWasm-
TS.02-01

Check that the
decryption of
the
instructions
(prior their are
loaded and
executed) is
done in a given
time slot

Pre-condition
1:
Timestamped
code
available,
enabling to
assess with
precision the
latency at
start

Step 1:
Timestamped
original WASM
module is
used to assess
the time to
reach the
second
timestamp
Step 2:
Timestamped
protected
WASM module
latency at start
is measured

Two
standard
WASM
modules

Timing
below
threshold

01/04/2026 WASM
confidentiality
preservation
technique has
not been
implemented
yet, will be
done in RP2

SECaaS_C
onFWASM-
TS.03

The test will be
defined
according to our
feasibility study.
Verify
Confidentiality
preservation
impact on
performance

SECaaS_C
onFWasm-
TS.03.01

Check the
imperceptible
impact on
protected
code
performance

Timestampin
g the
workload to
assess the
performance
penalty

Step 1:
Timestamps
placed on the
original code
to assess the
performance
penalty
Step 2:
Timestamps
placed at the
same
locations in
the protected
code

Two
standard
WASM
modules

Performan
ce
degradati
on (%
compared
to
baseline
execution
speed)

01/04/2026
WASM
confidentiality
preservation
technique has
not been
implemented
yet, will be
done in RP2

SECaaS_Int
-WASM-
TS.01

Verify the
integrity
preservation is
effective

SECaaS_Int
x86-TS.01-
01 Check that a

tampering is
detected

Produce a
tampering on
the memory
footprint

Step 1:
Timestamps
placed on the
original code
to assess the
performance
penalty

Two
standard
x86
native
ELF
formatte

Tampering
is
detected 01/12/2024 pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 212 of 228

Test scenario
ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data
Expected

result
Execution date Actual result

Step 2:
Timestamps
placed at the
same
locations in
the protected
code

d
workload

SECaaS_Int
-WASM-
TS.02

Measure the
integrity
preservation
impact on
performance

SECaaS_Int
x86-TS.02-
01

Measure the
performance
degradation

Timestampin
g the
workload to
assess the
performance
penalty

Step 1:
Timestamps
placed on the
original code
to assess the
performance
penalty
Step 2:
Timestamps
placed at the
same
locations in
the protected
code

Two
standard
x86
native
ELF
formatte
d
workload

5% 01/04/2026
To be done in
RP2

SECaaS_Int
- WASM-
TS.03

Measure the
remote
attestation cycle

SECaaS_Int
x86-TS.03-
01

Measure a
remote
attestation full
cycle (up to
blockchain
block creation)

Timestampin
g the
workload to
assess the
performance
penalty

Step 1:
Timestamps
placed on the
original code
to assess the
performance
penalty
Step 2:
Timestamps
placed at the
same
locations in
the protected
code

Two
standard
x86
native
ELF
formatte
d
workload

3 sec 01/04/2026
To be done in
RP2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 213 of 228

Test scenario
ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data
Expected

result
Execution date Actual result

SECaaS_Av
ailWASM-
TS.01

This results from
the feasability
study for fully
support WASM.
In case of
success, the test
scenario will
integrate means
to generate
stress on the
CPU for the
modification of
the monitored
runtime
execution speed.

SECaaS_Av
ailWASM-
TS.01-01

Instrument the
WASMTIME
runtime or the
WASM
module,
typically by
setting
timestamps on
the main
bytecode
instruction
interpretation
routine
inserted in a
loop, or
alternatively by
collecting call
frequency of
routine.

 The test will
be defined
according to
our feasibility
study

 01/04/2026 WASM
Monitoring
technique has
not been
implemented
yet, will be
done in RP2.

SECaaS_Av
ailWASM-
TS.02

This results from
the feasibility
study for fully
support WASM.
This test will
assess the
impact
performance
induced by the
runtime
monitoring as set
in
SECaaS_AvailWA
SM-TS.01

SECaaS_Av
ailWASM-
TS.02-01

Two variants of
the WASM
runtime shall
be compared
in
performance
when
executing a set
of typical
WASM
modules. An
average
performance
impact shall
be defined.

 The test will
be defined
according to
our feasibility
study

 01/04/2026 WASM
Monitoring
technique has
not been
implemented
yet, will be
done in RP2.

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 214 of 228

A.29 Liquid RAN

Project Name: NATWORK
Component
Name: Liquid RAN

Created by: ISRD

Date of creation: 2025/10/10

Filename: ISRD-Anti-jamming.xlsx

Test
scenario ID

Test
scenario

Test case
ID Test case

Pre-
conditions Test steps Test data

Expected
result Execution date

Actual
result

Status
(Pass/Fail)

1.1

Jammin
g of
PRACH
channel

1.1

Verify
system
robustnes
s under
jamming
on PRACH
channel

• 5G NR SA
cell active
(n78 20
MHz)
• Jammer
calibrated
& isolated
• UE in
Flight Mode
ON state

1. Record baseline
KPIs (RSRP, RSRQ).
2. Increase jammer
power stepwise (-40
→ 0 dBm).
3. UE Flight Mode
OFF
4. Observe PRACH
and RRC state.
5. Remove jammer →
measure recovery.

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

UE should
be able to
attach

 Reporting
Period 2

1.2

Jammin
g of DL
control
channel

1.2

Verify
system
robustnes
s under
jamming
on PBCH /
PDCCH
channel

• 5G NR SA
cell active
(n78 20
MHz)
• UE
attached
and UDP
DL data call
• Jammer
calibrated
& isolated

1. Record baseline
KPIs (RSRP, TPUT,
BLER).
2. UE attached to the
network; UDP DL TP
- 10Mbps
3. Increase jammer
power stepwise (-40
→ 0 dBm).
4. Observe PDCCH
decode and RRC
state.
5. Remove jammer →
measure recovery.

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

RRC
CONNECTE
D
maintained

 Reporting
Period 2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 215 of 228

Test
scenario ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution date
Actual
result

Status
(Pass/Fail)

1.3

Jammin
g of DL
shared
channel

1.3

Verify
system
robustnes
s under
jamming
on PDSCH
channel

• 5G NR SA
cell active
(n78 20
MHz)
• UE
attached
and UDP
DL data call
• Jammer
calibrated
& isolated

1. Record baseline
KPIs (RSRP, TPUT,
BLER).
2. UE attached to the
network; UDP DL TP
- 100Mbps
3. Increase jammer
power stepwise (-40
→ 0 dBm).
4. Observe PDSCH
decode and RRC
state.
5. Remove jammer →
measure recovery.

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

RRC
CONNECTE
D
maintained

 Reporting
Period 2

1.4

Jammin
g of DL
shared
channel
with
max TP

1.4

Verify
system
robustnes
s under
jamming
on PDSCH
channel
with max
TP

• 5G NR SA
cell active
(n78 20
MHz)
• UE
attached
and UDP
DL data call
• Jammer
calibrated
& isolated

1. Record baseline
KPIs (RSRP, TPUT,
BLER).
2. UE attached to the
network; UDP DL TP
- 120Mbps
3. Increase jammer
power stepwise (-40
→ 0 dBm).
4. Observe PDSCH
decode and RRC
state.
5. Remove jammer →
measure recovery.

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

RRC
CONNECTE
D
maintained

 Reporting
Period 2

1.5

Jammin
g of DL
shared
channel
for
multiple
UEs

1.5

Verify
system
robustnes
s under
jamming
on PDSCH
for

• 5G NR SA
cell active
(n78 20
MHz)
• UEs
attached
and UDP
DL data call

1. Record baseline
KPIs (RSRP, TPUT,
BLER).
2. UEs attached to
the network; UDP DL
TP - 100Mbps per
every UE
3. Increase jammer

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

RRC
CONNECTE
D
maintained

 Reporting
Period 2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 216 of 228

Test
scenario ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution date
Actual
result

Status
(Pass/Fail)

multiple
UEs

• Jammer
calibrated
& isolated

power stepwise (-40
→ 0 dBm).
4. Observe PDSCH
decode and RRC
state.
5. Remove jammer →
measure recovery.

1.6

Jammin
g of UL
control
channel

1.6

Verify
system
robustnes
s under
jamming
on
PUCCH
channel

• 5G NR SA
cell active
(n78 20
MHz)
• UE
attached
and UDP
UL data call
• Jammer
calibrated
& isolated

1. Record baseline
UL KPIs (RSRP,
TPUT, BLER).
2. UE attached to the
network; UDP DL TP
- 1Mbps
3. Increase jammer
power stepwise (-40
→ 0 dBm).
4. Observe PUCCH
decode and RRC
state.
5. Remove jammer →
measure recovery.

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

RRC
CONNECTE
D
maintained

 Reporting
Period 2

1.7

Jammin
g of UL
shared
channel

1.7

Verify
system
robustnes
s under
jamming
on PUSCH
channel

• 5G NR SA
cell active
(n78 20
MHz)
• UE
attached
and UDP
UL data call
• Jammer
calibrated
& isolated

1. Record baseline
UL KPIs (RSRP,
TPUT, BLER).
2. UE attached to the
network; UDP UL TP
- 10Mbps
3. Increase jammer
power stepwise (-40
→ 0 dBm).
4. Observe PUSCH
decode and RRC
state.
5. Remove jammer →
measure recovery.

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

RRC
CONNECTE
D
maintained

 Reporting
Period 2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 217 of 228

Test
scenario ID

Test
scenario

Test case
ID

Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution date
Actual
result

Status
(Pass/Fail)

1.8

Jammin
g of UL
shared
channel
for
multiple
UEs

1.8

Verify
system
robustnes
s under
jamming
on PUSCH
for
multiple
UEs

• 5G NR SA
cell active
(n78 20
MHz)
• UEs
attached
and UDP
UL data call
• Jammer
calibrated
& isolated

1. Record baseline
UL KPIs (RSRP,
TPUT, BLER).
2. UEs attached to
the network; UDP UL
TP - 2Mbps per every
UE
3. Increase jammer
power stepwise (-40
→ 0 dBm).
4. Observe PUSCH
decode and RRC
state.
5. Remove jammer →
measure recovery.

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

RRC
CONNECTE
D
maintained

 Reporting
Period 2

1.9

Jammin
g of DL
and UL
shared
channel
s

1.9

Verify
system
robustnes
s under
jamming
on PDSCH
and
OUSCH
channels

• 5G NR SA
cell active
(n78 20
MHz)
• UEs
attached
and UDP
bidirection
al data call
• Jammer
calibrated
& isolated

1. Record baseline
KPIs (RSRP, TPUT,
BLER).
2. UE attached to the
network; UDP
Bidirectional TP -
UDP DL 10Mbps /
UDP UL 2Mbps
3. Increase jammer
power stepwise (-40
→ 0 dBm).
4. Observe PDSCH /
PUSCH decode and
RRC state.
5. Remove jammer →
measure recovery.

Jam freq:
3.50 GHz
± 120
kHz;
Power
steps: 5
dB

 Reporting
Period 2

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 218 of 228

A.30 Characteristics Extractor

Project Name: NATWORK
Component
Name: Characteristics Extractor
Created by: GRADIANT
Date of creation: 09/11/2025
Filename: GRAD-CharacteristicsExtract.xlsx

Test scenario
ID

Test
scenario

Test case ID
Test
case

Pre-
conditions

Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

CharExt-
TS.01

2-Node
extractio

n
capabilit

y
validatio

n

CharExt-TS.01-
TC.01

Alice-
Bob
Link

enable
d

1) 2-node
setup
operationa
l (Alice
and Bob)
2)
Environme
nt
configured
at the
agreed
frequencie
s

1) Configure
the system
in TDD and
FDD
2) Generate
UL/DL traffic
in different
scenarios
3) Capture
and extract
Alice–Bob
measureme
nts

Alice-Bob
measureme

nts

The setup
provides

realistic UL
and DL

behavior
consistent

with
expected
channel

characteristi
cs

15/04/202
5

Alice and
Bob channel
measureme

nts (I/Q
samples for

UL & DL)
were

extracted
correctly
and the
training

dataset has
been

generated.

Pass

CharExt-
TS.02

3-Node
extractio

n
capabilit

y
validatio

n

CharExt-TS.01-
TC.01

Eve
link

enable
d

1) 3-node
setup
operationa
l (Alice,
Bob and
Eve)
2)
Environme
nt
configured
at the

1) Configure
the system
in TDD and
FDD
2) Generate
UL/DL traffic
in different
scenarios
3) Capture
and extract
Eve

Eve
measureme

nts

The setup
provides

realistic Eve
behavior

consistent
with

expected
channel

characteristi
cs

15/04/202
5

Alice, Bob
and Eve I/Q

samples
have been
extracted
correctly
and the
model

validation
and

eavesdroppe

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 219 of 228

Test scenario
ID

Test
scenario

Test case ID
Test
case

Pre-
conditions

Test steps Test data
Expected

result
Execution

date
Actual result

Status
(Pass/Fail)

agreed
frequencie
s

measureme
nts as a
passive
receiver

r datasets
have been
generated.

A.31 Key Generator

Project Name: NATWORK
Component
Name: Key Generator
Created by: GRADIANT
Date of creation: 09/11/2025
Filename: GRAD-KeyGen.xlsx

Test scenario
ID Test scenario Test case ID Test case

Pre-
conditions Test steps Test data

Expected
result

Execution
date Actual result

Status
(Pass/Fail)

KeyGen-
TS.01

Reciprocity
Evaluation

in TDD

KeyGen-
TS.01-TC.01

ML
prediction
(UL to DL)

1) Channel
Characteris
tics
extracted
from Alice-
Bob link in
TDD
2) ML
model for
reciprocity
trained for
TDD

1) Capture
UL channel
2) Apply ML
model to
predict DL
from UL
3)
Compare
predicted
DL and
measured
DL

UL channel
estimates,
predicted

DL,
measured

DL

The ML
model try

to
reproduce

DL
behavior

with
acceptable

accuracy
than the
old link

15/05/2025

For the
OFDM-TDD

95 GHz
scenario
without

noise, the
neural

network
reaches a

low
validation

MAE of
1.24 × 10−2

after 127
epochs.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 220 of 228

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

KeyGen-
TS.01

Key
Generation
Performanc

e in TDD

KeyGen-
TS.01-TC.02

Generation
and

disagreeme
nt test

1) DL
extracted
and
predicted
DL
obtained
from the
TDD model
2)
Quantificati
on and
Reconciliati
on models
enabled to
generate
the key in
TDD

1) Generate
Alice-Bob
TDD keys
2) Apply
quantificati
on and
reconciliati
on blocks
3)
Compute
KGR and
KDR

Alice–Bob
bitstreams

in TDD

The
component
is capable
of produce

keys and
measure

the
generation

and
disagreeme
nt ratios in

TDD

15/05/2025

The KDR
after

quantizatio
n is kept

under 1%
for the

OFDM-TDD
95GHz

scenario
without
noise.

Pass

KeyGen-
TS.02

Reciprocity
Evaluation

in FDD

KeyGen-
TS.01-TC.01

ML
prediction
(UL to DL)

1) Channel
Characteris
tics
extracted
from Alice-
Bob link in
FDD
2) ML
model for
reciprocity
trained for
FDD

1) Capture
UL channel
2) Apply ML
model to
predict DL
from UL
3)
Compare
predicted
DL and
measured
DL

UL channel
estimates,
predicted

DL,
measured

DL

The ML
model tries

to
reproduce

DL
behavior

with
acceptable

accuracy
than the
old link

15/05/2025

For the
OFDM-FDD
94/95 GHz

scenario
without

noise, the
neural

network
reaches a

low
validation

MAE of
1.86 × 10−2

after 143
epochs.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 221 of 228

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

KeyGen-
TS.02

Key
Generation
Performanc

e in FDD

KeyGen-
TS.02-TC.02

Generation
and

disagreeme
nt test

1) DL
extracted
and
predicted
DL
obtained
from the
FDD model
2)
Quantificati
on and
Reconciliati
on models
enabled to
generate
the key in
FDD

1) Generate
Alice-Bob
FDD keys
2) Apply
quantificati
on and
reconciliati
on blocks
3)
Compute
KGR and
KDR

Alice–Bob
bitstreams

in FDD

The
component
is capable
of produce

keys and
measure

the
generation

and
disagreeme
nt ratios in

TDD

15/05/2025

The KDR
after

quantizatio
n is kept

under 1%
for the

OFDM-FDD
94/95 GHz

scenario
without
noise.

Pass

A.32 Security Evaluator

Project Name: NATWORK
Component
Name: Security Evaluator
Created by: GRADIANT
Date of creation: 09/11/2025
Filename: GRAD-SecurityVal.xlsx

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 222 of 228

Test scenario
ID

Test
scenario

Test case ID Test case Pre-conditions Test steps
Test
data

Expected result
Execution

date
Actual result

Status
(Pass/Fail)

SecVal-
TS.01

Security
Validatio
n in TDD
for sub-

THz

SecVal-
TS.01-
TC.01

Randomne
ss Test

1) Pipeline
operational in
TDD
2) Bitstreams
exported from
main link

1) Generate a
set of PKG
Keys in TDD
2) Run NIST
Test
3) Collect
results and
observations

Receiv
ed

Alice-
Bob
key

bitstre
ams in
TDD.

The generated
PKG TDD key

bitstreams
show

statistical
properties

consistent with
a truly random

sequence

23/05/202
5

The
Frequency
test of NIST
Test Suite

has been run
and passed

with a
sequence

length equal
to 256 and

over 100000
binary

sequences.

Pass

SecVal-
TS.01

Security
Validatio
n in TDD
for sub-

THz

SecVal-
TS.01-
TC.02

Eavesdrop
ping Test

1)
Operational
main link
between Alice
and Bob in
TDD
2)
Operational
attacker
capable of
eavesdroppin
g passively.
3) Bitstreams
exported from
all the
components

1) Generate a
set of PKG
Keys from
Alice-Bob and
Eve in TDD
2) Compare
both
bitstreams and
evaluate the
level of
disagreement.

Receiv
ed

Alice-
Bob
and
Eve

keys in
TDD

Eve cannot
reconstruct or
correlate with
the main key
for TDD link.

23/05/202
5

Eve Key
Disagreemen
t Ratio is over

45% for
OFDM-TDD

95GHz
scenario.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 223 of 228

Test scenario
ID

Test
scenario

Test case ID Test case Pre-conditions Test steps
Test
data

Expected result
Execution

date
Actual result

Status
(Pass/Fail)

SecVal-
TS.02

Security
Validatio
n in FDD
for sub-

THz

SecVal-
TS.02-
TC.01

Randomne
ss Test

1) Pipeline
operational in
FDD
2) Bitstreams
exported from
main link

1) Generate a
set of PKG
Keys in FDD
2) Run NIST
Test
3) Collect
results and
observations

Receiv
ed PKG

key
bitstre
ams in
FDD.

The generated
PKG FDD key

bitstreams
show

statistical
properties

consistent with
a truly random

sequence

23/05/202
5

The
Frequency
test of NIST
Test Suite

has been run
and passed

with a
sequence

length equal
to 256 and

over 100000
binary

sequences.

Pass

SecVal-
TS.02

Security
Validatio
n in FDD
for sub-

THz

SecVal-
TS.02-
TC.02

Eavesdrop
ping Test

1)
Operational
main link
between Alice
and Bob in
FDD
2)
Operational
attacker
capable of
eavesdroppin
g passively.
3) Bitstreams
exported from
all the
components

1) Generate a
set of PKG
Keys from
Alice-Bob and
Eve in FDD
2) Compare
both
bitstreams and
evaluate the
level of
disagreement

Receiv
ed

Alice-
Bob
and
Eve

keys in
FDD

Eve cannot
reconstruct or
correlate with
the main key
for FDD link.

23/05/202
5

Eve Key
Disagreemen
t Ratio is over

45% for
OFDM-FDD
94/95 GHz
scenario.

Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 224 of 228

A.33 AI -Based Anomaly Detection Explainer

Project Name: NATWORK
Component Name: Anomaly Detection Explainer Component
Created by: UZH
Date of creation: 23.09.2025
Filename: UZH-Anomaly Detection Explainer.xlsx

Test
scenario ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result Execution
date

Actual
result

Status
(Pass/Fail)

XAI-UZH-
TS01

Verify
compilation
and
deployment

XAI-UZH-
TS01-TC01

Build container,
deploy service,
verify health and
endpoints

Docker/Pod
runtime
available; ML-
IDS and MMT
running;
network
reachability
between
services.

1) Build image 2)
Deploy container
3) Check
liveness/readine
ss 4) Curl
REST/gRPC
endpoints 5) Tail
logs for errors

Contai
ner
image
&
config
(env
vars,
model
registry
URL).

Service
healthy;
endpoints
registered;
no startup
errors.

 Reporti
ng
Period 2

 Deploy
ok; no
errors

XAI-UZH-
TS02

Verify alert
ingestion
and
schema
validation

XAI-UZH-
TS02-TC01

Accept valid IDS
alert payloads
and validate
JSON schema

MMT generates
features; ML-
IDS emits
alerts; schema
registry
available.

POST valid alert
to /explain;
observe 200 OK
and explanation
doc ID

Sample
alert
JSON
(valid
schem
a).

Accepted,
200 OK;
payload
stored; no
drops.

 Report
ing
Period 2

 schem
a valid;
payload
stored;
no
drops.

XAI-UZH-
TS02

Verify alert
ingestion
and
schema
validation

XAI-UZH-
TS02-TC02

Handle
malformed
payloads
gracefully

Same as TC01.

POST malformed
payload; observe
400/422; WARN
logged; service
remains healthy

Sample
alert
JSON
with
missin
g/invali
d
fields.

Returns 4xx;
no crash;
pipeline
unaffected.

 Reporti
ng
Period 2

 warnin
gs
logged;
pipeline
stable

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 225 of 228

Test
scenario ID

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result
Execution

date
Actual
result

Status
(Pass/Fail)

XAI-UZH-
TS03

Verify
explanation
generation
for
malicious
traffic and
silence for
benign

XAI-UZH-
TS03-TC01

Produce
explanation for
DDoS burst alert

UE registered;
traffic generator
available; IDS
model loaded.

Trigger short
DDoS burst; wait
for IDS alert;
fetch explanation
JSON and
dashboard card

Replay
able
pcap:
DDoS
burst.

Top-k
features,
confidence,
and operator
summary
rendered;
mitigation
hint
available.

 Reporti
ng
Period 2

 DDoS
explana
tion
shown;
top-k
features

XAI-UZH-
TS03

Verify
explanation
generation
for
malicious
traffic and
silence for
benign

XAI-UZH-
TS03-TC02

Produce
explanation for
port scan alert

As above.

Trigger port scan;
collect
explanation
outputs

Replay
able
pcap:
TCP/U
DP
scan.

Explanation
generated;
correct
factors (e.g.,
unique dst
ports,
bursts)
highlighted.

 Reporti
ng
Period 2

 Port-
scan
explana
tion
correct;
key
factors
highlight
ed.

XAI-UZH-
TS03

Verify
explanation
generation
for
malicious
traffic and
silence for
benign

XAI-UZH-
TS03-TC03

Ensure no
explanations for
benign-only
traffic

As above.

Run benign
HTTP/MQTT/ICM
P flows for 5
mins

Benign
traffic
set.

No alerts →
no
explanations
.

 Reporti
ng
Period 2

 no
alerts

XAI-UZH-
TS05

Measure
fidelity and
stability of
explanation
s

XAI-UZH-
TS05-TC01

Fidelity via
perturbation/ins
ertion-deletion
test

Access to
model scoring
API; background
dataset
available.

Mask top-k
features
progressively;
measure score
delta (AUC)

Backgr
ound
dataset
;
captur
ed
alerts.

Fidelity ≥
0.90 (target).

 Reporti
ng
Period 2

 Fidelity
AUC
0.93

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 226 of 228

A.34 Wirespeed traffic analysis in the 5G transport network

Project Name: NATWORK
Component
Name: Wirespeed traffic analysis in the 5G transport network
Created by: CERTH
Date of creation: 01.09.2025
Filename: CERTH-Wirespeed-traffic-analysis.xlsx

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)

Wirespeed-
Traffic-
analysis-
TS01

Verify
compilatio
n and
deploymen
t

Wirespeed
-Traffic-
analysis-
TS01-
TC01

Compile
P4
program
for Agilio
SmartNIC

P4
pipeline
running

1. Compile P4
program
2. Deploy to
Agilio SmartNIC

P4
program

Compilatio
n
successful,
binary
loads to
Agilio
SmartNIC 07/2024

Compilatio
n
successful
, binary
loads to
Agilio
SmartNIC Pass

Wirespeed-
Traffic-
analysis-
TS01

Verify
compilatio
n and
deploymen
t

Wirespeed
-Traffic-
analysis-
TS01-
TC02

Interconne
ction of
CERTH IDS
with the P4
Runtime

P4
pipeline
running

1. Deploy 5G
network
2. Deploy P4
program
3. Deploy CERTH
IDS

Default
traffic
generato
r

CERTH IDS
successfull
y parse and
handle the
ingress
traffic from
Agilio P4
SmartNIC 11/2024

CERTH IDS
successful
ly parse
and handle
the ingress
traffic from
Agilio P4
SmartNIC Pass

Wirespeed-
Traffic-
analysis-
TS02

Verify
packet
classificati
on

Wirespeed
-Traffic-
analysis-
TS02-
TC01

Validate
benign
traffic
classificati
on

Compone
nt running

1. Send benign
traffic flows
2. Collect
classification
metadata

Default
traffic
generato
r

All packets
classified
as benign 02/2025

All packets
classified
as benign Pass

Wirespeed-
Traffic-
analysis-
TS02

Verify
packet
classificati
on

Wirespeed
-Traffic-
analysis-
TS02-
TC02

Validate
malicious
traffic
classificati
on

Compone
nt running

1. Send traffic
flows from the
dataset
2. Collect

CICIDS2
017
dataset

Packets
correctly
tagged as
malicious 04/2025

Packets
correctly
tagged as
malicious Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 227 of 228

Test scenario
ID

Test scenario Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
classification
metadata

Wirespeed-
Traffic-
analysis-
TS03

Verify
control-
plane
integration

Wirespeed
-Traffic-
analysis-
TS03-
TC01

Verify rules
from
control
plane
reflect
classificati
on results

Compone
nt running

1. CERTH IDS
inference on the
traffic flows
2. Push control
rules (e.g. drop
on malicious,
forward on
benign) 3.
Verify on the P4
controller that
the rules were
applied

Benign +
maliciou
s traffic

Benign
forwarded,
malicious
dropped 09/2025

Benign
forwarded,
malicious
dropped Pass

A.35 Detection and mitigation against jamming attacks

Project Name: NATWORK
Component Name: Jamming detection and mitigation
Created by: HES-SO
Date of creation: 01/04/2025
Filename: HES-SO_Jamming.xlsx

Test scenario
ID

Test
scenario

Test case ID Test case Pre-
conditions

Test steps Test data Expected
result

Execution
date

Actual result Status
(Pass/Fail)

Jamming Validatin
g testbed

hesso-jamming-TS01-
TC01

Single UE
connecte
d to
testbed
to
validate
correct
behaviou

The
addition of
the SIM
card into
the WebUI
to allow
access to

Step 1:
gNodeB
and
srsRAN
container
s running.

N/A
Connectio
n
succesful

15/04/202
5

Pass Pass

D6.2-System Integration on the testbeds, Pilot installations and implementations.r1

Page 228 of 228

Test scenario
ID

Test
scenario

Test case ID Test case
Pre-

conditions
Test steps Test data

Expected
result

Execution
date

Actual result
Status

(Pass/Fail)
r of
testbed.

internet to
that user.

Jamming
Validatin
g jammer

hesso-jamming-TS01-
TC02

Single UE
connecte
d and
USRP
B210
radiating

Idem than
TS01-
TC01.
Jammer
correctly
installed.
Sometime
s USRP
B210 gives
problem
as gNodeB
and
GNURadio
fights for
the same
USRP.

Step 1:
Run the
gNodeB
and the
5G CN.
Step 2:
Wait for
the UE to
be
connecte
d.
Step 3:
Run the
jammer
container

Logs
availabl
e inside
the
contain
er
gNodeB
(srsRAN
)

SINR & CQI
dropping
heavily and
immediatel
y after the
jammer
starts.

28/05/202
5

Precisely we
can report
SINR
dropping and
other metrics
stopped to
report due to
the
communicati
on fail.

Pass

Jamming
Validatin
g jammer

hesso-jamming-TS01-
TC03

Two UE
connecte
d and
USRP
B210
radiating

Idem than
TS01-
TC02.
Adding the
second
SIM card.

Identical
steps
apart

Logs
availabl
e inside
the
contain
er
gNodeB
(srsRAN
)

SINR & CQI
dropping
heavily and
immediatel
y after the
jammer
starts.

Not yet.
Add actual
result

-

