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Executive summary  
Deliverable D6.2 “System Integration on the testbeds, Pilot installations and 

implementations.r1”, outlines the first steps in the validation of the NATWORK system, prior to 

the pilot trials. Within this deliverable, the infrastructure of the testbeds for NATWORK project 

is fully described. These testbeds were constructed to host NATWORK components that are 

derived from the sixteen (16) Use Cases of the project. Several test scenarios have been identified 

to ensure the technical readiness of the NATWORK system for each individual component.  

Furthermore, within this technical report the deployment of the Attack Generation System is 

thoroughly presented. This Attack Generation System emulates potential attacks on the network 

and allows verification of the performance of NATWORK modules. Training datasets for the AI 

models are also described. 

Fourteen (14) testbeds are currently employed by the NATWORK project belonging to thirteen 

(13) partners. These testbeds have been set-up throughout Europe. More specifically, the 

testbeds for the NATWORK project reside in the following areas (countries): Greece, Spain, Italy, 

France, Belgium, United Kingdom, Poland, Hungary, Switzerland. 

These testbeds, used by the NATWORK project, are controlled environments that evaluate the 

sixteen (16) Use Cases (UCs) and the related components that have been identified in previous 

stages of the project. Currently, this test framework evaluates the technical elements of 

NATWORK components.  

The components of the NATWORK project have been defined in D2.3 “Architecture, Interfaces & 

Specifications”. Additional information for the components was introduced in D6.1 “Definition of 

the evaluation framework & Pilot specifications”. Currently, forty-three (43) components have 

been identified from the 16 Use-Cases of the project. Each component determines the related 

NATWORK service or services and illustrates an element(s) of the system. For mature 

components, specific test scenarios have been identified and demonstrated within the report. 

Each test scenario covers a specific functionality of the component in question.  

Dry run tests have been performed for specific (mature) components of NATWORK. These tests 

are preliminary and indicate the initial behavior of the system. The dry run test results are 

presented in this report. Most components have been installed on a dedicated testbed. In case 

that a component is set up in more than one testbed, the test results are reported in one single 

report per component. Through D6.3, the second version of “System Integration on the testbeds, 

Pilot installations and implementations” report, the second phase of dry run tests of the 

components will be documented. In that second report, all components, including components 

that currently are in their early stage, will be validated. Moreover, use case trials and demos will 

be performed as part of T6.3 “Use Cases Trials and Demonstration” and the relevant outcomes 

will also be reported in D6.3 in M32.  
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As a final step, several potential attack scenarios have been formulated for NATWORK. These 

attacks have identified vulnerabilities of the services and components of the NATWORK system. 

By identifying these vulnerabilities, the security and overall performance of NATWORK 

components can be improved. The attacks have been triggered through the Attack Generation 

System, which is a tool that processes potential attacks to a given system. These attacks and the 

corresponding response of NATWORK are also reported within the current deliverable.  
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1. Introduction  
The main goal of T6.2 “Testbed integration & attack generation system.r1” is to prepare 

NATWORK for the forthcoming use case trials of the system and the validation and evaluation of 

the NATWORK framework while T6.3 “Use Cases Trials and Demonstration” focuses on the 

implementation/execution and reporting of these use case trials and demonstrations, taking into 

account end-to-end use case requirements and architecture implementation (WP2) for the 

beyond 5G/6G security framework envisioned in NATWORK. To accomplish these goals, several 

activities have been performed in this period and reported in D6.2 “System Integration on the 

testbeds, Pilot installations and implementations.r1”. More specifically, the set-up of the 

NATWORK components into the testbeds is thoroughly described. For the components installed, 

dry run tests have been performed to indicate that the components are ready for use for the next 

stages of the project. The actual test scenarios and the results of these tests are also presented 

within the present report. Finally, several attacks were identified and triggered through the 

Attack Generation System. At the current stage, the response of each individual Use Case to these 

attacks has been also reported in D6.2. 

This specific deliverable covers the initial assessment of the validation of NATWORK components. 

In the first version, D6.2 focuses on the successful installation of the 43 components of the 

NATWORK project. Moreover, this deliverable identifies the results of the dry run tests of mature 

components. At M32, the second version of this report, D6.3, will be submitted having the dry 

run test results for all components. In this second report, the interworking of the developed 

architectural elements will be assessed. The final definition and set-up of the use-case 

environments, the initial set of generated results and findings from T6.3 “Use Cases Trials and 

Demonstration” will be also presented in D6.3.  

1.1. Purpose and structure of the document 

D6.2 “System Integration on the testbeds, Pilot installations and implementations.r1” focuses on 

the interconnection of the NATWORK components– currently 43, and the validation of the 

technical readiness of the system. More precisely, this deliverable includes a detailed report for 

each individual testbed. In addition, this deliverable highlights the successful installation of the 

NATWORK components onto the testbeds and verifies that the components are up and running. 

These verifications are performed through specific Test Scenarios and related Test Cases that are 

also presented in this document. Moreover, relevant security attacks have been triggered against 

the NATWORK components. The response to these attacks is demonstrated in the report. 

The sections of this document can be summarized as follows:  
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• Section 2 – Testbed Environments: Section 2 describes the 14 testbeds within NATWORK 

and the related components that have been installed in the testbeds. 

• Section 3 – Dry Run Tests for NATWORK Components: This part of the deliverable 

identifies the process of the dry run tests for each NATWORK component. Moreover, the 

dry run test results or the period in which the dry run tests will be performed are 

presented (see Appendix). 

• Section 4 – Attacks: Throughout this section, multiple types of attacks towards NATWORK 

ecosystem are presented and the related response to these attacks are depicted. 

• Section 5 – Conclusions: This section discusses the key elements of the document, i.e. the 

set-ups of the Testbeds, the individual tests (Dry Run Testing) of the components or group 

of components, and the related attacks that the NATWORK ecosystem could, in certain 

conditions, face. 

• Appendix – Test Scenarios of Components: This appendix demonstrates the Test 

Scenarios for the matured components of NATWORK project. Within each scenario, the 

period in which the dry run test has been or will be conducted is indicated. Test scenarios 

that have been run also contain their corresponding results. 

1.2. Intended Audience 

The NATWORK Project’s D6.2 “System Integration on the testbeds, Pilot installations and 

implementations.r1” is devised for public use. This deliverable focuses on the initial assessment 

of NATWORK through the testbeds that have been set up by the partners. Within the testbeds, 

the related NATWORK components have been installed for preliminary tests. In addition, several 

attacks were identified towards the NATWORK system. These attacks are thoroughly described 

in the current deliverable. The information in this report is an integral part of WP6 activities and 

activities of other WPs. Furthermore, this report can be beneficial to an audience that is 

concerned about cybersecurity activities in general. 

1.3. Interrelations 

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and 

resources from academia, industry, and research sectors, focusing on user-centric service 

development, robust economic and business models, cutting-edge cybersecurity, seamless 

interoperability, and comprehensive on-demand services. The project integrates a collaboration 

of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a 

broad representation for addressing security requirements of emerging 6G Smart Networks and 

Services in Europe and beyond.   

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically 

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple 

activities across various WPs, the structure ensures clarity in responsibilities and optimizes 
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communication amongst the consortium partners, boards, and committees. The interrelation 

framework within NATWORK offers smooth operation and collaborative innovation across the 

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e., 

Research Institutes, Universities, SMEs, and Large Industries) enabling scientific, technological, 

and security advancements in the realm of 6G. 

D6.2 “System Integration on the testbeds, Pilot installations and implementations.r1” is directly 

associated with T6.2 “Testbed integration & attack generation system” and T6.3 “Use Cases Trials 

and Demonstration”. In D6.3, the second version of “System Integration on the testbeds, Pilot 

installations and implementations” report, both T6.2 and T6.3 will again report, but with the 

focus being the final definition, set-up and integration of the use-case environments, the 

generated trial results and findings. In addition, this deliverable acts as an interconnection 

between T6.1 that has been concluded at M18 and T6.4 that will be completed after T6.2 and 

T6.3. Furthermore, D6.2 is related with WP2 as the related Use-Cases and relevant Architecture 

were established in it, as well as WP3, WP4 and WP5 as the related components were defined 

through these WPs. 
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2. Testbed Environments   
This section describes the testbeds that NATWORK project uses to verify its components and 

services in a preliminary stage. These components have been determined previously, through 

deliverable D2.3 “Architecture, Interfaces & Specifications” in M12. This deliverable depicted the 

initial version of the architecture of the NATWORK system and the fundamental components that 

constitute the overall functionalities that NATWORK provides. In addition, from D6.1 “Definition 

of the evaluation framework & Pilot specifications” that was submitted in M18, it was identified 

further how the project will demonstrate the performance, security, and sustainability of its 

proposed solution. 

The testbeds examined thoroughly in this section will evaluate the 16 Use Cases and the related 

components that have been established in previous stages of the project. The main goal is to 

verify that the NATWORK components are up and running. Additional actions, including 

integration activities, will be performed at later stages of the project. 

In the table below, all of the testbeds that have been used for NATWORK project are depicted. 

So far, fourteen (14) testbeds have been set-up from thirteen (13) partners. The main aim of 

using these testbeds is to verify the readiness of NATWORK components. These testbeds are 

spread throughout EU and more specifically in 9 countries. It should be noted that some 

components have been installed in more than one testbed. More information can be found in 

the table below, where each individual testbed including the name of the testbed, the partner 

responsible for the testbed and the component(s) that have been installed in each testbed are 

reported: 

Table 1: List of testbeds and related components for NATWORK project 

# Testbed Partner Component(s) 

1 5G Testbed CERTH 

• AI-Based RIS Configuration Component 

• ML-based MIMO Component 

• JASMIN & Filter Mitigation Component 

• Multimodal Fusion Approach for Intrusion 

Detection System for DoS Attacks 

Component 

• Lightweight SDN-based AI-enabled Intrusion 

Detection System for Cloud-based Services 

Component 

• AI-enabled DoS Attack Component 
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# Testbed Partner Component(s) 

• Multiagent AI based cybersecurity support 

system 

• Microservice Behavioral Analysis for 

Detecting Malicious Actions Component 

• Security-performance balancer Component 

2 NITOS Testbed CERTH 

• Slice Orchestration and Slice Management 

for beyond 5G Networks Component 

• Wirespeed traffic analysis in the 5G transport 

network 

3 5GLab GRAD 

• DetAction: Detection and reAction Against 

Jamming Attacks Component 

• Characteristics Extractor 

• Key Generator 

• Security Evaluator 

4 ARNO Testbed CNIT 

• AI-driven Security Monitoring for Anomaly 

Detection and Root Cause Analysis in IoT 

Networks Component 

• Wire-speed AI (WAI) and Decentralized 

Feature Extraction (DFE) Component 

• DFE Telemetry Component 

5 5G-IoT Testbed MONT 

• AI-driven Security Monitoring for Anomaly 

Detection and Root Cause Analysis 

Component 

• CIA-hardening of x86 payloads Component 

• CIA-hardening of WASM payloads 

Component 

6 CloudNativeLab IMEC 

• TrustEdge Service 

• Feather Component 

• Flocky Component 

7 
Patras5G-PNET 

Testbed 
PNET 

• MTD Controller Component 

• MTD Strategy Optimizer Component 

• MTD Explainer Component 

• MTDFed Component 
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# Testbed Partner Component(s) 

• AI-driven Security Monitoring for Anomaly 

Detection and Root Cause Analysis 

Component 

8 NCL UESSEX 

• Energy efficient over edge-cloud Component 

• Secure-by-design Orchestration Component 

• Security-compliant Slice Management 

Component 

• Federated Learning for Edge-to-cloud 

Component 

9 TSS Testbed TSS 

• CIA-hardening of x86 payloads Component 

• CIA-hardening of containerized payloads 

Component 

• CIA-hardening of WASM payloads 

Component 

10 ISRD Testbed ISRD 

• JDM-xApp Component 

• Liquid RAN Component 

• Liquid Near-RT RIC Component 

• KPM xApp Component 

11 ELTE Testbed ELTE 

• End-to-End Security Management 

Component 

• Data plane ML Component 

• Secure Data Aggregation Component 

12 ZHAW Testbed ZHAW 

• MTD Controller Component 

• MTD Strategy Optimizer Component 

• MTD Explainer Component 

• MTDFed Component 

13 HES-SO Testbed HES-SO 

• Detection against jamming attacks 

Component 

• Setting up of a Mirai botnet 

• FPGA-based hardware detection of DDoS 
attacks. 

14 UZH Testbed UZH • Anomaly Detection Explainer Component 

 

In the following sub-sections, the infrastructure of the individual testbeds, as well as information 

on how the related components are installed in the testbeds are described.  
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2.1. 5G Testbed  

The 5G Testbed at CERTH comprises two main parts: one dedicated to signal processing for the 

development and evaluation of services and components at the lower communication layers, and 

another based on Software Defined Networking (SDN), focusing on upper layers and service-level 

functionalities. Both parts are described in detail below. 

2.1.1. 5G-Signal Processing Testbed Infrastructure  

The CERTH 5G Signal Processing testbed integrates all components required to build a network 

in the FR1 5G frequency bands. It is designed to support experimentation-driven research in both 

wired and wireless communication networks. The testbed consists of modular components that 

can be flexibly combined to address diverse scenarios, enabling extensive experimentation and 

solution evaluation. During the project, the testbed will be expanded with additional hardware 

components, which are also described in this section. 

Software Defined Radios: The testbed includes five USRP B210 SDRs, which enable 

experimentation across a wide range of scenarios involving multiple base stations, as well as both 

legitimate and malicious users such as jammers or eavesdroppers. Each USRP B210 operates over 

a frequency range of 70 MHz to 6 GHz and supports two transmit and two receive chains, allowing 

2×2 MIMO operation. The devices provide up to 56 MHz of instantaneous bandwidth through 

the transceiver front-end and are powered by a Spartan-6 XC6SLX150 FPGA. Connectivity is 

ensured via USB 3.0 (SuperSpeed), with host integration supported through the UHD driver and 

GNU Radio. 

Processing Units: Testbed includes three NVIDIA Jetson Nano modules as lightweight edge 

nodes. Each Nano integrates a 128-core Maxwell GPU, a quad-core ARM Cortex-A57 CPU, 4 GB 

LPDDR4 (25.6 GB/s), making them suitable for on-device DSP, spectrum sensing, and distributed 

inference close to the radios; camera-centric pipelines and Linux/JetPack support align with our 

GNU Radio toolchain.  

For the heavier workloads, there are three NVIDIA Jetson AGX Orin units provide an Ampere GPU 

with 2,048 CUDA cores and 64 Tensor Cores alongside a 12-core Arm Cortex-A78AE CPU—for 

accelerated PHY/MAC processing, neural receivers, and real-time beam/radar inference. This 

keeps SDR pipelines GPU-offloaded while remaining in a Linux/JetPack environment compatible 

with GNU Radio.  

RIS units: The RIS hardware integrated in the testbed is the TMYTEK XRifle Dynamic RIS designed 

for operation in the sub-6 GHz 5G band. It consists of a 16x16 PIN-diode array with binary phase 

control—the most constrained configuration, posing significant challenges for multiplexing 

schemes. The device covers 4.2–5.2 GHz, supports linear polarization, and provides 
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incidence/reflection steering capabilities from -60o to +60o along both vertical and horizontal 

planes. 

 

Figure 1: CERTH 5G Signal Processing Testbed 

Supplementary equipment: The testbed is further equipped with periodic antennas, WiFi 

antennas, RF splitters, and amplifiers, which extend its flexibility for diverse wireless 

experiments. Omnidirectional antennas allow baseline coverage and broadcast scenarios, while 

WiFi antennas support integration with commodity devices and benchmarking against standard 

WLAN technologies. RF splitters and amplifiers provide precise power control, distribution, and 

link-budget adaptation across the different SDR front-ends. In the upcoming period, the setup 

will be expanded with horn antennas and MIMO-capable arrays. The horn antennas will enable 

high-gain, highly directional measurements, particularly useful for RIS characterization, angular 

selectivity studies, and interference control. The addition of MIMO antenna arrays will unlock 

spatial multiplexing experiments, enabling realistic evaluations of the project outcomes. 

2.1.1.1. AI-Based RIS Configuration 

For the evaluation of this service, the parts of the testbed that will be used are the following: 

• USRPs B210  

• RIS unit 

• Horn antennas for reception and transmission 

• The processing units 
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2.1.1.2. ML-based MIMO 

For the evaluation of this service, the parts of the testbed that will be used are the following: 

• USRPs B210  

• MIMO antennas 

• The processing units 

2.1.1.3. JASMIN & Filter Mitigation  

• USRPs B210  

• MIMO, WiFi, periodic antennas 

• The processing units 

• Amplifiers 

2.1.2. Available cloud and edge resources 

The testbed integrates Cloud and Edge Computing resources to support experimentation and 

innovation in distributed infrastructures. It provides a flexible environment with Kubernetes and 

Docker for containerized applications, OpenStack for cloud orchestration, Open Source MANO 

(OSM) for network function management, and virtual machine (VM) capabilities for legacy and 

hybrid workloads. This combination enables researchers and developers to design, deploy, and 

evaluate advanced cloud-native and edge-native services in a realistic, scalable, and 

interoperable setting. 

2.1.3. 5G-Core and SDN related resources 

The testbed leverages Software-Defined Networking (SDN) and 5G technologies to enable 

experimentation with next-generation communication infrastructures. It integrates the OAI 5G 

Core Network project for 5G core functionalities, O-RAN for open and interoperable radio access, 

and OpenDaylight as an SDN controller to manage and orchestrate programmable networks. 

Together, these components create a flexible, standards-based environment for designing, 

testing, and validating 5G services, network slicing, and advanced edge-to-cloud use cases in both 

research and pre-deployment scenarios. 

Building on this foundation, this testbed incorporates a modular microservices-based 

architecture that supports dynamic scaling, automated lifecycle management, and performance 

monitoring. AI-driven behavioral analysis models process real-time data to detect anomalies such 

as DoS attempts, triggering automated responses through the Floodlight SDN controller. This 

integrated setup provides a realistic platform for validating threat detection accuracy, evaluating 

mitigation effectiveness, and assessing overall system resilience under controlled attack 

simulations in next-generation 5G microservice ecosystems. 
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2.1.4. 5G-SDN Testbed Components Set-Up 

2.1.4.1. Multimodal Fusion Approach for Intrusion Detection System for DoS 

Attacks  

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge 

Resources and the 5G-Core and SDN related resources will be used. 

2.1.4.2. Lightweight SDN-based AI-enabled Intrusion Detection System for Cloud-

based Services  

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge 

Resources and the 5G-Core and SDN related resources will be used. 

2.1.4.3. AI-enabled DoS Attack  

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge 

Resources and the 5G-Core and SDN related resources will be used. 

2.1.4.4. Microservice Behavioral Analysis for Detecting Malicious Actions  

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge 

Resources and the 5G-Core and SDN related resources will be used. 

2.1.4.5. Security-performance balancer 

Separating user traffic to different servers based on ciphering, integrity, and replay protection 

algorithms is essential for optimizing performance and enabling efficient use of cryptographic 

acceleration. Different algorithms (Snow, AES, ZUC) impose varying computational loads on the 

CPU and hardware accelerators. By directing users with similar algorithmic demands to specific 

servers by Security Performance Balancer, the network can reduce context-switching overhead 

and better align traffic with hardware capabilities, such as dedicated crypto engines and 

accelerators. This minimizes latency, prevents CPU bottlenecks, and ensures consistent 

throughput, especially under high-load conditions. It also allows tailored tuning of server 

configurations to match the expected algorithm's workload, improving processing efficiency and 

overall user experience. 

2.1.4.6. Multiagent AI based cybersecurity support system 

Towards the deployment of this component at the 5G-SDN Testbed, the Cloud and Edge 

Resources and the 5G-Core and SDN related resources will be used. 

 

2.2. NITOS Testbed Components Set-Up  

The NITOS Testbed Facility offers a comprehensive set of technologies and capabilities that 

support advanced experimentation. This section provides a detailed description of the testbed 
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infrastructure, along with the configuration and deployment procedures required for hosting the 

NATWORK components within the NITOS environment.  

2.2.1. NITOS Testbed Infrastructure 

NITOS Future Internet Facility is a state-of-the-art, integrated research infrastructure comprising 

multiple heterogeneous testbeds. It is dedicated to supporting experimentation-driven research 

in the field of wired and wireless communication networks. The facility is remotely accessible and 

available to the global research community 24/7. To date, it has been utilized by hundreds of 

researchers worldwide.  

 

  

Figure 2: NITOS Testbed 

Wireless Experimentation Platform: NITOS provides a highly versatile wireless networking 

testbed, enabling researchers to conduct real-world experiments across a spectrum of radio 

technologies and deployment scenarios. The platform features a mix of stationary and mobile 

nodes, each equipped with multiple wireless interfaces that support technologies such as 5G, Wi-

Fi, WiGig, and others. These nodes are deployed across diverse environments, from controlled 

indoor labs with external RF isolation to complex outdoor spaces where interference and mobility 

reflect real-world conditions. This configuration allows experimentation at multiple layers of the 

protocol stack—from physical layer customization to application-layer performance testing—

facilitating research in multi-radio access technologies (multi-RAT), spectrum sharing, and next-

generation wireless systems. The testbed supports repeatable trials, multi-hop mesh setups, 

mobility patterns, and heterogeneous interface coexistence, making it ideal for both academic 

and industrial research.  
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Cloud and Edge Computing Resources: To support distributed systems and networked 

applications, the NITOS facility includes a powerful computing cluster composed of multi-core, 

high-memory servers with substantial storage capacity and high-throughput network 

interconnects. This infrastructure enables experimentation with a wide range of cloud and edge 

computing paradigms. The platform supports virtualization (VMs), container orchestration (e.g., 

Kubernetes, Docker), and bare-metal deployment, allowing researchers to explore topics such as 

microservice-based architectures, resource offloading, network slicing, NFV, and service 

chaining. Fast internal and external connectivity facilitates integration with other testbed 

components—such as wireless or IoT infrastructures—enabling end-to-end experimentation 

across heterogeneous layers.  

Software-Defined Radio (SDR) Capabilities: For researchers interested in custom wireless 

protocol development and physical layer innovation, NITOS offers access to a rich set of high-end 

software-defined radio platforms. These SDR devices are fully integrated with the testbed’s 

compute and wireless infrastructure, enabling both isolated lab-scale experiments and over-the-

air trials. The available SDRs support advanced configurations such as 4×4 MIMO, channel 

bandwidths of up to 100 MHz, and high-frequency tunability. Combined with flexible software 

stacks (e.g., GNU Radio, srsRAN, OAI), they allow full-stack experimentation, from waveform 

generation and channel modeling to real-time signal processing and PHY/MAC protocol design. 

The SDR testbed also supports research in spectrum sensing, dynamic access control, and cross-

layer optimization.  

Programmable Networking (SDN): The NITOS infrastructure is equipped with a fully 

programmable networking environment that supports software-defined networking across both 

wired and wireless domains. Utilizing SDN-capable switches and programmable forwarding 

engines, researchers can design and deploy custom network control policies, routing strategies, 

and traffic engineering solutions. The testbed supports OpenFlow and advanced data plane 

programmability via the P4 language, enabling low-level control over packet processing pipelines. 

This allows for experimentation with novel network functions, telemetry, intent-based 

networking, and integration with edge computing and IoT environments. The SDN infrastructure 

is ideal for exploring topics such as network slicing, service function chaining, and security-aware 

routing in programmable, multi-domain environments. 
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2.2.2. NITOS Testbed Components Set-Up 

2.2.2.1. Slice Orchestration and Slice Management for beyond 5G Networks 

Component 

Towards the deployment of this component at the NITOS Testbed, the Cloud and Edge Computing 

Resources, the Wireless Experimentation Platform and the SDR Resources will be utilized. More 

specifically, the following resources will be employed: 

• Kubernetes cluster hosted on server  

• OAI for RAN and Core Network 

• Nodes with 5G connectivity (UEs) 

2.2.2.2. Wirespeed traffic analysis in the 5G transport network 

Towards the deployment of this component at the NITOS Testbed, the Cloud and Edge Computing 

Resources, the Wireless Experimentation Platform and the SDN Resources will be utilized.  More 

specifically, the following resources will be employed: 

• Netronome Agilio SmartNIC 25Gbps 

• Kubernetes cluster hosted on server 

• OAI for RAN and Core Network 

• GPU for the training the Machine Learning (ML) model 

2.3. 5GLab Testbed Components Set-Up  

This section presents two independent tracks deployed at Gradiant 5GLab. The first is for AI-

based anti-jamming, which runs on the 5G RAN infrastructure and the second is the PKG stack 

for a sub-THz indoor link. 

2.3.1. 5GLab Testbed Infrastructure 

The AI-based anti-jamming testbed is designed for detecting and mitigating jamming attacks in a 

5G indoor laboratory environment, where the UE, jammer, and gNB are located within 10 meters. 

The system operates in the n78 band (3.5 GHz, FR1), using USRP B210 devices both to generate 

the jamming signals and to capture IQ samples of the gNB’s received signal. 

The jammer transmits software-generated chirp signals (chosen to maximize power efficiency) 

with configurable parameters such as transmit gain, sweep period and bandwidth. Transmission 

is handled through the UHD framework. 

The gNB runs on BubbleRAN, which provides an SDK to develop xApps for the Near-RT RIC, in this 

case focused on PRB scheduling. The captured signals are preprocessed to identify the PRBs 
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affected by jamming. The results of this detection stage are then communicated to the scheduling 

xApp via a REST API, where they serve as the input parameters for adaptive scheduling decision. 

 

Figure 3: AI-based anti-jamming testbed 

The PKG testbed targets OFDM-based physical layer key generation for sub-THz bands in an 

indoor laboratory environment with separation between Tx and Rx around 10 meters. It consists 

of three SDR nodes (Alice, Bob & Eve) using USRP B210 devices with specific sub-THz antennas 

centered at 92.45 GHz on TDD. USRP B210 units provide baseband acquisition and streaming of 

raw IQ, while external sub-THz up/down-conversion front ends perform the translation to and 

from 92.45 GHz and handle RF filtering and gain control. Waveform generation, clocking, and 

data acquisition run on the host via GNU Radio. Channel estimation and feature extraction are 

executed in software (PC/server with MATLAB) and feed the PKG pipeline: quantization, 

information reconciliation, and privacy amplification. For learning-based UL/DL prediction, 

inference is performed by a pre-trained model on a dedicated server connected to the SDR node. 
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Figure 4: PKG infrastructure-component testbed 

2.3.2. 5GLab Testbed Components Set-Up  

In this case, DetAction component relies on AI-based anti-jamming testbed infrastructure, 

meanwhile the following three components belong to the PKG testbed structure. 

2.3.2.1. DetAction: Detection and reAction Against Jamming Attacks  

The role of this component is to receive, preprocess, localize in the spectrum, and mitigate 

jamming attacks. It takes IQ samples from a USRP capturing the signal, resamples them to a target 

data rate, and applies an STFT with a fixed-length window to transform them into the frequency 

domain. From this representation, spectrum fragments corresponding to 5G RB frequencies are 

extracted and normalized. These fragments are then evaluated by a CNN to detect whether 

jamming is present. Finally, the mapping of jammed versus non-jammed RBs is provided to the 

scheduling xApp, which uses this information to avoid the jammed spectrum while attempting to 

maintain QoS for the UEs. 

2.3.2.2. Characteristics Extractor 

This component converts raw IQ into channel characteristics for downstream PKG analytics. It 

performs synchronization, channel estimation, and feature computation (CSI and related 

statistics) on data acquired from the sub-THz indoor link. The service generates feature vectors 

with timestamps and quality flags, finally saves the results in an experiment database. The 

resulting clean feature sets feed the Key Generation Service and provide channel indicators for 
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PKG evaluation. Metrics for the adversary (Eve) are also extracted here, ensuring variability 

across positions and conditions to assess security in the Security Validation component.  

2.3.2.3. Key Generator 

This component derives a shared symmetric key from reciprocal channel measurements over the 

sub-THz link. It ingests features from the extractor and executes the PKG pipeline: UL/DL neural 

network model, followed by quantization, information reconciliation, and privacy amplification. 

The AI block can enhance reciprocity using measurements at Alice. The operating scope targets 

indoor trials with a Tx–Rx separation around 10m, with Bob moving to create a dynamic channel. 

Key results include Key Generation Rate (KGR), Key Disagreement Rate (KDR) for the main link, 

reconciliation performance, and end-to-end latency. 

2.3.2.4. Security Evaluator 

This component provides independent verification of key strength and system robustness. It runs 

statistical tests (NIST test suite), tracks mismatch rates and compares the Alice/Bob keys against 

an adversary (Eve) baseline. It reports experiment results for the whole PKG pipeline and 

evaluates them against baseline values of randomness quality, KGR/KDR targets (KPIs), and 

reproducibility across scenarios. 

2.4. ARNO Testbed  

2.4.1. ARNO Testbed Infrastructure 

The Advanced Research on NetwOrking (ARNO) testbed is a modular and continuously evolving 

experimental platform that spans the full nick Telco and IT continuum: access, metro, and core 

networks, as well as edge and cloud domains. Initially conceived for optical networking research, 

ARNO has matured into a reference infrastructure for programmable networking and in-network 

intelligence. A central strength of ARNO lies in its programmable hardware ecosystem, which 

enables researchers to explore fine-grained control, acceleration, and telemetry directly in the 

data plane. The testbed integrates P4-programmable 100G switches, including the Intel Barefoot 

Tofino 1, offering line-rate programmability for flexible packet processing and advanced 

telemetry functions. Complementing these, ARNO features a broad set of SmartNICs and DPUs, 

such as NVIDIA BlueField-2 and BlueField-3, as well as converged BlueField-2 DPUs with 

embedded GPUs. These platforms allow the offloading of networking, storage, and security 

services from CPUs to programmable accelerators, supporting advanced use cases in in-network 

computing, hardware-assisted orchestration, and AI-driven decision-making at the edge. 

Additional programmable platforms, including NetFPGA SUME and Xilinx Alveo boards, further 

extend experimentation into FPGA-based packet processing. ARNO’s network core couples this 

programmable environment with a metro optical infrastructure (ROADMs, packet-optical nodes, 

coherent transponders, and pluggable optics up to 400 Gbps) and a Calix E7 PON for the access 
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segment. Two Edgecore switches with Quad Small Form-factor Pluggable Double Density (QSPF-

DD) interfaces provide support for 400G ZR/ZR+ and 400G/100G XR pluggable optics, 

programmable via CMIS specifications. 

 

Figure 5: ARNO testbed 

For computing, ARNO provides DELL PowerEdge and HP servers equipped with NVIDIA Tesla, 

V100, A16, and T4 GPUs, FPGAs, and Intel PAC cards, enabling high-performance AI/ML 

workloads tightly coupled with programmable networking. This synergy allows end-to-end 

validation of architectures spanning from programmable data planes (Tofino, BlueField, 

NetFPGA) to cloud-edge orchestration. On the wireless side, ARNO includes an SDN-controlled 

5G/6G segment with SDRs (Ettus X310, B210, N310), Quectel development kits, NTN modules, 

and support for multiple gNB splits (option 2 and 7-1). The testbed runs open and customizable 

5G/6G software stacks (OAI, srsRAN), tightly integrated with RAN Intelligent Controllers (RICs) 

and hardware acceleration for latency-sensitive functions. COTS solutions, such as the 

BubbleRAN MPX, further complement this environment. 

Beyond connectivity, ARNO supports vertical applications through a robotics and XR 

infrastructure: multi-payload drones, 4WD rovers, Meta Quest 3 and Oculus VR headsets, smart 

glasses, and humanoid robots enable immersive and mobile scenarios for verticals such as 

remote driving, training, and telepresence. Traffic generation and monitoring is ensured by 

Spirent, VIAVI, and software tools like Cisco TRex, enabling experiments up to 400 Gbps line rate. 

Finally, ARNO supports federated and secure experimentation through OpenVPN, GRE, IPsec, and 

BGP tunneling, with proven interoperability across multiple European testbeds. 
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2.4.2. ARNO Testbed Components Set-Up 

2.4.2.1. Wire-speed AI (WAI) and Decentralized Feature Extraction (DFE)  

The DFE/WAI components run as security functions inside programmable devices at the data 

plane of the network (core network and data net network connected to 6G). The main backends 

considered for setting up in ARNO are the following:  

• Bluefield-2 and/or Bluefield-3 SmartNIC encompassing DOCA Flow acceleration 

capabilities. 

• Barefoot Tofino 1 switch. 

In the former case, at least a couple of Bluefield-2 are deployed in a packet/optical network 

encompassing 40/100/200/400 Gigabit Ethernet links. Each device is attested to a hosting server 

(i.e. Dell PowerEdge R760 or HPE Proliant DL380 Gen11), capable of providing single or dual port 

traffic capacity up to 100Gb/s or 200Gb/s, depending on the type of card. 

The deployment of DFE/WAI functions is done using the OFA Agent container, that may reside 

either in external controllers, in the hosting server or in the DPU user space.  

2.4.2.2. DFE Telemetry  

The DFE Telemetry is a network function component deployable in P4 switches, able to extract 

selected features from selected flows and send them in the form of a Telemetry Report to 

selected analysis collectors. The setup is envisioned as a P4 software deployment within 

hardware backends. Software backends are the BMv2 and NIKSS switch utilizing e-BPF 

technology. The deployment is performed through P4 code instantiation inside the backend, 

through manual or orchestration-triggered via OFA. At runtime, all P4 flow entry configurations 

are possible that enable the activation/deactivation of a new telemetry stream, selecting the 

destination collector. Furthermore, at runtime, all feature selection are configurable dynamically 

via dedicated flow rule commands.  

2.4.2.3. AI-driven Security Monitoring for Anomaly Detection and Root Cause 

Analysis  

The AI-driven Security Monitoring for Anomaly Detection and Root Cause Analysis (RCA) 

component, developed by MONT, will be adapted and deployed within CNIT’s ARNO testbed to 

leverage its programmable hardware and high-performance AI capabilities. This component aims 

to provide real-time detection of anomalies and advanced RCA in complex IoT and 6G 

environments. 

The ARNO testbed offers an environment with P4-programmable switches (Intel Tofino), 

SmartNICs/DPUs (NVIDIA BlueField-2/3), and FPGA accelerators. The MMT probe and 

Montimage AI Platform (MAIP) will integrate with these programmable data-plane elements to 
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collect, process, and analyze traffic features in real time. Through in-network telemetry provided 

by ARNO’s DFE/WAI components, the AI-driven monitoring system will ingest fine-grained flow 

data for anomaly detection.  Using advanced ML algorithms (CNNs, reinforcement learning, XAI 

modules), the component will identify deviations in IoT traffic patterns indicative of DDoS attacks 

or misconfigurations. RCA functionalities will further correlate anomalies with root causes, such 

as specific flows, devices, or misbehaving services, and provide explainable outputs to operators. 

The deployment will exploit both edge and core domains of ARNO: 

• At the data plane, lightweight feature extraction will be performed directly on P4 switches 

or BlueField SmartNICs. 

• At the AI/ML backends, Dell and HPE servers equipped with GPUs (Tesla V100, T4, A16) 

will run the MAIP models, allowing accelerated inference and scalable training. 

• The RCA visualization will be integrated into the ARNO orchestration tools and 

dashboards, offering explainable insights for operators. 

The deployment in ARNO will validate the ability of MONT’s component to operate at line-rate 

monitoring speeds (up to 100–200 Gbps), with low-latency anomaly detection and explainable 

RCA. This will demonstrate how AI-driven monitoring can be tightly coupled with programmable 

infrastructures in 6G contexts, ensuring scalability, transparency, and trustworthiness. 

2.5. Montimage 5G-IoT Testbed 

The 5G-IoT testbed deployed by MONT serves as a dedicated environment to evaluate, integrate, 

and validate advanced security monitoring solutions in realistic IoT and 5G/6G scenarios. The 

testbed is designed to support experimentation with high volumes of heterogeneous traffic and 

provides the infrastructure to simulate IoT devices, gateways, and services under diverse 

operational conditions, alongside real devices. It enables the deployment of monitoring and 

analysis components, such as the Montimage Monitoring Tool (MMT) and the Montimage AI 

Platform (MAIP), ensuring that anomaly detection, root cause analysis, and mitigation strategies 

can be tested in a controlled yet realistic setting. The following subsections describe the 

underlying testbed infrastructure and the components set-up, highlighting how they jointly 

create a flexible and programmable platform for the validation of NATWORK technologies. 

2.5.1. Montimage 5G-IoT Testbed Infrastructure 

As presented in Figure 6, the 5G-IoT testbed of Montimage constitutes a controlled experimental 

environment designed to validate anomaly detection, monitoring, and automated response 

mechanisms in next-generation IoT networks. Its configuration, combining 5G Core functions, IoT 

devices, and the Montimage Monitoring Tool (MMT), directly supports the objectives of UC#3.1: 

Enabling anomaly detection using machine learning automated techniques for attack detection. 
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At the access layer, IoT devices and smartphones connect to the network through base stations 

supported by Software Defined Radio (SDR). This setup allows the emulation of diverse traffic 

conditions, including benign operations and malicious behaviors such as Distributed Denial-of-

Service (DDoS) attacks initiated by compromised IoT devices. The MMT-Sniffer, deployed at the 

IoT routing device, captures traffic flows at the earliest possible stage, ensuring that anomaly 

detection systems receive accurate and representative input data. 

The 5G Core (EPC) hosts the principal network functions required for control and data plane 

operations, including the Access and Mobility Function (AMF), the Session Management Function 

(SMF), and the User Plane Function (UPF), interconnected with additional modules such as NRF, 

NEF, PCF, UDM, and AF. This architecture enables full end-to-end data transmission between IoT 

devices and the external Data Network (DN), thereby ensuring realistic conditions for traffic 

analysis and attack emulation. 

 

Figure 6: Montimage 5G-IoT testbed architecture 

Complementing the 5G Core, the Montimage Monitoring Tool (MMT) is deployed as the main 

security monitoring component. The MMT Probe collects and analyzes traffic data in real time, 

while processed results are stored in a MongoDB database for correlation and long-term analysis. 

The Operator module consolidates insights from the probe and database, enabling root cause 

analysis, anomaly classification, and alert generation. Results are exposed through dashboards 

that provide real-time visualization of traffic trends, anomalies, and security events. 
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AI/ML capabilities sit on top of a feature-extraction and enrichment layer that incorporates 

protocol semantics, temporal patterns, graph relationships, and device context. The model zoo 

includes Isolation Forest and autoencoder-based detectors, LSTM for sequential behavior, and 

graph neural networks for topology-aware reasoning. Robustness is assessed through adversarial 

testing against evasion and poisoning, while accountability and resilience are tracked with 

precision/recall, time-to-detect, and mean time to recovery. Explainability is provided through 

SHAP and counterfactual analyses, summarized by an LLM-based explainer to translate low-level 

indicators into human-readable causes and mitigation suggestions. 

This integrated testbed supports the following experimental capabilities: 

• End-to-end monitoring of IoT traffic across access, core, and external networks. 

• Emulation of attack scenarios involving infected or compromised IoT devices. 

• Application of AI/ML-based anomaly detection to identify suspicious behaviors. 

• Automated decision support and Root Cause Analysis (RCA) for mitigation of threats. 

Overall, the 5G-IoT testbed provides the experimental foundation for UC#3.1, ensuring that 

anomaly detection solutions are developed, validated, and optimized under realistic conditions 

that closely mimic 5G-enabled IoT deployments. Reproducible deployment is facilitated by a 

Docker-based reference configuration that instantiates the 5G core components, MMT services 

(Probe, Operator, MongoDB), and example traffic generators. The materials and scripts are 

available at: https://github.com/montimage-projects/cerberus-edge-configuration.git 

2.5.2. 5G-IoT Testbed Components Set-Up 

2.5.2.1. AI-driven Security Monitoring for Anomaly Detection and Root Cause 

Analysis (AI-AD&RCA) 

This comprehensive solution leverages the Montimage 5G-IoT Testbed as the experimental 

foundation for deploying advanced artificial intelligence techniques to enhance security 

monitoring capabilities in next-generation IoT ecosystems. The framework integrates real-time 

network traffic analysis with explainable AI methodologies to provide transparent, accountable, 

and resilient security operations. 

 

Figure 7: AI-AD&RCA flow diagram 

Figure 7 illustrates the AI-driven Security Monitoring framework designed for anomaly detection 

and root cause analysis (RCA) in IoT and 5G/B5G networks. The framework integrates multiple 
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layers of monitoring, analysis, and explanation to ensure both rapid detection of threats and 

transparency in decision-making. 

The process begins with data sources, where network traffic from IoT/5G/B5G testbeds and log 

data from SIEM systems are collected as the primary inputs. These heterogeneous data streams 

are then processed through the data collection and feature extraction stage, where the raw data 

is normalized and transformed into meaningful features suitable for analysis. 

At the core of the monitoring system are the detection modules, which combine two 

complementary approaches. On the one hand, AI models provide machine learning-based 

detection for adaptive and scalable anomaly identification. On the other hand, rule-based 

detection (e.g., MMT-Security) applies deterministic checks and lightweight pattern matching to 

capture well-defined or known attack behaviors. Together, these methods enhance detection 

coverage and robustness. 

To ensure that security decisions remain interpretable, the framework integrates an Explainable 

AI (XAI) layer. This module explains why specific anomalies were flagged, providing interpretable 

insights that support operator trust, compliance requirements, and accountability in security 

operations. Once an anomaly is confirmed, the root cause analysis (RCA) module investigates the 

underlying reasons for the detected issue, whether it stems from a misconfiguration, a targeted 

cyberattack, or system-level failures. 

Finally, all findings are consolidated in a dashboard and action layer, where operators can view 

security alerts, RCA insights, and recommended mitigation actions. This user-friendly interface 

ensures that decisions are informed, actionable, and timely. 

Overall, this layered architecture provides a holistic approach to anomaly detection and RCA. It 

combines AI and deterministic methods, enhances explainability, and strengthens resilience 

against evolving threats, thereby contributing to secure and trustworthy IoT and 5G/B5G 

networks. 

AI-AD&RCA Inplementation  

AI-AD&RCA, built on the Montimage Monitoring Tool (MMT) framework, offers flexible 

deployment options to accommodate diverse operational environments. Deployment can be 

performed via Docker containers, by building from the source code, or using precompiled 

packages. All deployment resources are available on Github1:   

 
1 Github repository: https://github.com/Montimage/maip  

https://github.com/Montimage/maip
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• Docker Deployment enables quick, consistent, and environment-agnostic setups. Using 

Docker containers simplifies installation and ensures reliable operation across different 

platforms, making it an ideal choice for rapid deployment. 

• Source Code Installation is intended for environments that require customization or 

advanced debugging. By building the system directly from source code, operators gain full 

control over configuration and the internal logic of the platform, enabling fine-tuned 

adaptations for specific requirements. 

• Precompiled Packages offer a fast deployment option for Ubuntu-based systems. The 

precompiled .deb packages reduce setup complexity and minimize configuration 

overhead, making them a convenient choice for quick installation without deep technical 

adjustments. 

The core of the tool is a server implemented in ExpressJS, integrating the MMT framework 

written in C. This includes modules such as MMT-DPI, MMT-Probe, and MMT-Security for real-

time feature extraction and traffic analysis. On top of this foundation, the system leverages 

advanced Python-based machine learning (ML) and explainable AI (XAI) libraries to enable 

intelligent anomaly detection and root cause analysis. 

The server exposes over 60 Swagger APIs that deliver comprehensive services, including real-time 

feature extraction from network traffic, building and training ML models for anomaly detection, 

retrieving detailed model metadata, predicting whether network traffic is benign or malicious, 

and applying various XAI techniques to interpret and explain model predictions. These APIs 

support the full lifecycle of anomaly detection and root cause analysis, from data ingestion to 

actionable insights. 

On the client side, the system includes a React-based interface that interacts with the server 

through the Swagger APIs. This interface provides a user-friendly environment for managing 

models, monitoring anomalies, and visualizing root cause insights. The landing page displays a 

comprehensive list of both prebuilt and user-defined ML models for anomaly detection, enabling 

flexible and efficient operational workflows. 

Beyond ML-based detection, the system adopts a hybrid detection approach, supporting rule-

driven and signature-based detection methods to ensure robust threat detection coverage. 

Prebuilt security rules define abnormal traffic patterns for known threats, while anomaly-based 

rules capture expected traffic behaviour, flagging deviations for further investigation. This hybrid 

architecture enables the system to effectively detect both known threats through signature-

based detection and previously unseen anomalies through ML-based analysis, enhancing 

situational awareness and enabling precise root cause analysis. 
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2.6. CloudNativeLab Testbed  

xNativeLab (previously CloudNativeLab) is an IMEC testbed which allows for fast and user-friendly 

creation of Kubernetes clusters for teaching and use case evaluation purposes. Kubernetes nodes 

run on virtual machines, allowing for fast and easy setup as well as teardown. xNativeLab is 

closely related to the IDlab Virtual Wall, which uses much of the same hardware but allows for 

baremetal access to devices and servers. xNativeLab provides SSH access through VPN to pre-

provisioned servers with a fully set up cluster for various supported Kubernetes versions, 

including networking plugins. Conversely, the Virtual Wall is accessed through SSH by using jFed 

(Fed4Fire) or the SLICES project. While xNativeLab is the default evaluation environment for 

Kubernetes-related projects, the Virtual Wall is a fallback option if baremetal functionality is 

required.  

2.6.1. CloudNativeLab Testbed Infrastructure 

xNativeLab is a testbed service designed to simplify experimentation with cloud-native and edge-

native frameworks in realistic environments. Traditional research infrastructure often requires 

extensive manual setup and advanced system administration skills, which can hinder the quick 

reproduction of experiments. xNativeLab builds on the SLICES research infrastructure, enabling 

researchers to quickly deploy distributed software frameworks across cloud, edge, and IoT 

devices while maintaining complete control over the stack for customization. A key component 

is the xNativeApp, a deployment package that includes both infrastructure and software 

definitions, allowing researchers to create reproducible and easily deployable research packages. 

The current implementation of xNativeLab is illustrated in Figure 8.  

The Virtual Wall is the main hardware supporting experiments and consists of three parts. Virtual 

Wall 1 & 2 (206 & 159 nodes, respectively) are legacy testbeds with older hardware; the New 

Virtual Wall 1 is currently under construction and consists of 186 pcgen7 nodes with: 

• 1x 6 core Intel Core i5-9500 CPU (3.00GHz) 

• 64GB 

• 512GB SSD 

• 1 or 5 gigabit nics (+1 control connection) 

In all cases, nodes have public IPv6 addresses. IPv4 addresses are LAN only, although public IPv4 

addresses can be requested.  

 



D6.2-System Integration on the testbeds, Pilot installations and implementations.r1 

 

Page 44 of 228 
 

 

Figure 8: Current xNativeLab implementation 

2.6.2. CloudNativeLab Testbed Components Set-Up 

The components for each service are deployed differently across CloudNativeLab, the Virtual 

Wall (baremetal servers), and edge devices as required. While CloudNativeLab is the main 

testbed and the default for Kubernetes-related components, some components (e.g. Feather) 

are designed for specifically edge device operation, or require access to Operating System-level 

resources (e.g. Flocky). 

2.6.2.1. TrustEdge  

For TrustEdge, the Kubernetes control plane and all cloud-related components are set up in 

xNativeLab, hosted on a single control plane node. Edge devices that require attestation (e.g. 

Raspberry Pi, edge servers) are external to xNativeLab. Specifically, as shown in Figure 9: 

• The Kubernetes control plane (Certificates, RBAC, CRDs e.g. EdgeNode) form the basis of 

the cluster and are hosted in their natural cloud environment in xNativeLab. 

• Due to its tight interaction with the Kubernetes API itself and the need to run in a secure 

environment, the Attestation controller is run in the control plane on xNativeLab. 

• The Registrar/Tenant/Verifier components form the cloud-based endpoints of TrustEdge 

for various operations; these interact with the Attestation controller and require secure 

(controlled) execution, and as such are hosted in the control plane.  
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• The KeyLime agent is the edge agent component of TrustEdge. Each edge device 

requesting to join the cluster has an agent deployed on it which initiates attestation and 

further component deployment. 

• Fledge/Feather is the default Kubernetes agent used by TrustEdge. It runs on each 

attested edge device, and is securely deployed after attestation and certificate 

generation.  

 

 
Figure 9: TrustEdge attestation components in Kubernetes and on edge devices 

2.6.2.2. Feather 

The Feather evaluation setup is divided between xNativeLab VMs and an edge device, specifically 

a Raspberry Pi 4. xNativeLab runs a Kubernetes cluster with a single control plane node and a 

worker node, as indicated by Figure 10. No modifications to a default cluster are required, as 

Feather merely replaces the standard kubelet, behaving according to Kubernetes expectations. 

Feather itself is deployed on the edge device, replacing the role of a kubelet and CNI plugin. The 

edge device itself is provisioned with containerd and KVM/Qemu to support the multi-runtime 

nature of Feather. 
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Figure 10: High level overview of Feather components 

2.6.2.3. Flocky  

Flocky is evaluated on bare-metal machines using the Virtual Wall directly rather than xNativeLab 

Kubernetes VMs.  

For the scalability evaluation, all Flocky services are run on a single server simulating virtual edge 

devices (discovery + metadata services only, more information in the functional evaluation). The 

evaluation scenario consists of a straightforward execution and measurement script and 

warrants no further details. 

The functional evaluation consists of five node configurations, each deployed on a single server 

as per Figure 11. The deployed services are the Flocky Discovery, Metadata, Deployment, and 

Swirly services, as well as a stubbed Feather interface which handles component deployment. 
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Figure 11: Functional evaluation setup for Flocky 

Specifically, these microservices fulfill the following roles: 

• Discovery: explores the network for other nearby Flocky devices, and provides basic node 

information for higher level services. 

• Metadata: subscribes to the Discovery service, gathering node capabilities, resource 

availability, cluster information and active deployments from each node. Also keeps an up to 

date index of the local node’s capabilities through CapabilityProviders. An example 

CapabilityProvider is Feather, which provides runtime capabilities for containers and 

unikernels. 

• Swirly: comprises an orchestration algorithm and a web service for remote orchestration 

status updates, which may trigger deployment migrations.  

• Deployment: a web service translating Open Application Model (Swirly) deployment requests 

to Kubernetes Deployment manifests, keeping track of deployment status and reporting 

status updates to Swirly services. 

• Stubbed Feather interface: rather than allowing full processing of deployments, the Feather 

REST API is stubbed for this scenario. 
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2.7. Patras5G-PNET Testbed Components Set-Up  

2.7.1. Patras5G-PNET Testbed Infrastructure 

The Patras 5G-PNET facility is a private Network for 5G and IoT applications, adopting the 

Network Slice as a Service (NSaaS) model to provide tailored network slices for verticals to trial 

use cases and assess KPIs. It operates on licensed and unlicensed spectrum with dedicated SIM 

cards, supporting end-to-end customized slices across access, transport, and core, including IoT 

device slicing at the edge. The testbed enables MEC orchestration, mobility management for 

mobile streaming edge services, and holds an Academic License from the Greek government. It 

hosts a pre-commercial site with ERICSSON 5G Rel-17 equipment, testing 5G/6G cloud-to-edge 

scenarios using NOVA’s licensed spectrum, with the 5G Core remotely located in Athens. 

 

Figure 12: Patras 5G (PNET) facility infrastructure 

The cloud platform provides 1082 CPUs, 4.5 TB RAM, and 100 TB storage. It includes three AI-

enabled servers with 2x NVIDIA PNY QUADRO A6000 48GB GDDR6 GPUs interconnected via 

NVIDIA NVLINK Bridge. Servers connect via 100GbE/400GbE Edgecore P4 Switches and 

10GbE/40GbE NVIDIA Cumulus switches with dual 10GbE NICs DPDK enabled. Kubernetes 

clusters are available on demand, managed via GitOps (LF Sylva, OpenSourceMANO, Terraform), 

attached to the 5G System dataplane. 
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Available 5G Core and EPC solutions that can be orchestrated in the facility include Open5GS in 

Kubernetes, free5GC in Kubernetes, OpenAirInterface in Kubernetes, AMARISOFT 5GC, Ericsson 

and RAN solutions from open-source tools such as OAI and SRS. 

The facility's radio equipment features gNodeB models such as the 4x Amarisoft Classic callboxes 

supporting 5G SA/NSA, NB-IoT with 3SDR 2X2; 4x4 AW2S panther RU, several USRPs from ETTUS 

including N310, B210, B205 and LimeSDR cards. P-NET offers indoor and outdoor testing 

environments located at the university of Patras campus. The indoor site includes RAN 

equipment from Ericsson (4x DOTs 4479 – 4x4 MIMO) and 1 microcell 5W 4X4 outdoor RU 

operating FR1 n78.  

User equipment includes >20 5G SA standalone smartphones, 4 CPEs, 2 Raspberry Pis equipped 

with 5G modems, USRPs running OAI ue-softmodem ,plus standalone USB 5G modems for 

legacy devices (e.g. laptops). 

Monitoring is supported by Grafana, Prometheus, NetData, and OSM with VNF telemetry. 

Prometheus and NetData provide metrics for cloud infrastructure, VNFs, RAN nodes, and energy 

consumption of compute nodes, switches, 5G gNodeBs, and CPEs, stored in a Prometheus server. 

Grafana is used for visualization, with Elastic search and Kibana for data collection and 

visualization. 

2.7.2. Patras5G-PNET Testbed Components Set-Up 

Figure 13 illustrates the topology of the 5G testbed, with the same TelcoCloud components 

expected in future 6G networks, where we evaluated the UC4.5 AI-based MTD framework. The 

setup comprises three cloud environments, operated with OpenStack; one for the Core domain, 

termed ``Core NFVI", and the other for two distinct Radio Access Points with an Edge domain, 

the ``Edge NFVI." This deployment implements a distributed UPF architecture, where UPFs are 

co-located with the base stations (gNBs) in the Edge domains.  

The Edge NFVIs include Radio Access elements (UEs and gNBs) and Edge Cloud elements 

(including the UPF and other possible CNFs). This deployment allows emulating a distributed UPF 

architecture, where the UPFs are co-located with the gNB on the Edge domain. The Core NFVI 

hosts the control plane of the 5G Core Network, the subscriber database, and other secondary 

CNFs for service provision. The Core NFVI also hosts the Slice Manager, and the NFVO 

implemented with Kubernetes (for CNFs) and OSM (for VNFs). The proposed solutions 

implemented in the AI-based MTD framework are also hosted in the core NFVI. 
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Figure 13: Topology of the TelcoCloud testbed running in PNET testbed. 

The 5G Core is implemented with Open5GS, an open-source 3GPP Release-17 compliant 5G core. 

Open5GS provides the following network functions as discrete services, allowing the separation 

of the control and data planes: (i) AMF, (ii) SMF, (iii) UPF, (iv) AUSF, (v) NRF, (vi) UDM, (vii) PCF, 

and (viii) NSSF. 

The RAN and mobile UEs are implemented by UERANSIM, an open-source UE and gNB simulator.  

The 5G architecture is Standalone (5G SA). UERANSIM connects to Open5GS via a control 

interface with the AMF and a user interface to the UPFs. The simulated UEs and gNBs connect via 

a simulated radio interface. Unlike actual hardware equipment, UERANSIM allows the 

deployment of a significant number of virtual UEs to test the solution's scalability under an 

increasing network workload. 

Following this structure, as presented in Figure 14: Testbed configuration for the AI-based MTD 

service, the components of the AI-based MTD service are integrated in the testbed as described 

below. 
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Figure 14: Testbed configuration for the AI-based MTD service 

2.7.2.1. MTD Controller  

The MTD Controller dynamically executes MTD actions to change the attack surface of Telco 

Cloud networks while maintaining service continuity. It focuses on interfacing and orchestrating 

NFV resources with minimal disruption. 

It runs in the core domain as a VNF, with a minimal requirement of 8 vCPUs, 16 GB of RAM, and 

160 GB of storage. Its northbound interface (NBI) connects it with the MTD Strategy Optimizer 

(via REST API), receiving from the latter the decisions taken on which MTD operation to perform.  

Its southbound interface (SBI) is instead interfaced with the NFVO to enforce the operation on 

the targeted NFV resource. Compatible NFVOs are ETSI OSM for VNFs and Kubernetes for CNFs. 

2.7.2.2. MTD Strategy Optimizer  

The MTD Strategy Optimizer is the cognitive component of the AI-based MTD service developed 

to dynamically decide which MTD actions to perform based on the state of the Telco Cloud 

network. It learns and then applies an optimized MTD strategy balancing security, cost, and 

QoS/QoE. 

For this reason, the MTD Strategy Optimizer is interfaced with various near-real time data sources 

monitoring the network and collecting metrics to assess the network state. Specifically, the MTD 

Strategy Optimizer is interfaced via REST API with:  

1. The AI-driven security monitoring for anomaly detection and root cause analysis 

framework, collecting security analytic data. 
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2. The NFVO collecting resource consumption metrics to estimate the cost of MTD 

operations based on the targeted NFV resource to reconfigure. 

3. Openstack and Kubernetes for architectural and infrastructure information with near 

real-time information on the running VNFs/CNFs. 

4. The MTD Controller, informing it of the MTD operation to enforce. 

5. The MTD Explainer receiving multiple data from the MTD Strategy Optimizer, such as 

the decisions made and the rewards, to explain the policy and MTD strategy learned 

by the deep-RL model. 

2.7.2.3. MTD Explainer  

The MTD Explainer uses XAI for deep-RL models and post-hoc explanation techniques to clarify 

why specific MTD actions (e.g., migration vs. shuffling) for specific CNFs were chosen. For this 

reason, the MTD Explainer is hosted in the core domain together with the MTD Strategy 

Optimizer component, with which it is interfaced to interpret the latter’s decisions. 

2.7.2.4. MTDFed  

MTDFed is directly interfaced with the MTD Strategy Optimizer as it enables virtual network 

operators (VNOs) running local MTD optimizers to collaboratively improve and speed-up the 

optimization of MTD strategies among participants running local MTD Strategy Optimizer. Using 

Federated Learning (FL), MTDFed enables collaborative optimization without compromising the 

confidentiality of the network traffic nor that of the VNOs’ deep-RL models. 

2.7.2.5. AI-driven Security Monitoring for Anomaly Detection and Root Cause 

Analysis 

The AI-driven Security Monitoring and Root Cause Analysis (RCA) component, developed by 

MONT, will be integrated into the Patras5G-PNET testbed to provide real-time detection and 

analysis of anomalies in IoT and 6G network environments. The Patras5G-PNET facility, with its 

end-to-end slicing capabilities, MEC orchestration, and advanced monitoring infrastructure, 

offers an ideal environment to validate the component under realistic conditions 

The Montimage Monitoring Tool (MMT) and Montimage AI Platform (MAIP) will be deployed at 

both the Edge NFVI and Core NFVI layers of the testbed. At the edge, lightweight anomaly 

detection probes (MMT-probe) analyze traffic close to IoT devices and user equipment, enabling 

low-latency event detection. At the core, MAIP aggregates heterogeneous data streams (network 

traffic, logs, telemetry) and applies advanced ML models, including CNNs and reinforcement 

learning, to detect suspicious behaviors and provide RCA. This dual deployment ensures 

scalability and accuracy across the distributed 6G architecture. 

The integration leverages the testbed’s Prometheus, Grafana, and Kibana monitoring stack for 

visualization and correlation of detected events with infrastructure telemetry. Detected 
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anomalies are further enriched with contextual information from Cyber Threat Intelligence (CTI) 

sources, enabling actionable insights and reducing false positives. RCA capabilities ensure that 

when anomalies occur, the component not only signals the event but also identifies the 

underlying cause (e.g., misconfiguration, DDoS traffic pattern, compromised IoT device). 

This deployment contributes directly to UC#3.1 – Enabling anomaly detection using machine 

learning automated techniques for attack detection, validating its performance under realistic 

6G testbed conditions. It supports the NATWORK KPIs on Mean Time to Detect (MTTD), False 

Positive/Negative rates, and Mean Time to Resolve (MTTR) by embedding monitoring and RCA 

capabilities into the testbed’s edge-to-core continuum. 

2.8. NCL Testbed Components Set-Up  

2.8.1. NCL Testbed Infrastructure 

The Network Convergence Laboratory (NCL) at the University of Essex provides the foundation 

for the edge–cloud infrastructure used in NATWORK. NCL is a state-of-the-art research facility 

designed to explore cloud–edge convergence, energy-aware orchestration, and secure 

networked services. It integrates heterogeneous compute and storage resources with a high-

capacity programmable SDN network, enabling experimentation with advanced 6G edge–cloud 

concepts.  

For the testbeds we have two large-scale core cloud clusters, 2 cloudlets, and 4 edge nodes. Each 

core cluster node is based on AMD EPYC 7352 24-core processors (48 threads), Ubuntu 22.04 LTS, 

and NUMA-optimized architecture, interconnected via Pica programmable switches for flexible 

traffic steering. Collectively, the NCL infrastructure integrates over 200+ CPUs, 200+ TB of 

storage, and a programmable SDN/P4 network with 180 Gbps SDN and 100 Gbps P4 capabilities, 

providing the aggregate resources across cloud, cloudlet, and edge tiers. Cloudlet nodes serve as 

intermediate aggregation points, offering localized computing and orchestration closer to the 

edge. Edge servers extend the continuum further by hosting lightweight CNFs, microservices, and 

latency-sensitive workloads, while also acting as distributed points for federated learning and 

cyberattack simulations. The lab interconnects multiple edge-cloud clusters through a dedicated 

SDN fabric offering high bandwidth, ensuring low latency and high throughput across distributed 

domains. 

A set of containerized user-emulation clusters (user groups) have been deployed to generate 

application demand across the testbed. These emulation clusters are hosted on machines based 

on AMD EPYC 7281 16-core processors (32 threads) and run request generators as pods: benign 

clients that emulate real user behavior and malicious users that produce controlled, oscillating 
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request patterns. The malicious containers are used to reproduce and evaluate novel cyberattack 

scenarios such as Denial of Sustainability. 

 

Figure 15: NCL Testbed Infrastructure 

Figure 15: NCL Testbed Infrastructur demonstrates a high-level view of the testbed infrastructure, 

showing a multi-domain edge-to-cloud environment where secure-by-design and energy-aware 

orchestration, federated learning frameworks, and secure slice management functions are 

developed and validated.   

2.8.2. NCL Testbed Components Set-Up 

Figure 16: NCL Testbed Components illustrates the components of the NCL edge–cloud testbed 

used to evaluate UC1.1, focusing on decentralized orchestration and management of 6G slices 

under novel cyberattacks such as Denial of Sustainability (DoSt). The setup leverages the FORK 

orchestrator [2] as a baseline, extended with security-compliant orchestration (sFORK), 

federated learning, cyber threat intelligence (CTI) integration and monitoring frameworks. 

Prometheus telemetry and Grafana dashboards provide detailed observability of CPU and 

memory resources of CNF services, response times, and energy utilization. Secure-by-design 

orchestration is delivered via the sFORK framework, comprising global agents, local orchestration 

agents, CNF managers, slice managers, dependency operators, and AI-powered scheduler, with 

Kubernetes serving as both orchestration platform and execution environment for distributed 

CNFs and learning tasks. 
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Figure 16: NCL Testbed Components 

Security-compliant slice management leverages federated learning agents and the CTI 

framework, a peer-to-peer Operation Support System (OSS) that collects cluster hygiene metrics 

and guides resource allocation to mitigate threats such as DoSt attacks while aligning with 

sustainability goals. Federated learning for edge-to-cloud is done through distributed machine 

learning agents and shared datasets, with Prometheus TSDB and MinIO integration planned to 

support persistent storage. Secure inter-cluster connectivity is maintained via Submariner 

tunnels and the MCS API. Collectively, these components provide monitoring, orchestration, 

security, and learning capabilities, allowing evaluation of energy efficiency, slice resiliency, and 

attack mitigation in a realistic multi-domain edge–cloud environment. 

2.8.2.1. Energy efficient over edge-cloud   

This component focuses on evaluating the energy impact of benign and malicious requests on 

edge–cloud resources. Containerized demand-generation clusters are used to emulate realistic 

user traffic, including malicious patterns reproducing Denial of Sustainability (DoSt) attacks. 

These traffic generators, deployed as Kubernetes pods, stress CPU and memory resources of CNF 

services by issuing oscillating requests that degrade performance without causing full-service 

outages. Prometheus telemetry collects fine-grained CPU, memory, and response-time metrics, 

while Grafana provides visualization and comparative analysis across single- and multi-cluster 

setups. Together, these components enable measurement of energy utilization, service 

degradation, and QoS variance under controlled load scenarios, forming the basis for sustainable 

edge–cloud orchestration strategies. 

2.8.2.2. Secure-by-design Orchestration  

The secure-by-design orchestrator architecture integrates several key components: 

• Global Agent: Serves as the central decision-maker, managing global dependency graphs, 

initiating and monitoring deployments, and negotiating with local orchestration agents. 
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It evaluates cluster offerings based on security, resource availability, hygiene, and energy 

sustainability metrics. 

• CNF Manager: Oversees the lifecycle of Cloud-Native Functions, ensuring that CNFs meet 

predefined requirements while coordinating with local orchestration agents. 

• Slice Manager: Orchestrates network slices by tracking their status, dynamically allocating 

resources, and interacting with global and local agents to ensure efficient slice 

deployment and monitoring. 

• Local Orchestration Agents: Operate within each cluster to manage CNF deployments and 

lifecycle. They report cluster capabilities, including resource availability, hygiene scores, 

and compliance, to the global agent, and execute deployment decisions in real time. 

• Dependency Operator: Maintains global dependency graphs that map relationships 

between CNFs and microservices across clusters. It ensures subgraphs are up-to-date and 

distributed according to resource availability and security policies. 

• AI-Powered Scheduling: Applies machine learning models to improve resource allocation 

and scheduling, providing local agents with insights derived from usage patterns and 

predicted demand to optimize CNF performance. 

• Cluster Requirements: Defines cluster-specific requirements for CNF deployment, guiding 

local orchestration agents to allocate resources, enforce security policies, and meet 

performance metrics. 

• Monitoring: Continuously observes the health, performance, and security of CNFs and 

network slices. Integrated Prometheus telemetry supplies data to both local and global 

agents for timely decision-making and compliance with security policies. 

2.8.2.3. Security-compliant Slice Management  

Security-compliant slice management ensures that network slices and CNFs are deployed and 

operated securely, resiliently, and efficiently across multi-cluster edge–cloud environments. The 

secure-by-design orchestration framework integrates Cyber Threat Intelligence (CTI), enabling 

continuous vulnerability awareness and adaptive risk mitigation. The sFORK orchestrator 

coordinates within its operators and agents, leveraging CTI insights such as hygiene scores and 

vulnerability mappings to ensure only compliant and trusted deployments occur across clusters. 

The CTI Agent collects and shares vulnerability data between clusters, anonymizing sensitive 

fields while preserving actionable intelligence. Local orchestration agents execute secure 

deployments, while the Dependency Operator manages CNF interrelations. Prometheus 

telemetry provides real-time monitoring of CPU, memory, and network metrics, which are 
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utilized by Federated Learning (FL) agents to support predictive resource management and 

anomaly detection. Together, these components enable secure and risk aware management of 

6G slices across the edge–cloud continuum. 

2.8.2.4. Federated Learning for Edge-to-cloud  

The Federated Learning (FL) framework enables intelligent, distributed workload prediction and 

anomaly detection across edge and cloud domains within the 6G core. FL agents operate close 

to the infrastructure layer, training locally on CNF CPU, memory, and energy utilization metrics 

to derive cluster-specific insights. A data pipeline periodically extracts telemetry from 

Prometheus TSDB, batches it, and transfers it to MinIO for persistent storage and offline 

processing. These datasets comprise custom DoST simulation data, capture a mix of benign and 

adversarial workload behaviors, forming the foundation for model training across distributed 

nodes.  

Initial benchmarking has been conducted using historical Google cluster traces as baseline 

datasets for model development and performance validation. Multiple machine learning models 

were evaluated for workload prediction, with XGBoost achieving the best performance. 

Accordingly, the framework adopts Federated XGBoost as its baseline, leveraging an XGBoost 

bagging approach for decentralized training across distributed nodes. 

Two models are being developed under this framework: a resource optimization model that 

predicts workload trends and advises the orchestrator on energy-aware scaling decisions, and a 

classification model designed to identify and distinguish DoST-induced oscillatory patterns from 

benign users with legitimate demand surges. Future development will extend this architecture 

with decentralized publish/subscribe based FL integration within Kubernetes for enabling 

continuous improvement in workload forecasting, traffic classification, and orchestration 

resilience against evolving DoST-like threats. 

2.9. TSS Testbed infrastructure and Components Set-Up  

2.9.1. TSS Testbed Infrastructure 

TSS testbed is dedicated to validating CIA-hardening techniques (confidentiality, integrity, 

Availability) on X86 native, containerized, and WASM workloads. It provides:  

Hardware resources: 

o Dedicated server with multi-core CPU, 32-64 GB RAM, SSD storage. 

o Networking at 1/10 GbE. 

o Energy measurement instrumentation for KPI monitoring. 

Virtualisation & orchestration: 
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o Docker & kubernetes clusters for container-based deployments. 

o Support for Kubernetes sidecar deployment patterns (e.g., D-MUTRA sidecar for 

runtime attestation). 

Monitoring & analytics stack: 

• Prometheus + Grafana for system metrics (CPU, memory, energy). 

Security-specific frameworks: 

• D-MUTRA blockchain: decentralized, dependency-free mutual remote attestation 

framework.  

• LLVM toolchain for instrumentation of x86 code. 

• Modified WASMTIME runtime with integrity checker. 

• E9patch for hot patching executable binaries. It allows modifying and instrumenting 

binaries without requiring source code access. 

2.9.2. TSS Testbed Components Set-Up 

The testbed is structured into three parts corresponding to the supported format: 

2.9.2.1. CIA-hardening of x86 payloads  

• Workload: ELF-formatted executable MMT-Probe running as the security sensitive native 

workload defined in Use Case 1.2.  

• For practical reasons and representativeness of the test, SECaaS-hardened MMT-Probe, 

may be tested on a different testbed where it is deployed and running. (e.g., P-NET’s, 

CNIT’s or MONT’s). This will simplify the operations to generate normal traffic conditions 

(e.g., by T-Rex), collect performance ratio (e.g., throughput)  

• Tests will be made for CIA hardening as follows: 

1. Confidentiality: automatic encryption of ELF code section, decryption at runtime 

(<3s). 

2. Integrity: injection of Prove/Verify primitives, comparison of runtime bytecode 

signature vs pre-deployment reference, logging to D-MUTRA. 

3. Availability: monitoring packet-processing routines (timestamps, throughput 

baseline). 

• Workflow: 

1. Build & protect MMT binary via SECaaS pipeline, leveraging our tools aka Systemic 

and D-MUTRA. 

2. Instrument the hardened MMT binary, with timestamps, possibly triggered by 

i9patch’s trampolines or through a novel LLVM-based inserted probe. 

3. Deploy with blockchain nodes active. 
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4. Run test traffic (e.g;, simulated traffic/live/PCAP). 

5. Compare KPIs vs baseline unprotected MMT. 

2.9.2.2. CIA-hardening of containerized payloads 

• Workload: MMT-Probe and/or IS-RD’s Liquid xAPP deployed in Docker/K8s  

• For practical reasons and representativeness of the test, SECaaS-hardened MMT-Probe, 

may be tested on a different testbed where it is deployed and running. (e.g., IS-RD’s or 

MONT’s), simplify the operations to generate normal traffic conditions (e.g., by T-Rex), 

collect performance ratio (e.g., MMT’s throughput)  

Tests will be made for CIA hardening as follows: 

1. As the state of the art is mature and fulfilled in this area, no container-based 

integrity test will be implemented. 

2. Integrity verification is implemented with a sidecar attached to the workload 

namespace, monitoring the container’s workload memory footprint, and 

performing runtime attestation with D-MUTRA. 

3. Availability: monitoring through sidecar telemetry probes accessing the 

container’s workload elements (e.g., sampled collection of the instruction pointer, 

sampled collection of the stack trace, sidecar located performance reference 

payload). 

4. To produce these hardenings (i.e., for integrity and availability preservation), 

sufficient privilege or capability shall be delivered to the sidecar container (e.g., 

CAP_SYS_PTRACE).  

Workflow: 

5. Deploy workload as container in Kubernetes cluster. 

6. Append D-MUTRA sidecar (Docker Compose / Helm). 

7. Run the attestation verification pattern (e.g., cyclic, on-demand). 

6. Compare attestation timing & performance penalties Run test traffic (e.g., 

simulated traffic/live/PCAP). 

7. Compare KPIs vs baseline unprotected MMT or Liquid xAPP. 

 

2.9.2.3. CIA-hardening of WASM payloads  

Workload: MMT-Probe ported to WASM, executed on modified WASMTIME runtime. 

Tests will be made for CIA hardening as follows: 

a. Confidentiality: encryption of WASM bytecode, measured decryption delay. This 

test is pending our WASM hardening feasibility study. 
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b. Integrity: Runtime signature computed from JIT-serialized blob, compared to 

reference signature. This test is pending our WASM hardening feasibility study. 

• Availability: monitoring through the modified runtime for its own instrumentation. This 

test is pending our WASM hardening feasibility study. 

Procedure: 

o Deploy modified WASMTIME with Prove/Verify routines 

o Load protected WASM module; run baseline traffic. 

o Trigger integrity checks (periodic + on-demand). 

o Measure startup delay, attestation cycle, and runtime overhead. 

 

2.10. ISRD Testbed Components Set-Up  

2.10.1. ISRD Testbed Infrastructure 

Figure 17   illustrates the O-RAN functional architecture. As a central part of cloud-native, 

virtualized networking solutions, the RAN—specifically within the Liquid RAN framework—

comprises several key component groups: the 5G O-DU (Open RAN Distributed Unit), 5G O-CU 

(Open RAN Centralized Unit), 5G Near-RT RIC (Near-Real-Time Radio Intelligent Controller) 

integrated with various xApps, and the 5G Core Network (5GC). 

 

Figure 17: ISRD Testbed Infrastructure 

Through the ISRD approach, a flexible allocation and migration of 5G NR protocol stack functions 

between the O-DU and O-CU are achievable. Both the ISRD Liquid RAN O-CU and O-DU represent 

advanced implementations of the O-RAN Central and Distributed Units. Similarly, the ISRD Liquid 

RAN Near-RT RIC embodies an O-RAN-compliant Near Real-Time RAN Intelligent Controller, 

offering sophisticated logical control and optimization of RAN components (O-DU and O-CU). It 
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accomplishes this through detailed data collection and responsive actions over the E2 interface, 

enabling near-real-time management of RAN performance and resources. 

2.10.2. ISRD Testbed Components Set-Up 

2.10.2.1. JDM-xApp 

The JDM-xApp continuously receives real-time metrics from E2 nodes and evaluates patterns of 

degradation. It can operate in two modes: in the rule-based mode, it applies threshold logic—

such as flagging jamming when BLER exceeds 10% or when CQI drops abruptly—triggering 

mitigation actions that limit MCS levels for specific UEs. This mode is deterministic, simple to 

deploy, and does not require prior training or data labeling. 

For environments where jamming patterns may evolve or exhibit non-linear characteristics, the 

second, ML-based mode approach introduces intelligence through unsupervised learning 

techniques like clustering or anomaly detection. These models analyze historical metric trends to 

identify outliers indicative of jamming and classify the severity level. The xApp then dynamically 

enforces adaptive scheduling policies based on this classification. It also incorporates a feedback 

mechanism to adjust its behavior over time, thereby improving its resilience to new or stealthy 

jamming methods. Although more complex, this mode is especially useful in high-mobility and 

dense deployments, or adversarial environments. 

In both operational modes, the JDM-xApp uses the E2 CONTROL interface to issue commands to 

the O-DU, modifying the scheduler’s behavior for affected UEs. This could include restricting MCS 

levels, altering scheduling priorities, or temporarily offloading traffic. Such targeted control 

ensures precise jamming mitigation without unnecessarily degrading overall system 

performance. 

2.10.2.2. Liquid RAN  

Figure 18The deployment depends on the specific end-user needs, but usually consists of 

multiple instances of O-DU, O-CU. The 5GC, and either a commercial or an USRP-based RU can 

be also provided if required. Additionally, the deployment can integrate the Near-RT RIC and the 

relevant xApp(s) such as RAN KPM xApp.  All the Liquid RAN components are deployed  as 

containerized applications that can run either directly on bare metal or within Kubernetes 

environments as pods. Figure 18 depicts a complete deployment with all optional and additional 

components. 

 In this architecture, the RAN components interconnect with other 5G network elements as 

defined below. Liquid RAN supports a wide range of commercial User Equipment (UE) brands 

such as Oppo, Samsung, and OnePlus. The User Equipment (UE) can connect to either a 

commercial RU (for example, Benetel 550) or a COTS RU equipped with a USRP (b210) serving as 

the radio front end, with UEs typically placed inside an RF shield box for test isolation. The O-DU 
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interfaces with commercial RUs via the Open Fronthaul (Open-FH) interface, while 

communication with COTS RUs occurs over a proprietary fronthaul link. The O-CU connects to 

the 5G Core Network (5GC) through standardized N2 and N3 interfaces. Additionally, xApps 

expose external APIs that provide access to RAN-related metrics, enabling enhanced monitoring 

and control capabilities. 

 
Figure 18: ISRD Testbed setup 

Liquid RAN supports various configurations of bands (n77, n78, n79), bandwidths (10-100MHz) 

and antennas (SISO and MIMO 2x2 DL). For a complete deployment servers with proper 

computing resources, which depends mostly on the bandwidth used, will be required. 

 

2.10.2.3. Liquid Near-RT RIC  

The ISRD Liquid Near-RT RIC serves as an O-RAN–standardized Near-Real-Time RAN Intelligent 

Controller designed to optimize RAN performance. As shown in Figure 19, it interfaces with E2 

nodes—specifically O-DUs and O-CUs—as well as with xApps and the Non-RT RIC, using O-RAN–

compliant E2, xApp API, and A1 interfaces, respectively. While the SMO and Non-RT RIC are not 

part of the ISRD solution, the ISRD Near-RT RIC itself is delivered as a containerized software 

package built on Docker. Its default deployment method uses Docker Compose, though 

alternative orchestration options such as Docker Swarm and Kubernetes are also supported, 

ensuring flexible and scalable deployment in various environments. 
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Figure 19: ISRD Liquid Near-RT RIC interfaces 

The basic deployment of Liquid RIC follows a Cloud-Native Function (CNF) model using Docker 

containers managed through Docker Compose. In a single-machine setup, the user operates with 

a single YAML file for entity management, simplifying network configuration considerably. The 

deployment process involves pulling the Near-RT RIC Docker images from DockerHub and then 

configuring the deployment through the docker-compose.yaml file. This YAML file defines the 

container names, their interconnections, and the overall structure of the Near-RT RIC 

environment. Liquid RIC can be run in two ways, the first being the console and the second being 

detached mode, running containers in the background.  

 

Figure 20: The main screen of the Liquid Near-RT RIC 

The Liquid RIC container and all other containers provide their logs which can be viewed using 

standard docker commands. The logs are written to both the system console of a respective 

container and to the dedicated log files. The Liquid RIC offers a Graphical User Interface (GUI) for 
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both the Near-RT RIC and KPM xApp. Through the GUI the user can observe Near RT RIC and RAN 

performance monitoring as well as perform xApp control such as addition and removal. The GUI 

consists of several different views for exploring different dimensions of Liquid RIC. The views are: 

Home, xApps, xApp, E2 Nodes, E2 Node, Cells, Cell, Logs and a Settings view. Figure 20 shows 

Home view, which is the main screen.  

2.10.2.4. KPM xApp  

The KPM xApp is a built-in xApp of the Liquid Near-RT RIC. It subscribes to the measurements 

(KPMs) from all cells, which are stored in the Valkey database. The KPM collection interval and 

the reporting interval is 1 second. The KPMs can be viewed both in the Liquid Near-RT RIC GUI 

and the KPM xApp GUI. The KPM xApp GUI is Graphana based and it is a browser-based 

application, including several dashboard which support different RAN vendors. The example 

dashboard is depicted in Figure 21. 

 
Figure 21: Grafana dashboard with ISRD KPMs 

2.11. ELTE Testbed Components Set-Up  

The ELTE testbed has been designed to emulate a complete 5G network with support for 

advanced security and monitoring capabilities. It integrates open-source 5G components, 

emulated radio access, a programmable data network, and blockchain services. This environment 

provides the basis for experiments in anomaly detection, monitoring, and blockchain-assisted 

trust mechanisms. 
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2.11.1. ELTE Testbed Infrastructure 

The ELTE testbed provides a realistic and flexible environment for 5G and IoT experimentation, 

combining open-source 5G components, programmable hardware, cloud infrastructure, and 

blockchain-enabled security. The 5G Core node is implemented using Open5GS, with two 

separate deployments to ensure modularity and performance separation. One instance handles 

the complete suite of control-plane functions, including session management and mobility 

control, while a second instance is dedicated exclusively to the User Plane Function (UPF), 

enabling precise traffic management and realistic evaluation of data-plane operations. A 

dedicated setup is integrated to validate machine learning functions within the data plane, 

consisting of high-performance servers for model deployment, traffic orchestration, and 

monitoring, paired with Intel Tofino switches running P4 pipelines enhanced with ML-based 

classification logic. This configuration allows high-speed packet classification, fine-grained 

monitoring, and reproducible testing of AI-driven anomaly detection methods, while a Flwr 

federated learning node supports distributed training and secure aggregation of ML models 

across the network, ensuring scalability and privacy without centralizing sensitive data. 

 

Figure 22: ELTE Testbed infrastructure 

The Data Network is built on OpenStack and closely integrated with the Open5GS based UPF, 

providing a programmable and flexible environment for service deployment, traffic routing, and 

multi-domain emulation. The cloud infrastructure enables dynamic orchestration of virtualized 

network functions and application workloads, supporting experiments that combine 

communication-layer performance with application-layer behaviors. Radio access is emulated 

through UERANSIM, with separate instances for User Equipment and gNB, allowing scalable 

emulation of multiple devices and radio interfaces while maintaining compliance with 3GPP 
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standards. This approach facilitates controlled and repeatable experiments without the need for 

extensive physical hardware. 

A blockchain layer, deployed across all nodes using the Foundry framework, adds distributed 

trust, tamper-resistant logging, and secure coordination for network operations. It provides a 

foundation for validating blockchain-assisted security and anomaly detection mechanisms, 

ensuring transparency, accountability, and resilience against compromised nodes. By integrating 

these components, the testbed offers a comprehensive platform for experimentation with end-

to-end 5G-IoT scenarios, including advanced machine learning validation, programmable data-

plane evaluation, distributed AI training, and blockchain-enhanced security services. 

2.11.2. ELTE Testbed Components Set-Up 

2.11.2.1. End-to-End Security Management  

The End-to-End Trust Management in ELTE testbed is designed to provide a realistic and modular 

platform for evaluating secure authentication and authorization mechanisms for IoT devices 

within a 5G environment. The testbed integrates core network functions, radio access emulation, 

a programmable data network, and a blockchain-based trust layer to enable comprehensive end-

to-end experimentation. The testbed architecture supports controlled evaluation of device 

registration, data routing, and secure service access while maintaining compatibility with 

standard 5G protocols. Key components of the testbed include: 

5G Core (Open5GS): The core network is implemented using Open5GS, providing essential 

control-plane functions such as the Access and Mobility Function (AMF), Authentication Server 

Function (AUSF), and Unified Data Management (UDM). These network functions manage 

authentication, session establishment, and mobility for IoT devices, ensuring secure and reliable 

connectivity. 

User Plane Function and Data Network (Open5GS): The UPF, also implemented via Open5GS, 

handles user-plane traffic and interfaces with the Data Network. The DN includes an HTTPS-based 

service provider that receives and responds to IoT device traffic, enabling secure end-to-end data 

delivery. This separation between control and data planes allows precise measurement of traffic 

flows and authentication performance. 

UE (UERANSIM): The UE emulates IoT device functionality. In the physical testbed, a Raspberry 

Pi running UERANSIM represents an actual IoT node, generating realistic traffic patterns and 

triggering registration and authentication flows with the 5G Core. 

gNB (UERANSIM): The gNB represents the radio access node and is emulated using UERANSIM. 

It establishes the connection between the UE and the 5G Core, handling signaling, session setup, 

and data forwarding, providing a realistic representation of the radio access network. 
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Blockchain Layer (Foundry): The testbed integrates a permissioned Ethereum blockchain 

implemented with Foundry, which supports smart-contract-based operations for end-to-end 

trust establishment. The blockchain records pseudonyms, access policies, and authentication 

metadata, enabling decentralized verification and reducing reliance on centralized identity 

databases. 

2.11.2.2. Data plane ML 

The Data Plane ML validation was carried out on the dedicated testbed hosted at ELTE. The test 

environment integrates programmable hardware, control infrastructure, and traffic generation 

capabilities, providing a realistic and reproducible setting for experimentation. 

The architecture is illustrated in Figure 22 and consists of the following components: 

Two Servers: These provide the control, orchestration, and monitoring layer of the testbed. Their 

functions include: 

• Deploying and updating ML models into the data plane. 

• Acting as the control plane, distributing classification rules and managing runtime 

configurations. 

• Generating test traffic for validation. 

• Running eBPF-based modules, which can host ML model execution for packet 

classification and provide fine-grained monitoring. 

• Logging classification metadata and collecting performance statistics. 

Server Specification: 

• Operating System: Ubuntu 20.04.6 LTS 

• CPU: AMD Ryzen Threadripper 1900X, 8 cores / 16 threads, 2.2–3.8 GHz 

• RAM: 128 GB DDR4 

• Network: Two Mellanox MT27700 ConnectX-4 Lx 25GbE NICs 

Two Intel Tofino Switches: Serving as the programmable data-plane hardware, the switches 

execute P4 pipelines extended with ML-based classification capabilities. The ML model can be 

deployed directly on Tofino for line-rate packet classification. 

Flexible ML Deployment: The testbed supports running the ML model on the Tofino switches 

and/or within the servers using eBPF. This allows evaluation of both hardware-accelerated line-

rate classification and software-based processing. 

Traffic Generation and Monitoring Tools: Deployed on the servers, these tools inject diverse 

traffic patterns into the network and capture experiment data, ensuring comprehensive visibility 

of system behavior under benign and malicious traffic conditions. 

Operational Workflow: 

1. ML-enhanced P4 pipelines are compiled and deployed on the Tofino switches or ML 

modules are loaded via eBPF on the servers. 
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2. The servers generate test traffic and run monitoring modules to collect metadata and 

performance metrics. 

3. The control plane dynamically updates the ML models and classification rules as required. 

4. The data plane classifies incoming packets and enforces the defined actions in real time. 

5. Monitoring infrastructure logs performance data, classification decisions, and robustness 

outcomes. 

This testbed combines hardware-accelerated packet processing on Tofino with flexible eBPF-

based ML execution on servers, providing a versatile platform to validate the Data Plane ML 

component under multiple deployment scenarios. 

2.11.2.3. Secure Data Aggregation 

The Secure Data Aggregation as part of the ELTE testbed provides a controlled environment to 

evaluate privacy-preserving and distributed machine learning techniques for IoT networks. It is 

designed to support the aggregation of data from IoT devices while maintaining data 

confidentiality and minimizing centralized exposure, enabling experiments on federated learning 

and secure model training. 

The core of the testbed consists of a Flwr node, which orchestrates federated learning workflows 

and coordinates model updates across connected IoT devices. The node manages training 

rounds, aggregates local model parameters, and enforces secure communication between the 

central aggregator and participating devices. This configuration allows testing of both algorithmic 

performance and system-level behaviors, including latency, scalability, and resilience under 

realistic workloads. Key aspects of the Flwr node include: 

Flwr main server: Acts as the central coordinator for federated learning and secure aggregation, 

managing training rounds, orchestrating updates from normal clients, and coordinating MPC 

nodes for privacy-preserving combination of model parameters. 

MPC Nodes: Perform secure computations on local model updates from clients, ensuring that 

individual data or model parameters are never exposed while contributing to the overall 

aggregated model. 

Normal Clients: Represent typical IoT devices generating local data for training. They participate 

in the federated learning process by providing local updates that are securely aggregated via MPC 

nodes. 
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2.12. ZHAW Testbed Components Set-Up  

2.12.1. ZHAW Testbed Infrastructure 

This is a local testbed used in the initial phase of development and testing of the components of 

the AI-based MTD framework, namely: the MTD Controller, the MTD strategy optimizer, MTD 

Explainer, and MTDFed. Depicted in Figure 23, the testbed comprises a core and edge cloud 

domain, both set up with Openstack. Each domain configures three VMs: one master node and 

two worker nodes, forming a Kubernetes cluster. These are where the CNFs are running, with the 

MTD controller enabling the migration between the clusters. 

 

Figure 23 ZHAW local testbed for AI-based MTD framework implementation and testing. 

ZHAW’s testbed additionally runs an AMD EPYC 9xx4 server for trusted execution environments 

(TEE), as it is capable of creating SEV-SNP enclaves (Secure Encrypted Virtualization-Secure 

Nested Paging), distinctive TEE VMs that run with encrypted RAM and CPU registries [1]. Such 

SEV-SNP VM is used in the testbed and hosts a microk8s Kubernetes node, enabling the MTD 

Controller’s MTD action of TEE encapsulation and decapsulation by transferring the CNFs from 

the other clusters to microk8s and vice-versa. 
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2.12.2. ZHAW Testbed Components Set-Up 

The components of the AI-based Framework are all developed and tested in this testbed, with 

further integration in the PNET testbed to operate with a 5G core and relative network functions 

provided by Open5GS. The components are hosted in the OpenStack core domain, reflecting their 

position in the Patras 5G testbed. 

2.12.2.1. MTD Controller  

The MTD Controller maintains the same set-up as described in 2.7.2.1. 

2.12.2.2. MTD Strategy Optimizer  

The MTD Strategy Optimizer maintains the same set-up as described in 2.7.2.2. 

2.12.2.3. MTD Explainer  

The MTD Explainer maintains the same set-up as described in 2.7.2.2.3. 

2.12.2.4. MTDFed  

The MTDFed maintains the same set-up as described in 2.7.2.2.4. 

2.13. HES-SO Testbed Components Set-Up  

HES-SO is building a testbed that targets two different attacks at the same time: jamming 

detection and DDoS malicious traffic in a wireless environment. There is a third component 

addressed which is the Mirai botnet setup which will allow us to create legit malicious traffic for 

training and validation purpose.  

2.13.1. HES-SO Testbed Infrastructure 

The experimental infrastructure (Figure 24) is a complete end-to-end 5G testbed comprising a 5G 

Core Network (5GCN), a 5G Radio Access Network (RAN), and User Equipment (UEs) generating 

both benign and malicious IoT traffic. The 5GCN is deployed using containerized Open5GS (i.e., 

Network Slice Selection Function (NSSF), Network Exposure Function (NEF), Network Repository 

Function (NRF), Policy Control Function (PCF), Unified Data Management (UDM), Application 

Function (AF), Authentication Server Function (AUSF), Access and Mobility Management Function 

(AMF), User Plane Function (UPF), Service Communication Proxy (SCP)), while the RAN is provided 

by a containerized srsRAN project gNodeB. Radio transmission is handled by USRP B210 software 

defined radios, which serve as both the gNB transceiver and as programmable radio sources for 

jamming experiments. 

Commercial Samsung S23 smartphones, equipped with Osmocom programmable SJA5-9FV SIM 

cards configured for the local Open5GS network, act as UEs and provide IP connectivity to 

attached Raspberry Pi (RPI) devices via USB-tethering. The gNB and UEs currently operate in the 
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N77 band with 20 MHz channel bandwidth. All core components–including Open5GS, srsRAN, 

the jamming module, traffic capture, and machine-learning pipelines –are deployed as Docker 

containers. The jamming module is also implemented as a container controlling a dedicated USRP 

B210 through GNU Radio, at present producing a single-carrier interference signal with tunable 

frequency and power to disrupt the 5G NR link between the UE and the gNB. Each RPI hosts a set 

of Docker based containers that act as traffic sources or sinks. 

 

Figure 24 HES-SO full testbed. 

We currently support representative benign traffic patterns MQTT by mosquitto, User Datagram 

Protocol (UDP) with Python socket programming, HyperText Transfer Protocol (HTTP) with 

nginx/curl, and video streaming with mediamtx/ffplay–as well as an isolated Mirai-infected VM 

that generates realistic botnet traffic. The benign services include both clients and servers, 

whereas the Mirai VM only produces malicious flows. All benign traffic services are deployed as 

lightweight containers, which are directly connected to the test interface exposed by the 

tethered smartphone and communicate over the same network stack as ordinary IoT endpoints. 

In contrast, the malicious Mirai instances are executed within fully isolated Quick Emulator 

(QEMU)-based VMs to ensure an additional layer of containment and prevent any unintended 

propagation of the malware. The malware VMs are managed through a dedicated Malware 

Management and Control (MMC) infrastructure, composed of mmc-vm-daemon, mmc-host 

daemon, and mmc-cli. Control commands for the malware are exchanged via AF_UNIX sockets 

on the RPI host side and serial ports on the QEMU guest side, enabling fine grained orchestration 

while maintaining secure separation of malicious code. Traffic of interest for DDoS detection is 

captured at the N3 interface between the gNB and the UPF, which carries the user-plane flows 

generated by both benign containers and malicious VMs. Captured packet traces are processed 
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by CICFlowMeter, which aggregates raw packets into bidirectional flow records enriched with 

statistical features such as flow duration, inter-arrival times, byte and packet counts, and burst 

metrics. These feature-rich flow records are stored in the Parquet format16 and consumed by a 

dedicated container running Python-based XGBoost models. At present, both training and 

inference are performed offline. However, the pipeline is designed to first operate online at the 

edge and, in a subsequent phase, to be offloaded to a P4-programmable SmartNIC to enable line-

rate inference for faster detection and mitigation.  

 

 

The gNB is also being prepared for future integration with a near-real-time O-RAN RIC, which will 

enable the deployment of xApps capable of monitoring radio-level metrics to detect jamming in 

real time and provide control directives back to the gNB scheduler. This planned integration will 

Figure 25 Mirai Malware Control Mechanism 
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allow the system to detect and react to both jamming and DDoS attacks at the gNB in real time, 

blocking malicious traffic and mitigating radio-level disruptions capabilities particularly relevant 

for IoT-dominated 5G deployments. Nevertheless, in its current state, the testbed is already able 

to gather data, train models, and perform offline detection of attacks, providing a robust 

experimental platform for end-to-end evaluation of 5G-enabled IoT security solutions. 

 

Figure 26 HES-SO Network testbed architecture for Mirai botnet attack generation. 

2.13.1. HES-SO Testbed Components Set-Up 

As previously mentioned, at HES-SO we are working on a testbed that addresses two attacks 

simultaneously with two different natures. The very first is to install the Base Station into the 

computer. This is done by using “docker compose build”. The way we define the yaml file allows 

us to build the image and prepare the containers all at once. In the second step you need to do 

the same with the jammer, which is also in the form of a container. Currently, every time we have 

a modification on the jammer, GNU Radio generates a python script, and we need to rebuild the 
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container, which is very fast at this point. Currently Near RT RIC is in place but not yet tested.  

Regarding Mirai-based botnets, further explanation was provided earlier. For the physical setup, 

we use Raspberry Pi units; on each Pi we install the VM developed for research purposes. Some 

Raspberry Pis are dedicated to generating benign (healthy) traffic.   

In Figure 26 the complete network setup is outlined, where a firewall is in place to not block any 

possibility of infection towards other equipment’s.  This approach collects the data stream for 

training purposes, which will subsequently be deployed on a SmartNIC.  

2.14. UZH Testbed Components Set-Up 

The UZH testbed provides a reproducible, end-to-end environment to evaluate anomaly 

detection and explainability in realistic 5G scenarios. The platform consists of two main virtual 

machines: a Control VM running the free5GC control-plane functions and a Data VM that hosts 

the user-plane, traffic generation, and packet capture. Radio access is emulated with a software 

gNodeB and UE using UERANSIM. Traffic flows from UE through gNodeB over N2/N3 into the 

core (AMF/SMF/UPF), and mirrored packets on the N3 interface feed the IDS/XAI backend. 

Inference results and explanations are exposed via a REST API to a lightweight dashboard for 

operators. 

2.14.1. UZH Testbed Infrastructure 

The infrastructure follows the logical layout in the figures. The Control VM runs free5GC with 

NRF, NSSF, PCF, NEF, UDM, AUSF, AMF, and SMF. The Data VM hosts UPF and a small mininet 

topology (h1 for gNB/UE, h2 for UPF, s0 switch, r0 router) to create an isolated GTP-U path 

toward the core. A port mirror (SPAN/TAP) on the N3 segment continuously captures GTP-U 

(UDP/2152) and PFCP (UDP/8805) traffic using tcpdump/tshark; optional IPFIX export (nProbe) is 

available for flow-level analytics. Typical addressing uses separate subnets for N2, N3, and N6; 

routing is configured so that PDU sessions established by SMF traverse the UPF and out to a data 

network. Hardware requirements are modest (8–16 vCPU, 32–64 GB RAM, SSD), and all 

components run on Ubuntu 22.04. The setup supports both benign workloads (ping/HTTP/iperf) 

and controlled attack scenarios. 

2.14.2. UZH Testbed Components Set-Up 

Deployment proceeds in three steps. First, free5GC is installed on the Control VM and the control-

plane NFs are started; SMF policies and slice parameters are registered in NRF/PCF. Second, the 

Data VM brings up the mininet topology, starts the UPF, and launches UERANSIM so that the gNB 

attaches to AMF (N2) and the UE registers and creates a PDU session (N3). Third, data capture 

and analytics are enabled: mirrored N3/PFCP traffic is written to PCAP (or exported as IPFIX) and 

passed into the IDS/XAI pipeline. The backend performs parsing and feature extraction (flow 
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construction with 5-tuple, TEID/QFI, temporal windows; statistics such as packet/byte rates, 

inter-arrival variance, UL/DL ratios, entropy, and PFCP/NAS counters), then executes binary and 

multi-class models (Random Forest, XGBoost, CNN/DNN). A simple decision gate provides 

anomaly scores and labels. Results and explanations are served through /predict and /explain 

endpoints and visualized on a dashboard showing alert rates, confusion matrix, and feature-

importance distributions. 

2.14.2.1. Anomaly Detection Explainer 

The Explainer component generates human-readable reasons for each flagged anomaly. For tree-

based models it uses SHAP TreeExplainer; for neural models it employs KernelSHAP/LIME. Each 

inference returns the top-k contributing features with sign and magnitude, which are then 

summarized by a small LLM into domain-aware narratives. Explanation quality is tracked with 

four KPIs: faithfulness (performance drop under feature deletion), robustness, complexity, and 

latency. To prevent misleading attributions, the testbed includes adversarial “bad-tests”: leakage 

traps (ensuring explainers do not focus on non-causal identifiers such as IP pools), randomization 

checks (weights/labels shuffled should yield structureless attributions), micro-drift repeats, and 

out-of-distribution runs across slices or time-of-day. 

 

Figure 27: Anomaly Detection Explainer. 
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Overall, the UZH testbed offers a controlled, programmable, and repeatable environment that 

links UE/gNB, free5GC core, UPF, data capture, ML-based IDS, and XAI. It enables rigorous 

evaluation of detection accuracy alongside explanation quality so that operators can understand, 

trust, and act on anomaly alerts in 5G networks.
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3. Dry Run Tests for NATWORK Components  
In this section, the validation of the 43 components of the NATWORK project is illustrated. With 

these sets of dry run test instructions, the component owners verified or will verify in the 

upcoming period the functionality of the components. Component owners had a close 

collaboration with testbed owners to identify the infrastructure of the testbed(s) on which the 

related component had been installed in.  Components that were installed in more than one 

testbed have a shared (single) test report. In D6.3, second version of “System Integration on the 

testbeds, Pilot installations and implementations”, a full validation of the components will be 

reported.  

In the table below, information on the components, the test scenarios and related test cases of 

each component, and the status of the dry run tests is presented. 

Table 2: Components and related information of the dry run tests 

# Component Test Scenarios / 

Test Cases 

Dry run test 

status 

1 Energy efficient over edge-cloud Appendix A.1 Partially Tested 

2 TrustEdge Appendix A.2 Fully Tested 

3 Feather Appendix A.3 Fully Tested 

4 Flocky Appendix A.4 Fully Tested 

5 Secure-by-design orchestration Appendix A.5 Fully Tested 

6 End-to-End Security Management Appendix A.6 Fully Tested 

7 
Slice orchestration and slice management for 

beyond 5G networks 
Appendix A.7 

Fully Tested 

8 AI-Based RIS configuration Appendix A.8 Not tested yet 

9 ML-based MIMO Appendix A.8 Not tested yet 

10 JASMIN & Filter Mitigation Appendix A.8 Partially Tested 

11 
DetAction: Detection and reAction against 

jamming attacks 
Appendix A.9 

Fully Tested 

12 Security-compliant Slice Management Appendix A.10 Fully Tested 

13 
Multimodal Fusion Approach for Intrusion 

Detection System for DoS attacks 
Appendix A.11 

Partially Tested 

14 
Lightweight SDN-based AI-enabled Intrusion 

Detection System for cloud-based services 
Appendix A.12 

Fully Tested 

15 AI-enabled DoS attack Appendix A.13 Fully Tested 

16 
Multiagent AI based cybersecurity support 

system 
Appendix A.14 

Partially Tested 
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# Component Test Scenarios / 

Test Cases 

Dry run test 

status 

17 Data plane ML Appendix A.15 Fully Tested 

18 
Wire-speed AI (WAI) and Decentralized Feature 

Extraction 
Appendix A.16 

Fully Tested 

19 
Microservice behavioral analysis for detecting 

malicious actions 
Appendix A.17 

Partially Tested 

20 MTD Controller Appendix A.18 Partially Tested 

21 MTD Strategy Optimizer Appendix A.19 Fully Tested 

22 MTD Explainer Appendix A.20 Not tested yet 

23 
AI-driven security monitoring for anomaly 

detection and root cause analysis 
Appendix A.21 

Partially Tested 

24 Security-performance balancer 
Reporting 

Period 2 

Not tested yet 

25 DFE Telemetry Appendix A.22 Fully Tested 

26 Secure Data Aggregation Appendix A.23 Fully Tested 

27 Federated Learning for edge-to-cloud Appendix A.24 Partially Tested 

28 MTDFed Appendix A.25 Fully Tested 

29 CIA-hardening of x86 payloads Component Appendix A.26 Partially Tested 

30 CIA-hardening of containerized payloads Appendix A.27 Not tested yet 

31 CIA-hardening of WASM payloads Component Appendix A.28 Partially Tested 

32 JDM-xApp 
Reporting 

Period 2 

Not tested yet 

33 Liquid RAN Appendix A.29 Not tested yet 

34 Liquid Near-RT RIC 
Reporting 

Period 2 

Not tested yet 

35 KPM xApp 
Reporting 

Period 2 

Not tested yet 

36 Characteristics Extractor Appendix A.30 Fully Tested 

37 Key Generator Appendix A.31 Fully Tested 

38 Security Evaluator Appendix A.32 Fully Tested 

39 AI -Based Anomaly Detection Explainer Appendix A.33 Not tested yet 

40 
Wirespeed traffic analysis in the 5G transport 

network 
Appendix A.34 

Fully Tested 

41 
Detection and mitigation against jamming 

attacks  
Appendix A.35 

Partially Tested 
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# Component Test Scenarios / 

Test Cases 

Dry run test 

status 

42 Setting up of a Mirai botnet 
Reporting 

Period 2 

Not tested yet 

43 FPGA-based hardware detection of DDoS attacks 
Reporting 

Period 2 

Not tested yet 

 

In the following sub-sections, directions on how the related dry run tests were performed or will 

be performed, are presented. Additional information on the actual tests, including the test 

scenarios / test cases and the results for the components on which initial dry run tests were 

performed can be found in the Appendix. 

3.1. Energy efficient over edge-cloud 

The test procedures and results are recorded in the attached Excel sheet UEssex –Energy-

efficient.xlsx in Appendix A.1.  

3.1.1. Test procedures / Test cases 

CPU utilization and energy consumption (TS01): Benign workloads (TC01) were tested in single- 

and multi-cluster setups, showing RTT variance due to MCS API overhead.  

Adversarial workloads (TC02) reproduced DoST attacks with oscillatory HTTP traffic, causing 

CPU/memory oscillations, degraded QoS, and increased RTT while keeping services alive. The 

DoST attack demonstration has been successfully conducted; however, mitigation strategies are 

still under development in cohernece with Section 3.5 (Secure-by-Design Orchestration) and 

Section 3.27 (Federated Learning for Edge–Cloud). These mitigation mechanisms have not yet 

been validated within the testbed and will be integrated and evaluated in subsequent phases. 

Monitoring and dataset generation (TS02): Prometheus and Grafana were used to monitor CPU, 

memory, network, and pod lifecycle metrics during benign and DoST workloads. Time-series data 

were stored in the Prometheus TSDB and persisted in MinIO, preparing structured datasets for 

federated learning and anomaly detection. 

These tests confirm the impact of DoST on CNF services and establish a dataset pipeline for AI-

driven slice management. 
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3.2. TrustEdge  

3.2.1. Test Procedures / Test Cases 

The full set of test procedures and results is recorded in the attached Excel sheet IMEC-

TrustEdge.xlsx in Appendix A.2. The test was performed in April 2024 and successfully passed. 

Startup time: Measures the (added) boot time of the framework from attestation to 

secure Feather deployment. The average case 20.91s time adds to boot time, around half 

of which is Feather starting and half is the attestation process 

3.3. Feather 

3.3.1. Test Procedures / Test Cases 

The full set of test procedures and results is recorded in the attached Excel sheet IMEC-

Feather.xlsx in Appendix A.3. The tests were performed at various dates from mid-2024 to early 

2025 depending on implementation milestones. All tests have been successfully passed. 

The first group of tests involves runtime comparisons between Docker containers, OSv 

unikernels, and WASM workloads in WASMTime when deployed through Feather: 

Minimal load: Measures the memory overhead of Feather when initializing container, 

unikernel and WASM backends and deploying an idle workload. The resulting overhead 

was minimal, and the lowest for WASM (WASMTime). 

Application: Measures the overhead of Feather with active containers and unikernels. 

Measures the resource consumption of a Minecraft server in both container and 

unikernel format to gauge benefits of runtimes. The results show a CPU penalty for 

unikernels, while using significantly less memory than a container. 

Image size: Measures the relative size of an image for specific functionality (HTTP server) 

in different runtime formats. WASM resulted in the smallest images, followed by the OSv 

unikernel and the container. 

HTTP performance: Measures performance of an HTTP server in various runtimes. 

Considers latency as well as raw request throughput using k6 command. The results show 

a small but significant latency overhead for WASM, while keeping pace with container 

throughput. OSv unikernel performance was an order of magnitude worse on 

KVM/Qemu, despite older tests showing good results on XenServer. 

The second test suite concerns the performance parameters of decentralized and multi-runtime 

networking: 
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Decentralization throughput: Measures throughput of the decentralized point-to-point 

internode part of the networking solution compared to WireGuard. The solution was able 

to saturate a Gbps physical connection with 10-100 times lower CPU use than WireGuard 

depending on send/receive and protocol. 

Decentralization scalability: Measures throughput of the decentralized point-to-point 

internode part of the networking solution in 5-node star and ring topologies to evaluate 

scalability. In the ring topology, WireGuard uses one of the nodes as VPN controller. The 

results indicate that network throughput depends only on P2P connected nodes, whereas 

WireGuard performance depends on total topology size. 

Multi-runtime throughput: Measures throughput of the multi-runtime (node local) part 

of the networking solution using a video streaming scenario. The results show a sustained 

2.5Gbps throughput using just 1% of a single CPU core, independent of the runtimes used. 

Furthermore, the solution adds only 10-100µs end-to-end latency compared to Linux-

native container-to-container traffic. 

3.4. Flocky  

3.4.1. Test Procedures / Test Cases 

The full set of test procedures and results is recorded in the attached Excel sheet IMEC-Flocky.xlsx 

in Appendix A.4. The tests were performed in February 2025 and all successfully passed. To 

summarize, various aspects of the solution framework are gauged: 

Functional evaluation: The functionality of the framework is measured in terms of 

metadata discovered (discovery + metadata services) and required services deployed 

(orchestration metadata use). Results are as expected with 100% discovery, and all 

services successfully placed after 2-3 rounds (depending on random factors). 

Resource scalability: CPU and memory are measured for topologies from 1 to 150 nodes, 

for discovery distances from 10 to 20 (ms ping simulated). Memory scales as expected, 

with very low overhead compared to baseline (16MB base to 21MB at the densest 

scenario). CPU scaling exactly follows the number of neighbours. 

Network scalability: Network traffic is measured for topologies from 1 to 150 nodes, for 

discovery distances from 10 to 20. Network traffic scales linearly with the number of 

neighbours, but rises twice as fast as CPU scaling (8x traffic for 4x CPU and 4x neighbours). 

Discovery accuracy: Metadata discovery efficiency is measured when each node is 

assigned 2 random metadata items at start, and a total pool of 100 must be discovered 

by each node. Results show >99% metadata discovery from 75 nodes and 20 discovery 

distance upwards, and >96% for smaller, loosely connected topologies. This indicates 
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single nodes not connected to the topology due to random generation (trivial to fix with 

starting conditions and configuration for nodes). 

Deployment latency: Measures the total deployment latency (end to end) of a two-

component service in the Flocky framework, from user action to service deployment. 

Median case shows 21.1ms response time for deployment on two separate nodes, 

consisting of ~70% network latency.   

3.5. Secure-by-design orchestration  

The test procedures and results are recorded in the attached Excel sheet UEssex – secure-by-

design-orch.xlsx in Appendix A.5.  

3.5.1. Test Procedures / Test Cases 

ORCH-TS01 (Security-compliant orchestration): Slice and cluster requirements were defined 

declaratively with security constraints. Orchestration was triggered, and placement/scaling 

decisions were monitored to verify compliance. Results confirm that no insecure placement 

occurred, demonstrating adherence to secure-by-design policies. 

ORCH-TS02 (Subgraph communication): Multi-CNF slices with dependency graphs were created. 

The sFORK policy and strategy components decomposed slice dependencies into subgraphs, 

which were distributed to local cluster agents. Subgraphs were executed correctly across 

clusters, confirming proper communication and dependency handling. 

These tests validate that sFORK respects slice-level security requirements and enables 

coordinated orchestration across distributed clusters. 

3.6. End-to-End Security Management  

The full set of test procedures and results is recorded in the attached Excel sheet ELTE-E2E-

Trust.xlsx in Appendix A.6. All tests were executed between August and November 2024, and 

every case completed successfully. 

3.6.1. Test Procedures / Test Cases 

Core Connectivity: The 5G Core was started and verified to be fully operational. The gNB 

connected to the Core via UERANSIM, and the UPF established a stable link through Open5GS. 

Log files on both ends confirmed successful attachment and session establishment. 

End-to-End UE Path: The UE connected through the configured gNB, and the connection 

propagated correctly through the 5G Core to the UPF and Data Network (DN). The full data path 

from UE → gNB → Core → UPF was validated, confirming correct forwarding and control-plane 

behavior. 
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Blockchain Node Deployment: A Foundry blockchain node was deployed locally after installing 

Rust, Node.js, and the Foundry toolchain. Health checks using CLI tools (forge test, cast block-

number) verified correct operation. Dummy transactions were processed successfully, 

confirming proper block generation and transaction handling. 

Blockchain Integration with 5G Components: The UPF communicated successfully with the 

blockchain node running in the DN, performing data path and transaction validation. The 5G Core 

also initiated blockchain transactions and received confirmation responses, demonstrating 

reliable two-way interaction between the 5G and blockchain layers. 

All procedures have been executed as defined in the test cases (E2E_Trust-TS.01–TS.03). No 

anomalies, disconnections, or processing errors were observed. The integrated E2E Trust 

component is verified to be stable, interoperable, and ready for full system integration. 

3.7. Slice orchestration and slice management for beyond 5G 

networks  

A comprehensive record of the test procedures and their outcomes is provided in the attached 

Excel file, CERTH-Slice-orchestration-and-management.xlsx in Appendix A.7. All tests conducted 

to date have been completed successfully. 

3.7.1. Test Procedures / Test Cases 

A series of tests were conducted under the test scenario Slice-orchestration-management-TS01, 

aimed at verifying the proper functionality of the NATWORK Slice orchestration and slice 

management for beyond 5G networks component integrated within a 5G network. The first test 

case (TC01) validated the default behavior of the xAPP under normal network conditions, where 

traffic generated by a default traffic generator was correctly classified as benign. In TC02, the 

xAPP’s detection capabilities were evaluated using malicious traffic from the KDD Cup 1999 

dataset, with results confirming accurate classification of attack traffic. Building upon this, TC03 

assessed the xAPP’s ability to respond adaptively by reallocating Physical Resource Blocks (PRBs) 

to limit the impact on slices under attack, demonstrating successful reallocation based on 

computed anomaly ratios. Finally, TC04 tested the system’s mitigation capability by 

disconnecting malicious User Equipment (UE) when the anomaly ratio reached 100%, effectively 

removing the threat from the network. All test cases between October 2024 and May 2025 were 

executed successfully, and the expected outcomes were achieved. 
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3.8. AI-Based RIS configuration  

Test scenarios for this component can be found in the attached CERTH-Signal Processing.xlsx in 

Appendix A.8. 

3.8.1. Test Procedures / Test Cases 

The goal of this procedure is the determination of the RIS configuration for multi-user scenarios. 

Procedure consists of the following steps: 

• Step 1: The receiver and the transmitter will be positioned in Line-of-Sight with the RIS 

unit. 

• Step 2: The communication link quality will be measured with the RIS unit out of function 

in order to use this measurement as baseline. 

• Step 3: The communication link in case that the user is served standalone will be 

measured using the optimal RIS configuration. 

• Step 4: The communication link quality in the multi-user scenario will be measured using 

the codebook entries multiplexing algorithm for fair beam-splitting.   

The prerequisite information is the optimal RIS configurations for the case that each user is 

served standalone by it. The procedure demands data only extracted by the RIS-testbed. The 

outcome is the performance per user in multi-user scenario. The current status is that the setup 

has been prepared and preliminary results are extracted. Mainly, the proposed codebook entries 

multiplexing algorithms have been initially compared with traditional RIS sharing approach such 

as segmentation of RIS unit for multiple users and time division multiple access. The evaluation 

approach will be completed the next period-planned for early 2026. 

3.9. ML-based MIMO 

ML-based MIMO test procedures are in the attached CERTH-Signal Processing.xlsx in Appendix 

A.8. 

3.9.1. Test Procedures / Test Cases 

The procedure described on JASMIN & Filter Mitigation will be evaluated in the case where 

receiver or/and jammer is equipped with MIMO antennas. In this case, synchronization issues 

and benefits from MIMO usage will be addressed.  The evaluation has been planned for mid-

2026, in the period that the evaluation of JASMIN and Filter Mitigation will have been completed 

for SISO case.  
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3.10. JASMIN & Filter Mitigation 

The test scenarios and the initial test results for the present component appear in the attached 

CERTH-Signal Processing.xlsx in Appendix A.8. 

3.10.1. Test Procedures / Test Cases 

The goal of this procedure is the detection of the jamming attack across all main types (constant, 

periodic, reactive) in real-time within IEEE 802.11p. protocol. Procedure consists of the following 

steps: 

For JASMIN evaluation 

• Step 1: The dedicated protocol for V2X, IEEE 802.11p, will be simulated in the SDR-based 

setup. 

• Step 2: One SDR will be used as a transmitter, one as a receiver and one as a jammer.  

• Step 3: JASMIN model will be connected with the receiver. 

• Step 4: The output of JASMIN will be measured in case the jammer is inactive. 

• Step 5: The output of JASMIN will be measured in case the jammer is active. 

• Step 6: The outputs in both cases will be evaluated based on the ground truth  

For Filter Mitigation 

• Step 1: The dedicated protocol for V2X, IEEE 802.11p, will be simulated in the SDR-based 

setup. 

• Step 2: One SDR will be used as atransmitter, one as a receiver and one as a jammer.  

• Step 3: The information from the receiver will be directed identically in two sinks; the 

jammed and the mitigated. 

• Step 4: In the mitigated sink, the respective filter will be applied and the clear from the 

attack signals will be stored. 

• Step 5: For the evaluation, the content of the sinks will be compared.  

The prerequisite for mitigation is the perfect synchronization between two SDR ports, a technical 

task that is ongoing. The procedure demands data only extracted by the SDR-based testbed. The 

accuracy of the JASMIN model will be evaluated in two cases; clear and jammed signal for an 

overall evaluation of the model’s performance. The mitigation will be evaluated comparing the 

SNR values before and after the usage of the filter mitigation. The evaluation of JASMIN has been 

completed. The overall accuracy is 99.92% and is passed the test successfully. For the mitigation 

part, the evaluation will be completed in early 2026. 



D6.2-System Integration on the testbeds, Pilot installations and implementations.r1 

 

Page 86 of 228 
 

3.11. DetAction: Detection and reAction against jamming attacks  

3.11.1. Test Procedures / Test Cases 

The full details of the test procedures and cases for this component are provided in the attached 

file GRAD-DetAction.xlsx in Appendix A.9, which includes parameters, steps, and dates. All dry-

run tests on the component have been successfully completed. 

Signal preprocessing validation: The signal acquisition and preprocessing pipeline (resampling, 

frequency transformation, spectrum fragmentation, and normalization) have been verified. 

Detection phase classification validation: The detection phase has been tested in an inference 

scenario to ensure that the same steps used during training and validation can be executed 

without errors during testing. 

ReAction PRB assignment verification: The reAction algorithm has been validated in a simulation 

scenario, confirming the allocation of PRBs to UEs, both in the presence and absence of jamming 

in certain PRBs. 

Connection between Detection and ReAction phases verification: The interaction between the 

detection and reAction phases has been tested in a simulation scenario and confirmed to work 

as intended. 

3.12. Security-compliant Slice Management  

The test procedures and results are recorded in the attached Excel sheet UEssex –CTI.xlsx in 

Appendix A.10.  

3.12.1. Test Procedures / Test Cases 

CTI-TS01 (CTI exchange in multi-cluster environments): Two Kubernetes clusters with 
vulnerability scanners and CTI agents were deployed. Applications with different vulnerability 
profiles were scanned, and bidirectional CTI sharing was enabled. Results confirmed that each 
cluster received tailored CTI data, with sensitive fields anonymized. 

CTI-TS02 (Sensitivity/necessity mapping): Vulnerability scans from multiple clusters were 
processed by the CTI agent. Metadata fields were selectively anonymized or included in STIX 
bundles based on risk scores, necessity, and sensitivity mappings. This validated the 
anonymisation mechanism, with sensitive values hashed and relevant fields preserved. 

CTI-TS03 (Hygiene score evaluation): Applications with varying vulnerability severities were 
deployed, and CTI analysis was used to compute hygiene scores. Clusters with more severe 
vulnerabilities were shown to have lower hygiene scores, confirming the correctness of the 
scoring mechanism. 
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These tests confirm that the CTI framework provides tailored, anonymized intelligence, supports 
risk-aware orchestration decisions, and delivers accurate hygiene scores for secure-by-design 
slice management. 

3.13. Multimodal Fusion Approach for Intrusion Detection System 

for DoS attacks  

The test procedures and results areis recorded in the attached Excel sheet CERTH-Multimodal 

Fusion Approach IDS.xlsx in Appendix A.11. 

3.13.1. Test Procedures / Test Cases 

Step 1 - Deployed 2 docker in the 5G-SDN testbed one for traffic replay and a second one 

containing the multimodal IDS. 

Step 2 - Replay 3 pcap files from open datasets (UNSW-15,5GAD-2022, 5G-NIDD) and log the 

classification results of the IDS i.e. (a) Traffic Type (Anomalous/Normal), (b) Attack type if 

anomalous traffic was detected in (a). 

Step 3 – Compare the logged results with the ground truth contained in the datasets and compare 

the 3 KPI described in D6.1 i.e. Probability of DoS Attack Detection, AI-based Intrusion Detection, 

Probability of False detection. 

Results: Probability of DoS Attack Detection > 0.92 (min) in all cases, Probability of False detection 

< 0.11 (max) in all cases.  

3.14. Lightweight SDN-based AI-enabled Intrusion Detection 

System for cloud-based services 

The test procedures and results are recorded in the attached Excel sheet CERTH-SDN IDS.xlsx in 

appendix A.12.  The component was tested in one scenario comprised of six steps presented in 

the next subsection. All dry-run tests on the component have been successfully completed.  

3.14.1. Test Procedures / Test Cases 

Step 1 - Deploy 3 dockers in the 5G-SDN testbed, one for attack creation (Kali Linux tools via 

python scripts), a second one containing the IDS tool and one for Wireshark to capture traffic. 

Step 2 - Use the Apache JMeter tool for different traffic patterns and workload performance 

measurements monitor impact on QoS and OpenAirSim to simulate the UEs and eNB operation 

Step 3 – Carry out two types of DoS attacks: (i) a UDP Flooding attack targeting the UPF 

component; and (ii) an SCTP Flooding attack targeting the AMF component. Log relevant details.  
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Step 4 – If an attack is detected, log identification of the attack, the attacker’s IP, and the message 

sent to the SDN to mitigate this attack. 

Step 5 – Verify that SDN controller has implemented mitigation 

Step 6 – Check logs to see detection time. 

Results: Both attacks are always detected when using ensemble of models with average time a) 

4.8s when using Exponential Moving Average (EMA), b) 5.2s when using MLP DNN, c) 5.6s when 

using 1D-CNN, d) 5.8s when using ensemble of methods. When the attack was detected, the 

mitigation action was always successfully implemented in the SDN. 

3.15. AI-enabled DoS attack  

The test procedures and results are recorded in the attached Excel sheet CERTH-AI-

enabled_DoS_attack.xlsx in Appendix A.13. The component was tested in two scenarios, 

specifically attacking SMF 5G component and attacking AMF 5G component.  All dry-run tests on 

the component have been successfully completed. 

3.15.1. Test Procedures / Test Cases 

Scenario 1 - Attacking SMF 5G component 

Step 1 - Run AI-enabled DoS attack container against SMF component of CERTH's 5G tesbed. 

Step 2 - Conduct 1000 episodes in training mode. 

Results: 

Results follow the expectations: Exponential decline of epsilon value across episodes; 

Logarithmic/linear growth in rewards after exploration phase completion; Consistent growth in 

the total number of successful attacks across training; Total percentage of successful attacks at 

the end of the training process 88.2%. 

Scenario 2 – Attacking AMF 5G component 

Step 1 - Run AI-enabled DoS attack container against AMF component of CERTH's 5G tesbed. 

Step 2 - Conduct 1000 episodes in testing mode. 

Results: 

Results follow the expectations: Constant and minimal value of epsilon, 0.1; Constant and 

maximum value of reward, 1000. 

Constant and minimal value of epsilon, 0.1; Constant and maximum value of reward, 1000 
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3.16. Multiagent AI based cybersecurity support system  

The test procedures and results are recorded in the attached Excel sheet CERTH-

Multiagent_System.xlsx in appendix A.14 . The component was tested in four scenarios for 

different agents, comprised of multiple steps presented in the next subsection.  All dry-run tests 

on the component have been successfully completed. 

3.16.1. Test Procedures / Test Cases 

Scenario 1 – E2E module test scenario 

Step 1 – Deploy the multiagent AI framework in a 5G testbed containing multiple VNFs (UPF, SMF, 

AMF) for traffic and control-plane emulation. 

Step 2 – Inject a combination of synthetic attack events (DoS, lateral movement, data exfiltration 

etc.) and benign traffic. 

Step 3 – Log all correlation and automated response activities executed by the threat intelligence 

and automated response agents. 

Step 4 – Compare the system’s detection and mitigation performance against baseline manual 

incident response workflows (i.e. a human operator manually mitigating detected attacks). 

Expected Results: 

Threat correlation accuracy > 0.90 in all cases; average automated response time < 5s; 

compromised node count reduced by 5-15% compared to baseline. 

Scenario 2a  - Threat reporting and Insight Agent  

Test Procedures / Test Cases 

Step 1 – Deploy the LLM-based Threat Insight Agent with access to cybersecurity standards, 

incident datasets, and network context data. 

Step 2 – Run evaluation using a golden dataset high-quality data, question-answer pairs derived 

from ISO, ENISA, NIST  and ETSI references. 

Step 3 – Test three prompting strategies (Zero-Shot, One-Shot, Few-Shot) and collect the 

generated responses. 

Step 4 – Evaluate performance using four metrics: Prompt Alignment, Faithfulness, Response 

Relevancy, and Context Recall. 

Results: 
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Few-Shot prompting yields >10% improvement across all metrics; Faithfulness ≥ 0.85; Response 

Relevancy ≥ 0.90; Context Recall ≥ 0.80. 

Scenario 2b Generate Human-Readable Threat Reports and Actionable Insights 

Test Procedures / Test Cases 

Step 1 – Deploy the Threat Intelligence Agent in CERTHs’ testbed divided into distinct zones (Core, 

Edge, Access). 

Step 2 – Introduce multiple threat events (e.g., DDoS, lateral movement, data exfiltration) within 

each zone. 

Step 3 – Verify that the agent correlates Indicators of Compromise (IOCs) and produces human-

readable summaries for each event. 

Step 4 – Assess whether generated reports include clear, actionable insights and 

recommendations tailored to the affected network zone or role. 

Step 5 – Validate clarity and accuracy by expert review against ground-truth threat data. 

Results: 

The system successfully generated contextualized reports summarizing attack type, impact 

scope, and recommended mitigation steps for various zones of the system. Reports were judged 

clear and operationally relevant by cybersecurity analysts. 

Scenario 3 - IoC Correlation Agent 

Test Procedures / Test Cases 

Step 1 – Train the SAFE-AE (Suspicious trAffic Filtering and Evaluation AutoEncoder) on normal 

traffic samples from multiple open and CERTH generated datasets. 

Step 2 – Replay mixed normal and anomalous traffic bags in real-time through the model. 

Step 3 – Identify suspicious traffic bags and feed them into the LLM for IP-level anomaly 

interpretation and mitigation advice generation. 

Step 4 – Compare SAFE-AE performance against baseline MIL and supervised models using 

common detection metrics. 

Results: 

Accuracy = 77.75%; Precision = 82.06%; Recall = 89.58%; F1-Score = 85.66%; detection latency < 

1s per bag; false alarm rate < 0.12. 
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Scenario 4 Coordinate with security orchestration tools 

Step 1 – Deploy the Orchestration Coordination Agent equipped with an LLM interface connected 

to an Open Source Security Orchestration, Automation, and Response (SOAR) platform in 

CERTHs’ testbed . 

Step 2 – Simulate detected vulnerabilities and policy breaches across 5G slices (e.g., outdated 

services, misconfigured firewalls, improper ACLs). 

Step 3 – Validate that the agent triggers SOAR-driven actions including: 

 a) Patching vulnerable services 

 b) Updating firewall configurations 

 c) Adjusting access control lists (ACLs) 

 d) Modifying slice-level security policies 

Step 4 – Observe execution traceability and ensure feedback from each action is logged and 

reintroduced into the agent network for closed-loop adaptation. 

Step 5 – Confirm that the secondary LLM generates comprehensive, human-readable 

documentation of all automated decisions and outcomes 

Expected Results: 

The Orchestration Coordination Agent effectively executed multi-step mitigation workflows 

through SOAR integration, maintained full action traceability, and produced detailed natural-

language reports summarizing all actions taken and their network impact. 

3.17. Data plane ML 

3.17.1. Test Procedures / Test Cases 

The full set of test procedures and results is recorded in the attached Excel sheet ELTE-Data-

Plane-ML.xlsx in Appendix A.15. All tests were executed in August 2025, and every case passed 

successfully. 

Compilation and deployment: The ML-enhanced P4 program was compiled and deployed on 

both the Tofino hardware target and the eBPF software backend without errors. The binaries 

loaded correctly, confirming portability across hardware and software environments. 

Packet classification: With the ML model preloaded in the pipeline, benign traffic was 

consistently classified as benign, while malicious traffic samples (including portscan and DDoS 

flows) were reliably detected and tagged. 
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Control-plane integration: Model updates pushed from the control plane were successfully 

loaded into the data plane, and rule enforcement (e.g., dropping malicious traffic while 

forwarding benign flows) worked as expected. 

Robustness: The pipeline handled malformed packets gracefully, classifying them as “unknown” 

or dropping them without any crash. When executed without a preloaded model, the system 

defaulted to benign classification, demonstrating stable fallback behavior. 

No anomalies or deviations were observed during testing. The results confirm that the Data Plane 

ML component is stable, functional, and ready for integration. 

3.18. Wire-speed AI (WAI) and Decentralized Feature Extraction 

(DFE) 

3.18.1. Test Procedures / Test Cases 

The preliminary test procedures and cases for DFE-WAI have been carried out to assess the 

correct implementation and execution of the first DFE-WAI components. They are in the attached 

CNIT-DFE-WAI.xlsx in Appendix A.16. The activity followed a methodology in which each test 

scenario was defined as a high-level functional area, further refined into individual test cases. 

Each test case included a set of preconditions, the required test data, a detailed description of 

the execution steps, and a comparison between expected and actual results in order to 

determine the final status. Distinct scenarios are considered for two main backends: the P4 

switch running DFE+WAI and the Bluefield-2 DPU Smart-NIC running DFE. 

The first scenario (i.e., DFE-WAI-TS01), concerned the verification of the P4-based deep neural 

network application embedded as distilled LUT cascade. This Wirespeed AI (WAI) solution is 

deployed on the Tofino (TNA) target. The tests confirmed the successful compilation of the 

program and its correct loading on the switch. Further validation showed that the switch was 

able to forward benign traffic on the appropriate interface while correctly discarding malicious 

traffic, thereby meeting the functional requirements defined at design stage. 

The second scenario (i.e., DFE-WAI-TS02), focused on the compilation and containerization of a 

DOCA application on the target DPU. The objective was to ensure the absence of compilation 

errors both when running directly on the DPU and when executed inside a Docker container. The 

tests demonstrated that the application compiled successfully in both environments, with no 

errors detected during the build process. 

The third scenario (i.e., DFE-WAI-TS03), targeting the DPU, addressed the runtime behavior of 

the DOCA application. Using GDB, the internal control flow of the application was inspected and 

confirmed to match the expected behavior without anomalies. Additional validation was 
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performed by running the application under traffic load and monitoring the DOCA Flow counters. 

The counters increased consistently with the traffic injected and aligned with the expected 

results, demonstrating that the runtime behavior of the application was correct and stable. 

Across all three scenarios, the expected results coincided with the actual outcomes, and every 

test case achieved a “Pass” status. No deviations or unexpected issues were observed. The results 

of these tests confirm the functional readiness and stability of the first release of the DFE-WAI 

components within the tested scope. The full test descriptions, inputs, and results, are provided 

in the Annex, where the complete Excel test report is included.  

3.19. Microservice behavioral analysis for detecting malicious 

actions  

This test focuses on detecting malicious actions in microservices through behavioral analysis 

using AI/ML models. A profiling tool captures key performance metrics to establish normal 

behavior, after which multiple models are evaluated for binary and multiclass anomaly detection 

and resource prediction. Future testing procedures extend this framework to a full 5G 

microservice infrastructure with orchestration, SDN integration, continuous monitoring, and 

automated mitigation through controlled attack simulations. The tests associated with this 

component are described in CERTH-Microservice Behavioral Analysis for Detecting Malicious 

Action Component.xlsx and in appendix A.17. 

3.19.1. Test Procedures / Test Cases 

Step 1 - Deploy a dockerized profiling tool to monitor twelve key metrics across infrastructure, 

including CPU and memory usage, disk read/write throughput, network traffic, latency 

percentiles, and error rates, establishing a baseline of normal microservice behavior. 

Step 2 - Gather real-time resource usage and performance data from all deployed microservices. 

Aggregate metrics to detect both gradual deviations (e.g., step increases in load) and sudden 

anomalies (e.g., spikes in traffic or CPU/memory usage). 

Step 3 - Utilize a lightweight 1-D CNN to classify microservice behavior as Normal or Anomalous. 

Repeat the same step with other AI/ML models such as Multi-Layer Perceptron (MLP), Random 

Forest, and SVM to collect data to validate the CNN’s effectiveness.  

Step 4 - For microservices flagged as anomalous, use a 1-D CNN to identify the specific anomaly 

type (high CPU, high memory, traffic spike, gradual load increase, high network latency) or mark 

it as Unknown for further inspection. Repeat the same step with other AI/ML models to collect 

data and compare their performance with proposed solution. 
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Step 5 - Perform a proof-of-concept evaluation using an open dataset to evaluate the system’s 

ability to detect the five defined anomaly types, ensuring its' robustness and accuracy of both 

binary and multiclass models. 

Step 6 - Utilize an RNN-based neural network to model CPU and memory consumption of 

microservices using portions of the open dataset, which includes measurements under normal 

conditions and various attacks. 

Results: The profiling tool successfully captured all twelve metrics and established baseline 

behaviors. The lightweight 1-D CNN achieved high performance in binary classification and 

multiclass classification effectively distinguished between anomaly types and unknown patterns. 

Additionally, resource prediction using an RNN-based model demonstrated strong predictive 

capabilities for CPU and memory consumption, enabling proactive resource allocation and 

performance optimization. 

Future Test Procedures / Test Cases 

Step 1 - Deploy the Microservice Orchestrator. Set up a Kubernetes cluster to function as the 

microservice orchestrator, responsible for automating deployment, scaling, and management of 

containerized microservices. 

Step 2 - Deploy the 5G Core Network (Free5GC). Implement the 5G core network, which provides 

a fully containerized and modular implementation of key 5G core functions such as AMF, SMF, 

and UPF for handling control and user plane operations. 

Step 3 - Integrate the component/Microservice monitoring with the Central SDN Controller 

(Floodlight OpenFlow). Deploy and configure the controller to enable centralized network 

control, efficient traffic management, and optimized resource allocation across the 5G core 

components.  

Step 4 - Set up the Monitoring Engine (Prometheus and Grafana) to continuously collect resource 

metrics from all deployed microservices. This includes CPU utilization, memory usage, disk 

read/write throughput, and other key performance indicators, providing real time data required 

for the Microservice Behavioral Analysis module. 

Step 5 - Activate the Microservice Behavioral Analysis Module: use AI-driven anomaly detection 

to identify deviations from normal behavior or abnormal traffic patterns. Detected anomalies  

trigger automated actions through the orchestrator. 

Step 6 - Perform controlled attack simulations on the deployed 5G microservice infrastructure to 

evaluate the responsiveness of detection and mitigation mechanisms. These scenarios will 

include different attack types e.g. DoS attempts, privilege escalation, and unauthorized access 

emulations. 
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Step 7 - Detect potential attacks through Behavioral Anomaly Analysis. Utilize the AI-driven 

anomaly detection framework to identify potential security threats. The two-stage CNN model 

analyzes real-time telemetry and resource consumption data to distinguish between normal and 

abnormal behavior, classifying anomalies. 

Step 8 - Execute mitigation actions based on detected anomalies: When an anomaly is confirmed, 

initiate automated mitigation action through the orchestrator and SDN controller.  

Results: Controlled attack simulations will confirm the system’s resilience, with the two-stage 

CNN model accurately detecting and classifying threats such as DoS, privilege escalation, and 

unauthorized access. Confirmed anomalies were promptly mitigated through automated 

orchestration and SDN actions, isolating affected microservices, rerouting suspicious traffic, and 

maintaining overall service stability. 

3.20. MTD Controller 

The test procedures and expected results are recorded in the attached Excel sheet ZHAW-MTD-
Controller.xlsx in Appendix A.18. 

3.20.1. Test Procedures / Test Cases 

The tests for the MTD Controller are organized around two functional goals: (1) verify 

live/stateful migration of CNFs without session loss, and (2) verify stateless migration (stop-and-

recreate) for both VNFs and CNFs. The live-migration scenario (MTD Controller-TS.01 / TC.01) 

validates that the MTD Controller can coordinate with a container orchestrator (i.e., Kubernetes) 

and perform a transparent migration of a stateful CNF so that the service remains running and 

session state is preserved. The stateless scenarios (MTD Controller-TS.02 / TC.01 and TC.02) 

validate that the MTD Controller can coordinate either with an NFV MANO (for VNFs) or with the 

container orchestrator (for stateless CNFs) to stop execution on one node and instantiate an 

equivalent instance on another node, ensuring the function resumes operation on the 

destination node only. 

Each test case requires the same basic cluster preconditions: the MTD Strategy Optimizer must 

be operational and able to decide migration actions, there must be at least two compute nodes 

available in the edge-to-cloud continuum. Tests may be exercised either proactively — by waiting 

for the optimizer’s scheduled decision — or reactively by injecting a simulated cyberattack 

(examples used in the test cases are data-exfiltration and malware infection). These triggers 

validate both proactive and reactive MTD operations. 

The test steps are intentionally simple and observable: initialize the MTD framework, allow the 

optimizer to decide (or trigger an attack to force a decision), then monitor the orchestration 

actions and the runtime status of the network function and the nodes involved. Acceptance 
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criteria and pass/fail conditions should be explicit and measurable. For both tests, pass criteria 

include: (a) orchestration commands observed in controller logs and orchestrator events, (b) 

VNF/CNF service running on the target cluster and not on the source cluster after cutover, and 

(c) continuity of ongoing sessions (no lost sessions or packet-loss spikes exceeding a pre-defined 

SLA). 

3.21. MTD Strategy Optimizer  

The test procedures and expected results are recorded in the attached Excel sheet ZHAW-MTD-

Strategy-Optimizer.xlsx  in Appendix A.19. 

3.21.1. Test Procedures / Test Cases 

The tests for the MTD Strategy Optimizer are organized around two complementary verification 

goals: (1) proactive decision-making, where the optimizer autonomously decides to relocate 

network functions based on monitoring and deep-RL trained optimal policies, and (2) reactive 

decision-making, where the optimizer responds immediately to detected security incidents. 

Proactive tests (MTD Strategy Optimizer-TS.01 / TC.01–TC.02) validate that the optimizer 

consumes monitoring telemetry, reasons about risks and resource consumption (via deep-RL 

continuous optimization), and issues migration actions for stateless VNFs and live/stateful CNFs. 

Reactive tests validate the optimizer’s ability to quickly detect attack indicators reported by the 

monitoring tool and to recommend or trigger migrations as a containment/mitigation measure. 

All test cases assume an integrated monitoring pipeline: e.g the OSM and Kubernetes 

orchestrators provide CNF/VNF life-cycle state information to the MTD Strategy Optimizer, while 

Montimage’s MMT monitoring feeds real-time traffic telemetry. Tests are executed with a multi-

cluster environment for dry-runs (in the ZHAW testbed), to validate them in an edge-to-cloud 

continuum scenario. Final evaluations are then done in a 5G network (following 6G Telco-Cloud 

setup and usage of CNFs and network slices). 

Acceptance criteria are: (a) the optimizer emits a migration decision/plan within an allowed 

decision latency window, (b) the decision contains sufficient metadata (target CNF, MTD 

operation, and destination), (c) the MTD Controller correctly interprets the request given by the 

MTD strategy optimizer, (d) decisions that are in conflict with the network state or previously 

taken decisions are not enforced. 

3.22. MTD Explainer  

The test procedures and expected results are recorded in the attached Excel sheet ZHAW-

MTDFed.xlsx  in Appendix A.20. 
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3.22.1. Test Procedures / Test Cases 

The MTD Explainer component is responsible for ensuring transparency and interpretability of 

the Moving Target Defense (MTD) system’s automated decisions. This test scenario (MTD 

Explainer-TS.01 / TC.01) verifies that, whenever the MTD Strategy Optimizer decides to perform 

an action—either proactively or reactively—the Explainer can generate a clear, human-

understandable rationale describing why that action was taken and how it enhances the system’s 

security posture. The test assumes a fully functional MTD environment with the Strategy 

Optimizer active and deployed network function (either CNF or VNF) in the edge-to-cloud 

continuum. The Explainer should already be integrated with the MTD decision pipeline, capable 

of consuming decision metadata and contextual telemetry. Preconditions also require that 

monitoring data and the trained deep-RL model are available. 

The expected result is that the MTD Explainer produces a human-interpretable explanation 

corresponding to the decision. This explanation should articulate what action was taken (e.g., a 

stateful CNF live migration versus a stateless VNF re-instantiation), why the action was necessary 

(e.g., response to detected attack, mitigation of aging-induced vulnerabilities, or proactive re-

randomization of resources), and how it contributes to security improvement. The explanation is 

presented in natural language suitable for a system operator, auditor, or analyst, and it is 

evaluated against an expert-knowledge based analysis, checking that: 1. the generated 

explanation is coherent, accurate, and matches the actual decision taken; and 2. the explanation 

references the key decision drivers (e.g., detected threat, function age, or MTD Strategy 

Optimizer’s confidence).  

3.23. AI-driven security monitoring for anomaly detection and root 

cause analysis in IoT networks  

To validate the effectiveness of the AI-driven anomaly detection and root cause analysis (RCA) 

framework, a set of test procedures and cases has been defined. These procedures aim to assess 

the system’s performance across different operational and attack scenarios, ensuring compliance 

with the defined KPIs and overall objectives of NATWORK. Each test is carried out under 

controlled IoT/6G network conditions, where IoT devices, gateways, and monitoring probes are 

deployed, and traffic is generated either from real devices or simulated datasets. The following 

subsections describe the test scenarios in detail. The test procedures and expected results are 

recorded in the attached Excel sheet MONT-AI-AD-RCA.xlsx  in Appendix A.21. 

3.23.1. Test Procedures / Test Cases 

• Baseline Performance Validation 
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The first test scenario establishes the baseline performance of the system under normal 

operating conditions. IoT devices are deployed to generate standard, benign traffic flows, while 

the monitoring probes (MMT) continuously analyze the traffic and the AI-based detection models 

(MAIP) process the data. The objective is to validate that no anomalies are falsely reported, while 

key performance indicators such as latency, throughput, and CPU utilization are collected. This 

baseline serves as a reference for subsequent tests, allowing us to distinguish between normal 

variations in traffic and actual anomalies. 

• DDoS Attack Detection 

The second scenario evaluates the system’s ability to detect large-scale DDoS attacks. Using 

traffic generation tools, SYN flood and UDP flood attacks are launched against IoT gateways and 

edge nodes. Both ML-based detection rules and traditional non-ML rules are tested. The aim is 

to measure the mean time to detect (MTTD), with a target of under 5 minutes for ML-based 

approaches and under 10 milliseconds for MMT’s non-ML rule-based detection. This scenario 

verifies the responsiveness of the anomaly detection system and its capacity to trigger timely 

alerts under high-volume attack conditions. 

• Detection Accuracy: False Positives and Negatives 

The third test scenario focuses on the accuracy of anomaly detection, particularly with respect 

to false positives (FP) and false negatives (FN). Mixed datasets containing both benign traffic and 

malicious traffic (covering various attack types) are replayed. The goal is to ensure that the 

detection system raises alerts only for genuine threats while ignoring harmless anomalies. The 

KPI targets for this scenario are set at less than 1% for both FP and FN rates. The results of this 

test provide a quantitative measure of the reliability of the AI models and their suitability for 

large-scale IoT deployments. 

• Packet Loss and Performance Impact 

The fourth scenario assesses the impact of monitoring and detection on overall network 
performance. Probes are deployed in environments with constrained bandwidth as well as under 

high-load conditions to evaluate the Packet Loss Ratio (PLR). The system is expected to maintain 

a PLR below 0.001%, ensuring that IoT communication remains reliable while security monitoring 

is active. This scenario is critical for validating that the anomaly detection and RCA framework 

does not degrade the quality of service or compromise the efficiency of IoT operations, even in 

resource-limited environments. 

• Incident Resolution and Mitigation Time 

The fifth scenario evaluates the system’s ability to resolve incidents rapidly after detection. Once 

an attack (e.g., a flooding attack) is launched and identified by the anomaly detection system, the 
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mitigation mechanisms are activated. These include traffic rerouting, access control 

enforcement, or container migration strategies, depending on the context. The test measures 

the mean time to resolve (MTTR), with the objective of reducing this to under 10 minutes. This 

ensures that service continuity is preserved and that disruptions to IoT applications are 

minimized during ongoing attacks. 

• Root Cause Analysis (RCA) Validation 

The sixth and final scenario focuses on validating the RCA module, which is central to UC#3.1’s 

innovation. Several subcases are explored to ensure robustness: (i) in cases of benign 

misconfigurations (e.g., faulty routing rules), the RCA module must correctly distinguish these 

from malicious events; (ii) during malicious attacks, such as SYN floods, the RCA module must 

pinpoint the source, type, and scope of the anomaly; (iii) in scenarios involving compromised IoT 

devices, the RCA system must attribute suspicious behavior to the responsible node; and (iv) 

explainable AI (XAI) techniques, combined with LLM-based reporting, must generate human-

readable explanations that operators can trust and act upon. This scenario ensures not only 

technical detection but also usability and transparency for human operators, closing the loop 

between detection, understanding, and action. 

3.24. Security-performance balancer  

3.24.1. Test Procedures / Test Cases 

The test procedure for the Security Performance Balancer should involve generating user traffic 

with different security algorithm configurations—such as Snow, AES, and ZUC—while monitoring 

how the system distributes users across servers based on their ciphering, integrity, and replay 

protection settings. The test should verify that users employing the same algorithms are grouped 

onto the same servers, reducing CPU load and maximizing the use of cryptographic accelerators. 

3.25. DFE Telemetry  

The test procedures and results are recorded in the attached Excel sheet CNIT-DFE-

Telemetry.xlsx in Appendix A.22. 

3.25.1. Test Procedures / Test Cases 

Extensive test sessions have been conducted for the DFE-Telemetry component to verify its 

correct functionality and performance under different operating conditions. The component has 

been tested in the P4 BMv2 backend. Further test sessions will be executed when the version for 

the Tofino TNA backend will be available. 



D6.2-System Integration on the testbeds, Pilot installations and implementations.r1 

 

Page 100 of 228 
 

The first scenario (i.e., DFE-Telemetry-TS01), addressed the compilation and deployment of the 

P4-DFE Telemetry program on the BMv2 software switch. The source code was compiled using 

the P4C compiler and deployed successfully, with the binary loading correctly in the target 

environment. The outcome confirmed the readiness of the software implementation and the 

correctness of the build process. 

The second scenario (i.e., DFE-Telemetry-TS02), focused on functional validation within a Mininet 

environment. A topology consisting of three hosts and three concurrent flows (two UDP and one 

TCP) was instantiated, and the telemetry program was deployed on the switch. Reports were 

correctly generated for all flows, confirming the capability of the component to monitor 

heterogeneous traffic patterns and produce telemetry outputs as expected. 

The third scenario (i.e., DFE-Telemetry-TS03), investigated the performance impact in terms of 

latency and CPU overhead. Comparative experiments were conducted between simple 

forwarding and telemetry-enabled forwarding using external Spirent traffic generators. Results 

demonstrated that the latency overhead introduced by the telemetry component remained 

within the expected range and did not compromise normal forwarding. Similarly, the CPU load 

remained within acceptable bounds, with differences observed between simple and telemetry-

enabled forwarding confirming the correct operation of telemetry features without excessive 

resource usage. 

The fourth scenario (i.e., DFE-Telemetry-TS04), extended the performance evaluation to 

scalability conditions. By progressively increasing the number of flows from 1 to 10, 100, and 

1000, the component was evaluated for both latency and CPU overhead under high-load 

conditions. The observed increases were moderate and consistent with expectations, 

demonstrating that the DFE-Telemetry component is capable of scaling effectively with the traffic 

load while maintaining operational stability. 

Across all executed scenarios, the expected and actual results coincided, and all test cases were 

marked with a “Pass” status. No anomalies or deviations were detected. The results confirm that 

the DFE-Telemetry component meets its design objectives, both in terms of functional 

correctness and performance. The full set of detailed test descriptions and measurements is 

provided in the Annex, where the corresponding Excel test report is included. 

3.26. Secure Data Aggregation  

The full set of test procedures and results is recorded in the attached Excel sheet ELTE-Data-

Aggregation.xlsx in Appendix A.23. All test cases completed successfully. 
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3.26.1. Test Procedures / Test Cases 

The Basic Flwr Server Startup tests (Secure_DA-TS.01) confirmed that the Flower (Flwr) 

environment initializes correctly. The server started successfully, clients connected, and 

federated training rounds executed without errors. Training completed across multiple rounds, 

with aggregated global model accuracy improving steadily as expected. 

The SecAgg+ for Secure Aggregation tests (Secure_DA-TS.02) validated the integration of the 

SecAgg+ module for privacy-preserving training. Secure key exchange, encryption, and masking 

were verified in logs. Aggregation succeeded using masked client updates, preserving data 

privacy while maintaining comparable convergence to the non-secure baseline. 

The MPC-Based Secure Aggregation tests (Secure_DA-TS.03) demonstrated that secure multi-

party computation (MPC) was correctly initialized using the MP-SPDZ library. End-to-end MPC 

aggregation completed successfully, ensuring that no single party accessed individual client data. 

Performance overhead remained within acceptable limits compared to SecAgg+. 

All procedures under Secure_DA-TS.01–TS.03 executed successfully. The secure aggregation 

mechanisms (SecAgg+ and MPC) functioned as intended, ensuring privacy-preserving federated 

learning with stable training and reliable performance. The component is verified to be 

functional, secure, and ready for integration into the larger system. 

3.27. Federated Learning for edge-to-cloud  

The test procedures and results are recorded in the attached Excel sheet UEssex – Federated 

Learning edge-cloud.xlsx in Appendix A.24.  

3.27.1. Test Procedures / Test Cases 

TS01 (Centralized ML benchmarking): Historical Google cluster traces were pre-processed with 

feature engineering techniques (e.g., lag features, rolling statistics) to extract CPU and memory 

patterns. We prepared datasets for model training through two distinct methods: fine-level 

granularity for detailed patterns, and orchestration-focused aggregation for peak demand 

planning. Models including ARIMA, LSTM, and XGBoost were trained with hyperparameter tuning 

and evaluated against real workload traces. This benchmark validated the predictive framework 

and provided a baseline for orchestration use cases. 

TS02 (Baseline federated learning framework): Google workload traces were partitioned across 

multiple nodes to emulate distributed edge–cloud training. Local XGBoost models were trained 

independently on each node, with predictions aggregated using a bagging-based FL approach. 

Results confirmed the feasibility of decentralized learning, showing comparable performance to 

centralized ML, while demonstrating scalability for edge-to-cloud scenarios. 
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These tests collectively establish a validated baseline for predictive workload modeling, serving 
as the foundation for future FL extensions with custom DoST datasets and MinIO-based 
persistent data storage. 

3.28. MTDFed  

The test procedures and expected results are recorded in the attached Excel sheet ZHAW-

MTDFed.xlsx  in Appendix A.25. 

3.28.1. Test Procedures / Test Cases 

The MTDFed component enables collaborative training of the MTD Strategy Optimizer across 

multiple VNOs through an FL approach. The goal of these tests is to verify that distributed 

optimizers deployed across different networks can jointly train a more accurate and resilient 

global model without sharing network monitoring data. Three test cases are defined to evaluate 

basic functionality and the integration of privacy-preserving mechanisms such as Multi-Party 

Computation (MPC) and Differential Privacy (DP). 

The first test case (MTDFed-TS.01-TC.01) validates the baseline functionality of MTDFed without 

privacy mechanisms. With at least three VNOs deployed across edge nodes and an active 

aggregator in the core network, the test triggers federated learning across several rounds and 

observes the aggregation and convergence process. The expected outcome is that the global 

MTD Strategy Optimizer model progressively improves its performance compared to the local 

models, demonstrating successful synchronization and aggregation across VNOs. The second test 

case (MTDFed-TS.01-TC.02) extends this setup by enabling secure aggregation through MPC. This 

test ensures that individual model updates from VNOs remain confidential during the learning 

process. While the procedure mirrors the baseline test, the key validation point is that the 

aggregator correctly aggregates encrypted updates without accessing any private model 

information. The third test case (MTDFed-TS.01-TC.03) assesses the use of Differential Privacy 

within the MTDFed framework. Here, each VNO introduces noise to local updates before sending 

them to the aggregator, ensuring privacy protection even against potential reconstruction 

attacks. The test verifies that the system converges successfully and that the global model 

remains functional, measuring the possible reduced accuracy due to the privacy noise.  

3.29. CIA-hardening of x86 payloads Component  

The test scenarios and test cases for this component can be found in the attached Excel sheet 

TSS-CIA hardening x86 payloads.xlsx in Appendix A.26. 
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3.29.1. Test Procedures / Test Cases 

Testing the CIA-hardening of x86 payloads techniques will go through several independent test 

procedures and test cases, each reflecting a specific hardening technique related to the elevation 

of payload confidentiality, integrity, and availability. The associated tests will be worked out using 

MMT probe, a security-related payload, producing continuous anomaly detection. Several 

testbeds can be considered as this payload will be installed at PNET, CNIT or MONTIMAGE. The 

testbed will be selected to place the payload in working conditions as an important KPI is the 

(low) performance penalty induced by the hardening, which can be precisely measured in real 

working conditions.  

• Confidentiality preservation 

MMT confidentiality preservation will be elevated by a SECaaS automatic operation which 

encrypts the text section of its ELF-formatted .exe or .so file. This operation protects MMT against 

static analysis, discovery of potential vulnerabilities, or intellectual property violations. The test 

procedure first checks the effectiveness of the security promise, then looks at the latency caused 

by the decryption (below 3 sec) realized before code execution and finally validates the negligible 

performance impact during execution. A baseline will be collected on an unprotected MMT. 

Timestamps will be implemented and used for the timing measurement. The associated tests are 

SECaaS-Conf-x86-TS.01/02/03. 

• Integrity preservation 

MMT integrity preservation will be evaluated when the code is on-boarded (i.e., remote 

attestation) and during its execution (i.e., runtime integrity verification). To get these security 

attributes, a SECaaS operation will be carried out before deployment to (i) inject Prove, Verify 

and DLT communication primitives into the code, (ii) build a reference measurement of the 

augmented payload (i.e., hash of the memory footprint, used as a reference for future integrity 

checks). . 

D-MUTRA blockchain based mutual remote attestation framework will be leveraged as it is 

dependency-free, enabling MMT code deployment anywhere. This setup workflow will be 

modified if MMT is deployed as a container, obviating the SECaaS operation. Leveraging Docker 

compose deployment utility, a sidecar will be appended on MMT namespace, hence getting a 

visibility on its memory footprint. The test procedure will first check the effectiveness of the 

security promise, trigger tampering, and check its detection. Then, the remote attestation cycle 

timing (up to the creation of a block) will be measured. Then the procedure will check the 

performance impact of periodic or event-based (i.e., on-demand) MMT integrity verification 

during its execution. A baseline will be collected on an unprotected MMT. Timestamps will be 
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implemented and used for the timing measurement. The associated tests are SECaaS-Int-x86-

TS.01/02/03. 

• Availability preservation 

MMT availability preservation will be evaluated when the code is executing, checking the 

relevance of the monitoring (i.e., providing an accurate measure of MMT performance in terms 

of processed packets) as well as the performance penalty caused by the monitoring. A baseline 

will be collected on an unprotected MMT. Several types of measurement will be worked out, 

based on the measurement of the call frequency of MMT’s packet processing routine or based 

on the time to execute a reference code block, structurally defined to be independent from 

historical past processing. A baseline will be collected on an unprotected MMT. Timestamps will 

be implemented and used for the timing measurement. For simplicity in finding the correct 

locations for these timestamps' insertion, we will consider LLVM compilation framework which 

delivers the function names (ie, symbol) removing the opacity of assembly code. The associated 

tests are SECaaS-Avail-x86-TS.01/02/03 

3.30. CIA-hardening of containerized payloads  

The test procedures and expected results are recorded in the attached Excel sheet TSS-CIA 

hardening Containers payloads.xlsx in Appendix A.27. 

3.30.1. Test Procedures / Test Cases 

The related test scenarios and test cases for this component have been recorded and displayed 

in the appendix section of this document. The evaluation of this component is going to be 

performed in the PR2 between months M28 to M31. Two payload alternatives will be considered 

(i.e., MONT’s MMT or ISRD’s Liquid xApp).  For simplicity, if practicable, we will use the same 

workload as stated for x86 workload above, notably the modified version with inserted 

timestamps.  

• Confidentiality preservation 

No specific test will be worked out as the state of the art fulfilling this need is mature in this 

respect (i.e., encryption of container OCI image OCI v1 spec). To advance the state of the art, it is 

required to operate at the executable level (i.e., x86 executable) inside the container and as 

offered for x86 payloads above.  

• Integrity preservation 

 The implementation consists of setting up a sidecar which operates aside the container, sharing 

the same namespace PID and additionally allocated with CAP_SYS_PTRACE Linux capability. With 
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these two conditions, the sidecar will access and measure a defined x86 executable memory 

footprint resident in the container. By means of Linux cgroups resource management, we will be 

able to restrict the resource consumed by the sidecar, hence the impact on the container 

performance. The associated tests are SECaaS-Int-Cont-TS.01/02. 

• Availability preservation 

With the same memory access conditions as defined above, the sidecar will be able to collect 

sampled runtime information (i.e., instruction pointer states, stack trace) as well as executing  an 

specific performance reference code to assess if the code is current executing (or idle), if the 

platform resource is under stress and tentatively assess the performance ratio of the code versus 

a reference performance. he associated tests are SECaaS-Avail-Monit-TS.01/02. 

3.31. CIA-hardening of WASM payloads Component 

The test scenarios and test cases for this component can be found in the attached Excel sheet 

TSS-CIA hardening WASM payloads.xlsx in Appendix A.28. 

3.31.1. Test Procedures / Test Cases 

Based on the feasibility study by TSS on WASM hardening, the CIA hardening as defined for x86 

above will be defined and processed. The tests will be worked out with representative WASM 

workloads. If applicable and agreed, one of them could be MONT’s MMT (compiled in Web 

Assembly bytecode). Some of the associated tests will directly depend on a feasibility study 

stating the possibility to harden a WASM module against CIA attacks. At the current stage, we 

have demonstrated that runtime WASM module integrity can be verified. 

• Confidentiality preservation 

Comparable techniques to those used for x86 are applied to WASM workloads, aiming at 

encryption of sensitive sections and protection against static reverse engineering. The associated 

tests are SECaaS-Conf-WASM-TS.01/02/03. 

• Integrity preservation 

 The modified WASMTIME runtime computes a runtime signature of the WASM bytecode and 

compares it with the pre-deployment reference signature of the same module. Any mismatch 

indicates tampering of the WASM payload. This process is integrated with the D-MUTRA 

blockchain to enable decentralized validation and secure record keeping. The associated tests 

are SECaaS-Int-WASM-TS.01/02/03. 

• Availability preservation 
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WASM runtime performance monitoring will be worked out by instrumenting the WASM 

runtime. For simplicity, we will instrument the x86 runtime with timestamps inserted before 

compilation). Additionally, we will explore, for containerized runtime implementations, if and 

how the sidecar monitoring layout as stated above can be considered. The associated tests are 

SECaaS-Avail-WASM-TS.01/02/03. 

3.32. JDM-xApp  

3.32.1. Test Procedures / Test Cases 

The JDM xApp performs the choice between the basic AMC algorithm and AMC-based Jamming 

Detection and Mitigation algorithm. The test procedure shall verify the correctness of choice of 

the algorithm, i.e. in the jamming scenario the chosen algorithm should be AMC-based Jamming 

Detection and Mitigation and in the no-jamming scenario (normal operation) the chosen 

algorithm should be basic AMC. 

In the first release, the two algorithms are implemented and tested independently in Liquid RAN. 

In the next release, their choice will be controlled by the JDM-xApp. 

3.33. Liquid RAN  

3.33.1. Test Procedures / Test Cases 

In the first release, the AMC-based Jamming Detection and Mitigation algorithm implemented in 

the scheduler is tested.  The test procedures shall verify system robustness under jamming on 

different channels. In the jamming on PRACH test case, the test verifies that UE is able to attach. 

In the jamming on control and shared channels (UL and DL) It verifies if RRC CONNECTED is 

maintained. The detailed test descriptions are reported in ISRD-Anti-jamming.xls in Appendix 

A.29. 

3.34. Liquid Near-RT RIC  

3.34.1. Test Procedures / Test Cases 

The near-RT RIC (Near-Real-Time RAN Intelligent Controller) is a component of the O-RAN 

architecture that enables intelligent control and optimization of the RAN within a timescale of 

10ms to 1s. It hosts applications (xApps) that use near real-time data to manage RAN functions. 

The RIC testing verifies correct mounting of xApp to the RIC, that RIC has connectivity with RAN 

over E2 interface and whether RIC can correctly send and receive messages to and from RAN. 

Specifically, The test procedures should verify whether RIC correctly passes the KPMs to the JDM 

–xApp and correctly passes the algorithm choice message from the JDM-xApp to the Liquid RAN. 
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3.35. KPM xApp  

3.35.1. Test Procedures / Test Cases 

The built-in Liquid Near-RT RIC KPM xApp subscribes to KPMs for all cells and stores them in the 

Valkey database. The test procedure should verify that the KPM xApp correctly subscribes to the 

KPMs (e.g.: CSI, Reference Signal Received Power (RSRP), CQI, HARQ feedback, ACK/NACK 

patterns and BLER), correctly stores KPMs in the database every 1-second. 

3.36. Characteristics Extractor 

3.36.1. Test Procedures / Test Cases 

The full details of the test procedures and cases for this component are provided in the attached 

file GRAD-Characteristics_Extract.xlsx in Appendix A.30, which includes parameters, steps, 

results and dates. All dry-run tests on the component have been successfully completed. 

This component is responsible for correctly extracting channel measurements for key generation. 

It covers the proper generation, transmission, and reception of OFDM samples, as well as the 

correct extraction of I/Q samples. In this setup, signal acquisition is completed without issues. 

It also builds the input dataset for the channel-prediction neural network: a portion of the 

extracted data is set aside to train the model and to quantify channel variations accordingly. Two 

test scenarios were conducted. one with two nodes, the main Alice–Bob link, and another with 

three nodes, Alice–Bob plus an eavesdropper (Eve), with measurements taken from Eve’s 

position. 

3.37. Key Generator  

3.37.1. Test Procedures / Test Cases 

The full details of the test procedures and cases for this component are provided in the attached 

file GRAD-KeyGen.xlsx in Appendix A.31, which includes parameters, results steps, and dates. All 

dry-run tests on the component have been successfully completed. 

The key-generation pipeline comprises the following steps: acquire raw I/Q samples; run them 

through the AI DL-UL prediction model; quantize I/Q samples into bits; perform information 

reconciliation; and hash the reconciled bits to derive the final key. Disagreements between the 

two ends are evaluated with the corresponding metrics. 

On the attached file two test blocks were executed, OFDM-TDD and OFDM-FDD, for both, we 

collected the primary metrics: KDR (Key Disagreement Ratio) and the ML model MAE (Mean 

Absolute Error), validating the correct component functionality and performance. 
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3.38. Security Evaluator  

3.38.1. Test Procedures / Test Cases 

The full details of the test procedures and cases for this component are provided in the attached 

file GRAD-SecurityVal.xlsx in Appendix A.32, which includes parameters, steps, results and dates. 

All dry-run tests on the component have been successfully completed. 

The Security Validator evaluates the security of the PKG pipeline. First, it takes the generated 

keys and subjects them to the NIST statistical test suite. Second, it validates security against an 

eavesdropper scenario (Eve), assessing leakage and advantage under the chosen threat model. 

3.39. AI -Based Anomaly Detection Explainer  

3.39.1. Test Procedures / Test Cases 

The full set of test procedures and results is recorded in the attached Excel sheet  UZH-Anomaly 

Detection Explainer.xlsx in Appendix 33. All tests were executed in August 2025, and every 

executed case passed successfully. The explainer service was built and deployed without errors. 

Health checks and REST endpoints responded correctly in the target runtime, confirming a clean 

rollout. 

Alert ingestion & schema validation: Valid IDS alert payloads were accepted and processed, while 

malformed or schema-incompatible payloads were rejected with informative errors, as expected. 

Explanation generation: For malicious traffic samples, the component produced consistent, 

human-readable explanations capturing salient features/evidence. For benign flows, no 

explanations were emitted, matching the design intent. 

Control-plane integration: Control-plane updates (e.g., playbook selection and policy signaling) 

were ingested correctly. Actions were logged and traceable end-to-end, with no unintended 

configuration changes. 

Robustness & fallback: Under malformed inputs, missing model artifacts, or dependency 

timeouts, the system failed gracefully returning safe defaults, preserving service availability, and 

avoiding crashes or stalls. 

No anomalies or deviations were observed during testing. The results confirm that the Anomaly 

Detection Explainer Component is stable, functional, and ready for integration. 
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3.40. Wirespeed traffic analysis in the 5G transport network 

The full set of test procedures and results is recorded in the attached Excel sheet CERTH-

Wirespeed-traffic-analysis.xlsx in Appendix A.34. All tests that have been executed so far are 

completed successfully. 

3.40.1. Test Procedures / Test Cases 

A set of test scenarios was carried out to evaluate the functionality, classification accuracy, and 

control-plane integration of the Wirespeed Traffic Analysis system based on P4-programmable 

SmartNICs and the CERTH Intrusion Detection System (IDS). Under Test Scenario TS01, the goal 

was to validate the compilation and deployment pipeline. In TC01, the P4 program was 

successfully compiled and deployed on an Agilio SmartNIC, confirming correct loading of the 

binary. In TC02, the integration between the P4 data plane and the CERTH IDS was tested, 

verifying that the IDS could correctly parse and process ingress traffic forwarded by the Agilio 

SmartNIC in a live 5G network environment. 

Test Scenario TS02 focused on packet classification capabilities. In TC01, the system correctly 

identified and tagged all benign traffic, while TC02 validated its performance on malicious inputs 

using the CICIDS2017 dataset, with accurate detection of threat flows. 

Finally, Test Scenario TS03 evaluated control-plane integration. In TC01, the CERTH IDS produced 

inferences based on traffic characteristics, which were then translated into runtime rules (e.g., 

drop malicious, forward benign) and successfully applied by the P4 controller. The verification 

confirmed that benign traffic was forwarded, and malicious traffic was dropped as expected. 

All test cases that were executed between September 2024 and September 2025 resulted in a 

Pass status, demonstrating that the system operates reliably across the entire pipeline—from 

compilation and deployment to real-time detection and mitigation. 

3.41. Detection and mitigation against jamming attacks (HES-SO) 

3.41.1. Test Procedures / Test Cases 

In this service-component HES-SO has made significant progress. The reader can check the 

different tests performed in the attached file HES-SO_Jamming.xlsx in Appendix A.35, all of them 

had passed correctly. At the current state the testbed is in place, gNodeB and 5G CN are running 

in containers, jammer is also functional running itself in a container as well and UE (+ SIM card) 

are also well configured. The testbed is also running the near RT RIC (Real Time RAN Interface 

Controller) but not yet tested. The metrics collected on the gNodeB provided by the UE have 

been analyzed only offline using the logs provided by gNodeB (srsRAN) but not by an xApp which 
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has not been developed yet.  There is still an open discussion regarding how to report to the 

scheduler to provide mitigation against jamming. 

3.42. Setting up of a Mirai botnet.  

As part of the service component, the HES-SO team successfully implemented a complete and 

reproducible Mirai environment. The deployment is based on physical machines hosting isolated 

virtual machines running the Mirai binary and its command infrastructure (CNC). Secure 

orchestration of agents is ensured by a host-guest communication channel based on QEMU/KVM 

(AF_UNIX socket on the host side — virtual serial device on the guest side), controlled by 

dedicated daemons (mmc-host-daemon, mmc-vm-daemon) and an administration client (mmc-

cli) discovered via IPv6 link-local multicast. This device makes it possible to generate varied and 

controlled attack scenarios while ensuring the strict isolation of malicious traffic from the 

institutional network. The integration of this experimental bench with the pre-processing 

pipeline (CICFlowMeterV4 → CSV/Parquet) facilitates the production of traces that can be used 

for model training and evaluation. 

3.42.1. Test Procedures / Test Cases 

The XGBoost model trained on the CIC-DDoS2019 dataset achieves an overall classification 

accuracy of 94.2%. Frequent attacks and benign traffic, such as NTP, SYN, and TFTP, are detected 

with F1 scores close to 0.99–1.00, demonstrating the model's excellent performance on majority 

classes. 

However, rare classes, such as DrDoS_MSSQL (F1 = 0.18) and DrDoS_LDAP (F1 = 0.31), as well as 

some WebDDoS attacks, show much lower performance. This highlights the model's sensitivity 

to class imbalances and the importance of balanced sampling or resampling methods to improve 

generalization. 

Inference on Mirai's local traces reveals that TCP SYN attacks are detected but often mislabeled, 

and that benign traffic, particularly RTSP streams, can be misclassified as attacks. This 

observation shows a mismatch between the distribution of training data and operational traces, 

limiting the model's ability to generalize to Mirai variants. 

These results highlight two key points: the need to build representative Mirai datasets and to 

explore more robust modelling approaches, including temporal or hybrid features. The testbed 

developed is thus useful for generating realistic Mirai scenarios, enabling the improvement of 

detection models and the evaluation of cross-domain generalization. 
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3.43. FPGA-based hardware detection of DDoS attacks  

At present, progress on this component of the service remains limited. The Smart-NIC is 

connected to a PC via the PCIe interface. Although work has been carried out on this interface, 

no relevant DDoS detection model has yet been implemented. 

Development is currently underway, with the first step focused on processing network packets 

using the P4 architecture. This fundamental step is essential to ensure that the Smart-NIC can 

efficiently handle network traffic and provide the hooks necessary for future functionality. 

Once the packet processing framework is stable and fully functional, the next phase will be to 

integrate AI-based models for DDoS attack detection. This will enable real-time identification and 

mitigation of attacks directly on the Smart-NIC, leveraging the hardware acceleration capabilities 

provided by the P4 pipeline. 

In summary, the project is progressing step by step: first, a robust P4-based packet processing 

infrastructure is being set up, and then AI is gradually being integrated. 
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4. Attacks  
Modern mobile and cloud-native infrastructures — particularly those that underpin 5G, B5G and 

emerging 6G systems — support an ever-expanding set of services and rely on a complex stack 

of protocols, virtualized network functions, and orchestration mechanisms. This complexity 

increases both the attack surface and the difficulty of robustly evaluating defensive measures. 

The datasets presented in this chapter are intentionally diverse and realistic: they capture low-

level network traces (pcap), per-flow and short-window feature summaries (CSV / Parquet), time-

domain signal samples for wireless jamming research, and labelled scenarios that span classical 

volumetric DoS and port-scanning, protocol-specific exploits, automated brute-force campaigns, 

and advanced AI-assisted attack strategies. Together, they provide a comprehensive resource for 

the development, testing and benchmarking of detection, mitigation, and resilience techniques 

across networking, wireless signal processing, and cloud/OT (Operational Technology) domains. 

There are three motivating goals behind these datasets. First, to provide realistic, labeled 

datasets that reflect attacks actually observed or plausibly executed against modern mobile and 

cloud-native infrastructures (e.g., attacks mirrored at N3/N6 in a 5G testbed or protocol abuses 

in HTTP/2/SCTP). Second, to support multi-layer research: from packet/header-level anomaly 

detection and per-flow ML classifiers to radio-domain jamming detection and CNF-level (cloud-

native function) resilience strategies. Third, to enable reproducible experimentation for both 

classical ML workflows (training/validation/test splits over CSV/Parquet feature sets) and signal-

processing research (IQ sample datasets for JASMIN training). Each dataset is packaged to 

facilitate immediate use: raw captures for protocol analysts and forensic researchers, and ML-

ready, per-flow and 1-second window aggregates for model builders. 

4.1. DoS attacks and port scans  

Captured on the UZH mini-5G testbed with mirroring at N3 (GTP-U) and N6 (IP). Includes benign 

baseline plus labeled attacks: ICMP/UDP/SYN/HTTP floods, slow-rate DoS; SYN scan, TCP-connect 

scan, UDP scan. Delivered as raw pcapng and ML-ready CSV/Parquet (per-flow & 1-s window 

features: rate, burstiness, inter-arrival stats, TCP flags, unique ports, entropy; TEID/inner proto 

for N3). Labels via run_id/time-window; privacy: payload stripped, IPs anonymized, TEIDs 

remapped. Intended for UC3.1 ML/XAI training/validation. 

4.1.1. Testbed & Service Mapping 

The UZH testbed provides a direct link between simulated network attacks and the service 

components designed to analyze them. Attack datasets, such as the one containing DoS attacks 

and port scans, are generated within controlled testbed scenarios. This is achieved by running 
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malicious traffic from the emulated UE, which then traverses the software-based gNodeB and 

the free5GC core. 

The traffic is captured at key interfaces, primarily at the N3 interface between the gNodeB and 

the UPF, using a port mirror. These captured packets are then mapped directly to the IDS/XAI 

backend service. This service ingests the data, performs feature extraction, and feeds it into 

machine learning models for anomaly detection. If an anomaly is detected, the inference results 

are passed to the Anomaly Detection Explainer component, which generates a human-readable 

explanation for the alert. This creates a clear, end-to-end mapping from a specific attack scenario 

on the testbed to the corresponding detection and explanation services. 

4.1.2. Dataset preparation. 

First, a selection of both benign baseline traffic (e.g., ping, HTTP, iperf) and specific, labeled attack 

traffic (e.g., ICMP/UDP/SYN floods, port scans) is generated within the testbed. This raw traffic is 

captured as pcapng files. 

Next, the data undergoes preprocessing. To ensure privacy and prevent data leakage, payloads 

are stripped, IP addresses are anonymized, and Tunnel Endpoint Identifiers (TEIDs) are 

remapped. The core of the preparation involves feature extraction, where the raw packets are 

transformed into structured formats like CSV or Parquet. This process constructs network flows 

and calculates features over 1-second windows. Key extracted features include: 

Packet and byte rates 

Burstiness and inter-arrival statistics 

TCP flags and unique port counts 

Finally, the data is structured and labeled using run_id and time windows, making it ready for 

model training and validation. 

4.1.3. Training and Validation 

The prepared datasets are central to the training and validation of the entire anomaly detection 

service. The ML-ready CSV/Parquet files, containing detailed features and corresponding labels, 

are used to train various detection models, including Random Forest, XGBoost, and neural 

networks (CNN/DNN). 

The validation process is twofold. First, the IDS model's performance is evaluated using standard 

metrics, with results like the confusion matrix visualized on the operator's dashboard. This 

confirms the model's accuracy in distinguishing between benign and malicious traffic from the 

dataset. Second, the Anomaly Detection Explainer component undergoes rigorous assessment. 
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For each correctly identified attack, the quality of the generated explanation is measured against 

three KPIs: faithfulness, robustness, and complexity. 

4.2. AI-DoS attack  

This Use Case aims to formulate a variety of AI-based Attacks dedicated to B5G/6G infrastructure 

with enhanced capabilities. Indicatively, an AI-powered DoS attack will use Reinforcement 

Learning algorithms to identify and exploit weaknesses in the network that can be used to flood 

it with traffic or cause it to crash. Also, a protocol fuzzer will be utilized to identify vulnerabilities 

in the network protocols and test them for potential exploitation. Finally, it will have the ability 

to apply techniques that will bypass IDS detection making it more effective in attacks. 

4.2.1. Testbed & Service Mapping 

AI-DoS attack tool applies DoS attacks against different components of CERTH’S 5G testbed. 

During the tool’s dry run, AMF and SMF components were targeted, however the tool is able to 

target any system utilizing TCP, UDP and SCTP protocols. 

4.2.2. Dataset preparation. 

Since AI-DoS attack is based on Reinforcement Learning, it does not need training and validation 

data. Instead, the training process takes place through the interaction with the environment in 

which the attacks are applied. This means that the attack strategy is adapted according to the 

feedback received from the target. However, the artifacts of AI-DoS attack can be used to 

formulate a dataset to train the 5G IDS tools.  

4.2.3. Training and Validation 

The AI-DoS attack model training is based on rewards received from taking certain actions and 

evaluating the impact of those actions on the target. A pre-defined number of episodes 

determines the training duration. Each one of the episodes, concludes after 10 rounds, or after 

successful DoS attack. Throughout this process, AI-DoS attack model is learning how to effectively 

deteriorate the QoS of the target, by measuring several factors such as latency, throughput and 

packet loss.  The validation involves applying the AI-DoS attack on a target using the pre-trained 

wights acquired from the training process.  

4.3. DoS attacks and Brute Force attacks  

The following section presents a number of DoS attacks that are available in CERTHs’ SDN testbed 

and will be utilized for UC4.4. 
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4.3.1. Testbed & Service Mapping 

A DoS attack targeting the Stream Control Transmission Protocol (SCTP) is a cyberattack strategy 

focused on disrupting an existing SCTP session or connection, thereby hindering communication 

between two services. There are several techniques attackers might employ to achieve this 

disruption. In this use case, the attack targets the SCTP protocol by attempting to set up 

numerous SCTP sessions. 

The HTTP/2 Slow Get Flooding attack is a variant of a DoS attack specifically tailored to exploit 

the HTTP/2 protocol. In this attack, the malicious user initiates numerous connections to the 

target server and deliberately keeps these connections active for an extended period by gradually 

sending incomplete requests. The strategy behind this slow-paced submission of requests is to 

occupy server resources indefinitely, preventing the server from closing the connection due to 

inactivity. 

The HTTP/2 Ping Flooding attack exploits the "PING" frame feature of the HTTP/2 protocol, which 

is designed to measure the minimum round-trip time between the client and the server. 

Attackers execute this type of attack by dispatching an excessive number of PING frames to the 

target server in quick succession. The primary goal of this attack is to deplete the resources of 

the server. By inundating the server with these frames, the attacker forces it to allocate a 

significant amount of its processing capacity and bandwidth to handle and respond to each PING 

request. This excessive demand on the server's resources can lead to a slowdown or even a 

complete halt in its ability to serve legitimate requests, effectively disrupting the service for 

genuine users. 

The HTTP/2 Slow Get Flooding attack is a variant of a DoS attack specifically tailored to exploit 

the HTTP/2 protocol. In this attack, the malicious user initiates numerous connections to the 

target server and deliberately keeps these connections active for an extended period by gradually 

sending incomplete requests. The strategy behind this slow-paced submission of requests is to 

occupy server resources indefinitely, preventing the server from closing the connection due to 

inactivity. 

A Brute Force SSH is an adversarial access technique that aims to overwhelm or compromise an 

SSH service by repeatedly attempting to authenticate with many different username/password 

or key combinations until a valid credential is found or the server becomes unable to respond to 

legitimate clients. Attackers typically open numerous SSH connections or rapidly iterate through 

credential lists—either from a single source or distributed across many hosts—to exhaust the 

target’s authentication subsystem, CPU and connection-tracking resources, and logging/storage 

capacity. The consequence can be degraded service or complete denial of remote administrative 

access, increased load on intrusion-detection/logging systems, and the potential for 

unauthorized access if weak credentials exist. In the testbed use case, this attack is modeled by 
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launching a high rate of authentication attempts against the SSH daemon to observe how the 

SDN environment detects, isolates, and mitigates excessive connection attempts and credential-

guessing behavior. 

A container offers these attacks by wrapping multiple scripts written in python. The SSH brute 

force attack is based on the functionalities offered by an open-source tool called Hydra. 

4.3.2. Dataset preparation. 

Currently separate attacks and benign traffic were recorded separately in pcap files and then 

converted to flows to be saved as csv to be utilized by the various components developed for the 

project.  

For the next period, this process will be unified to create a more complete dataset. Normal traffic 

with multiple UEs will be emulated for 24 hours. For each attack, at least one hour of malicious 

traffic will be collected. Finally, data will be collected during simultaneous execution of the 

various attacks. The attacks will be carried out against 5G Core VNF (AMF, UPF) and other 

dockerized services e.g. an ngix server, and microservices e.g. a python based microservice 

offering access to an LLM app via a REST API. 

4.3.3. Training and Validation 

The datasets produced by these attacks will be utilized for training algorithms utilized by the 

following components: 

• Lightweight SDN-based AI-enabled Intrusion Detection System for cloud-based services 

presented in section 3.14  

• Multimodal Fusion Approach for Intrusion Detection System for DoS attacks presented in 

3.13  

• Multiagent AI based cybersecurity support system presented in section 3.16. 

4.4. OT/ICS attacks  

In this section, we present an adversary intrusion chain against an OT/ICS testbed composed of 

a vulnerable web application, Apache Tomcat management interface, OpenPLC controllers, and 

a SCADA front end (ScadaBR). The scenario leverages two representative vulnerabilities: CVE-

2021-44228 (Log4Shell) to obtain remote code execution via crafted log payloads, and CVE-2009-

3548 (default/weak Tomcat credentials and exposed manager application) enabling WAR upload 

and remote deployment. Combined, these weaknesses enable attackers to deliver payloads to 

engineering hosts, run loaders, propagate laterally, and interact with PLCs/HMIs — enabling both 

data exfiltration and process manipulation. This section describes how the testbed maps to attack 
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datasets, how datasets are prepared, and how they are used for training and validating detection 

/ attribution models and assessing service-component impact.  

4.4.1. Testbed & Service Mapping 

The testbed is organized into distinct network segments with clearly defined roles. The perimeter 

or DMZ hosts an externally reachable web application and an Apache Tomcat instance that 

exposes the manager webapp and user-deployable WAR endpoints; these services represent the 

publicly accessible attack surface and are the intended targets for Log4Shell injections and WAR 

upload abuse. The engineering/IT segment contains one or more engineering workstations 

running management and development tools; these hosts collect logs and can be targeted by 

phishing and remote code execution, becoming footholds for deeper compromise. The control 

network or OT segment comprises OpenPLC instances that emulate programmable logic 

controllers and ScadaBR as the SCADA/HMI application; together these components expose 

process variables, registers, and operator interfaces that attackers can read or manipulate. 

Finally, external infrastructure—represented in the testbed by a simulated attacker C2 server and 

exfiltration endpoints—models typical command-and-control and data exfiltration channels.  

Mapping the attack flow to concrete services and artifacts clarifies what artifacts should be 

captured during experiments: reconnaissance produces DMZ port-scan and web-fingerprinting 

artifacts in perimeter access logs and gateway logs; initial access yields HTTP requests containing 

Log4Shell payloads, logged WAR upload events in Tomcat, and suspicious authentication 

attempts visible in application logs; execution produces process creation traces, shell or 

PowerShell invocations, scheduled task creation, and outbound C2 beacons; lateral movement 

shows up as remote service usage and authentication traces (RDP/SMB/WinRM) and credential 

dump artifacts in host logs; command-and-control manifests as periodic beacons, DNS or HTTPS 

anomalies, and proxy logs; and impact is recorded in OpenPLC register writes, ScadaBR operator 

alerts, setpoint changes, and historian telemetry. To support reproducible analysis, the 

recommended artifact inventory includes PCAP network captures, flow exports, Tomcat and web 

server logs, host telemetry (e.g., Sysmon/Windows Event logs), OpenPLC register snapshots and 

read/write traces, ScadaBR event logs, IDS/SIEM alerts, and a label set tying timestamps to 

ground-truth attack steps. An explicit topology and metadata package (IP mappings, time 

synchronization details, campaign identifiers) is required so that each captured artifact can be 

traced to the appropriate testbed service and action. 
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Figure 28: OT/ICS attacks based on Log4Shell and Tomcat vulnerabilities 
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4.4.2. Dataset preparation. 

Dataset preparation for this scenario is guided by three design goals: faithful ground-truth 

alignment, multi-modal capture, and label richness. A synchronized ground truth timeline is 

essential: all hosts, PLCs, and capture appliances must be NTP-synchronized and every attacker 

action annotated with precise start and end times so that artifacts can be labeled at event and 

window granularity.  

The preparation workflow begins by defining distinct attack campaigns that vary payload formats, 

deployment filenames, timing, lateral paths, and persistence mechanisms; each campaign 

receives a unique identifier so datasets can be partitioned without leakage. Before executing 

attacks, baseline captures of normal operation are recorded for a meaningful period in order to 

characterize benign behavior. During each campaign the team collects raw PCAPs, exports or 

derives flow records, captures application logs (Tomcat access and error logs, catalina.out), 

gathers host telemetry such as process creation and command-line activity, and records PLC and 

SCADA telemetry including setpoint writes and sensor readings. Immediately following attack 

runs, recovery traces are captured to document remediation activity. Labeling is performed using 

the ground truth timeline: every artifact is annotated with an attack stage (recon, initial access, 

execution, lateral movement, C2, impact), the technique or vulnerability used (for example CVE-

2021-44228 for Log4Shell injections), the campaign identifier, the affected asset, and a 

confidence score where appropriate. Labels are produced at both event level—for supervised 

detection—and at window level for time-series anomaly detection.  

Preprocessing derives features appropriate to each modality: for network data, flow durations, 

byte/packet statistics, inter-packet timing, TLS/J A3 fingerprints, and HTTP header and payload 

heuristics; for host telemetry, process tree features, parent process names, command-line 

entropy, newly created binaries and scheduled task events; for application logs, request path 

patterns, presence of JNDI strings or other injection patterns, and abnormal POST sizes; and for 

PLC telemetry, deltas in setpoint values and frequency of control writes. Sliding windows of 

multiple sizes (e.g., 1 s, 10 s, 60 s) are computed to produce sequences for temporal models, and 

normalization is applied using statistics computed on the baseline training set only. Because 

attack activity is typically sparse relative to baseline, the preparation stage also addresses class 

imbalance: options include oversampling attack windows, synthetic augmentation of network 

traces, or conservative use of SMOTE-style methods for tabular representations.  

Finally, datasets are partitioned by campaign into training, validation, and test sets—keeping 

entire campaign traces in a single split to prevent leakage—and packaged with raw and processed 

data, labels, topology, campaign definitions, and ingestion scripts to ensure reproducibility. 
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4.4.3. Training and Validation 

Training and validation pipelines are designed to achieve several goals: reliable detection of 

attack activity across modalities, accurate attribution to the implicated service or component, 

estimation of impact on process variables, and robust generalization to unseen campaigns and 

variations. Model classes span unsupervised anomaly detectors (e.g., autoencoders, Isolation 

Forests) for cases with limited labels; supervised classifiers such as Random Forests, XGBoost, or 

deep temporal models (LSTM, Temporal CNNs, Transformers) for labeled window detection; and 

regression models for quantifying process deviations. Temporal sequence models capture 

behavioral dependencies over time, and multi-modal fusion strategies—either feature-level 

concatenation or decision-level ensembles—are used to combine signals from network, host, and 

PLC data. Attribution and root-cause analyses are framed as multi-label classification problems 

that predict both the attack stage and the target asset; explainability techniques such as SHAP or 

LIME are recommended to highlight which features drive detections and to support operator 

investigation. Training proceeds with careful feature selection informed by domain knowledge, 

campaign-level cross-validation (leave-one-campaign-out) to evaluate generalization, and 

hyperparameter optimization via grid search or Bayesian methods using validation campaigns. 

Class imbalance is managed with class weighting, focal loss for neural models, or oversampling; 

evaluation emphasizes metrics robust to imbalance such as precision, recall, F1, and area-under-

the-precision-recall curve (AUC-PR), as well as operational metrics such as false positives per 

asset per day and detection latency. Validation strategies include testing on unseen campaigns 

with different payload encodings to simulate zero-day conditions, domain-shift tests that vary 

baseline operational loads to assess resilience to concept drift, and ablation studies to quantify 

the contribution of each modality. In practical terms, a training pipeline ingests aligned windows 

of flows, host features, and PLC time series, normalizes them on training baseline statistics, and 

trains a temporal classifier with campaign-held-out validation; model checkpoints and early 

stopping guard against overfitting, and score calibration on validation data yields per-asset 

thresholds that meet operational false positive targets. For deployment, per-service threshold 

tuning, alert prioritization through cross-modal fusion (for example, correlating a suspicious WAR 

upload with a spawned process and subsequent PLC write to raise high-priority incidents), 

retention of raw forensic captures, and an operator feedback loop for continual learning are 

recommended to maintain effectiveness over time. 

4.5. DoS, Port Scans, and OWASP ZAP Scans 

Attacks such as DoS/DDoS and port scan (i.e., nmap) are among the most common attack types 

that are identified by Intrusion Detection Systems (IDS). While DoS/DDoS attacks aim to bring 

down a system, port scan activities can reveal services that are exposed to external networks, 

helping to identify attack vectors. Furthermore, while less commonly used than the previous two, 
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the OWASP Zed Attack Proxy (ZAP) tool [3] can be used to perform special scans that target web 

applications, attempting to dig out web-specific vulnerabilities. 

Mitigation: A machine learning-based IDS that trains on a dataset comprising such attacks would 

be effective against such malicious activity. Once the model learns how to differentiate these 

attacks from benign flows, a high detection rate could be reached. 

4.5.1. Testbed & Service Mapping 

The dataset is generated and tested on the OpenStack-based cloud environment of ZHAW. A 

Kubernetes cluster with 5 nodes is used, each of which is an Ubuntu-based VM running on 

OpenStack, and Cilium is leveraged as the Container Network Interface (CNI). A web application 

consisting of four components (backend, frontend, external service, and database) is deployed 

on this Kubernetes cluster, using multiple namespaces to simulate the multi-tenancy aspect of 

modern web applications. While the web application creates benign flows across components, 

malicious pods are injected into the cluster to generate attack traffic. 

DoS: A pod spins up in each namespace and sends heavy amounts of HTTP load towards a 

randomly elected benign pod in the same namespace 

Port Scan: A pod spins up in a randomly selected namespace and conducts a TCP SYN scan on the 

entire subnet of the pod. 

ZAP Scan: A pod spins up in each namespace and uses the ZAP tool to scan the benign frontend 

pods in the same namespace. 

4.5.2. Dataset preparation. 

The benign web application has been ran on the testbed for about 2 hours, and waves of attacks 

of different types (DoS/Port Scan/ZAP Scan) have been triggered on regular intervals. Moreover, 

during this period, the packet-level network traffic, both benign and malicious, passing through 

every node in the Kubernetes cluster have been gathered into a central Open Telemetry backend 

to create a tabular CSV data, which comprises the raw dataset. Since the ratio of attack data to 

benign data has been quite high for an anomaly detection dataset, a subsampling mechanism has 

been used to bring the ratios to a more realistic setup. 

Afterwards, the raw dataset is preprocessed by using various feature encoders, such as IP 

encoder, string encoder, boolean encoder and number encoder. By leveraging feature 

engineering, another new feature called diversity_index has been constructed; to indicate how 

diverse a specific network packet is within a certain time window. Finally, based on the similarity 

of network packets with each other, a connected graph is generated, which is used as the actual 

training/validation test.  
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4.5.3. Training and Validation 

As the IDS model, a Graph Convolutional Network (GCN) is leveraged with the following 

properties: 

• Three convolution layers 

• One dropout layer 

• ReLU as activation functions 

• Softmax as the output function 

The constructed graph-formed dataset is fed into this model for both training and validation 

purposes. The nodes of the graph dataset are randomly split into training, validation, and testing 

in 80%, 10%, and 10%, respectively. The validation split is used to prevent overfitting, and the 

testing split is used to report the final model’s performance. Random Forest and SVM are chosen 

as baseline models, and it has been shown that the proposed GCN-based IDS managed to achieve 

99.9% of accuracy and F1-score in both single-class classification (i.e., anomaly vs benign) and 

multi-class classification (i.e., detecting attack class specifically) tasks. 

4.6. DoSt Attack  

The Denial of Sustainability (DoSt) attack targets cloud-native services by overwhelming them 

with oscillating request patterns that continuously trigger rapid scale-in and scale-out events. 

Unlike traditional DDoS, DoSt does not fully take services offline but instead causes excessive CPU 

and memory utilization, leading to gradual QoS degradation and unsustainable energy 

consumption. In Kubernetes environments, this oscillatory load places significant strain on the 

control plane, as frequent scheduling and resource reallocation are required to maintain service 

availability. The subtle nature of the attack makes it harder to detect, as services appear “alive” 

while their performance and efficiency deteriorate over time. 

4.6.1. Testbed & Service Mapping 

The DoSt attack scenarios are deployed within the NCL edge–cloud testbed to assess system 

resilience and sustainability under adversarial workloads. Containerized demand-generation 

clusters emulate benign and malicious user behavior, generating oscillatory HTTP traffic that 

stresses CNF CPU and memory resources without causing service downtime. Prometheus 

telemetry collects fine-grained resource metrics, stored in the TSDB and later persists in MinIO 

for processing. The custom DoSt datasets generated in Service 1 – Component 1(Energy-Efficient 

over edge-cloud) will be used within Service 15 – Component 2 (Distributed federated Learning 

across edge-cloud) to train distributed models across the edge–cloud continuum for predictive 

scaling and anomaly detection. Currently public google trace datasets have been used to build 

the baseline of Federated Learning. 
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4.6.2. Dataset preparation. 

Currently public google trace datasets have been used to build the baseline of Federated 

Learning. Two models will be trained using the prepared datasets — one for resource prediction 

to inform scaling decisions in Service 3 (orchestrator), and another for traffic classification to 

distinguish benign from DoSt-induced behavior. Preprocessing and structuring will support both 

models, ensuring aligned feature extraction for resource trends and anomaly patterns. The DoSt 

dataset is generated from Prometheus telemetry, which scrapes raw CPU, memory, and network 

metrics every 15 seconds. These metrics are stored in the TSDB and periodically exported to 

MinIO object storage for scalable and persistent dataset management. For training and testing, 

historical Google workload traces are currently used, while custom DoSt datasets are being 

prepared to support future model training and validation in realistic attack scenarios. 

4.6.3. Training and Validation 

Benchmarking of ML models for workload prediction has been completed, and federated 

XGBoost is currently used for resource prediction using Google workload traces as the baseline 

for distributed resource prediction across edge and cloud nodes, enabling the orchestrator to 

make energy-aware and secure scaling decisions. Training and validation will be performed 

across distributed nodes using partitioned datasets to evaluate model consistency and accuracy. 

A traffic classification model to distinguish between benign and DoSt-induced patterns will be 

developed in future stages. 

4.7. Mirai botnet attack  

Although Mirai was first identified several years ago, it continues to pose a significant threat to 

internet service providers (ISPs) by generating large-scale distributed denial-of-service (DDoS) 

attacks. The modular nature and constant evolution of this botnet allow it to adopt new attack 

strategies and propagation techniques, making it a recurring topic of research and security. 

At HES-SO, our aim is to create representative datasets which reflect the diversity of Mirai attack 

patterns observed in real-world scenarios. These datasets will serve as a basis for evaluating and 

improving detection models capable of recognizing classic and emerging variants of Mirai-

generated DDoS traffic. 

4.7.1. Testbed & Service Mapping 

The Mirai trace sets were generated in a controlled environment at the HES-SO facilities. The test 

bench is based on several Raspberry Pi 5 devices, each of them running Mirai in an isolated virtual 

machine. The bots are controlled via a takeover mechanism that allows the botnet to be taken 
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over and various attack scenarios to be reproduced while maintaining the security and 

reproducibility of the experiments. 

At this stage, local traces are not yet combined with public datasets (e.g. CIC-DDoS2019) — this 

remains a future option to enrich the diversity of samples and evaluate the generalisability of the 

models. The primary intention is to produce traces that accurately reflect Mirai's specific 

behaviour, without mixing traffic generated by other attack tools (HPING3, LOIC, HOIC, etc.), to 

obtain a representative repository of Mirai variants. 

The types of traffic reproduced may include TCP SYN floods, UDP amplifications and other vectors 

observed in Mirai campaigns; the testbed allows the intensity, synchronisation and composition 

of attacks to be adjusted to study realistic cases. 

The associated service components are: 

S9-C1: Setting up of a Mirai botnet, so as to be able to probe and analyze it. 

S9-C2: Developing a FPGA-based hardware device capable of detecting various types of DDoS 

attacks. 

The current development phase focuses primarily on Mirai traffic, providing a concrete use case 

for testing detection and inference strategies. 

4.7.2. Dataset preparation. 

For the training and testing phases, we are currently using the CIC-DDoS2019 dataset, which is 

publicly available on KaggleHub. This dataset was originally generated using the CICFlowMeter 

tool developed by the Canadian Institute for Cybersecurity (CIC) and retains a total of 77 flow-

based features. 

Our locally generated datasets consist of raw PCAP captures produced by the Mirai test bench. 

These captures are processed using CICFlowMeterV4 to extract network flows and export them 

to CSV format, which are then converted to Parquet files for efficient storage and processing. 

So as to ensure compatibility with the training data, we keep an exact alignment of features: the 

same 77 features are kept in the same order as those in the CIC-DDoS2019 dataset. A mapping 

procedure is also applied to harmonize class labels, as minor discrepancies may arise between 

versions of CICFlowMeter (e.g., differences in naming conventions or label coding). 
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This pre-processing pipeline ensures that locally captured Mirai traces can be seamlessly 

integrated into the same analytical framework as the reference dataset, facilitating future cross-

dataset evaluations and domain adaptation experiments. 

4.7.3. Training and Validation 

As aforementioned, the training and validation processes are currently being conducted using 

the CIC-DDoS2019 dataset, with XGBoost selected as the reference model. For this initial phase, 

the original feature set of the public dataset has been retained to ensure comparability with 

existing benchmarks. The dataset was divided into training and test subsets, and standard 

evaluation metrics were applied to assess model performance. 

The experimental results show that the model achieves an overall classification accuracy of 

94.2%. High-volume attack types and benign traffic, including NTP, SYN, and TFTP flows, are 

detected with near-perfect F1 scores ranging from 0.99 to 1.00. Conversely, rare classes such as 

DrDoS_MSSQL (F1 = 0.18) and DrDoS_LDAP (F1 = 0.31), as well as some WebDDoS flows, show 

significantly lower detection performance. These disparities underscore the model's sensitivity 

to class imbalance and the need to implement strategies to address data bias, such as resampling 

or cost-sensitive training. 

Analysis of locally captured Mirai traces revealed that, although TCP SYN-based attacks are often 

detected, their class labels are frequently misattributed. Furthermore, harmless application-level 

traffic, particularly RTSP streaming flows, can sometimes be misclassified as attack traffic. This 

indicates a discrepancy between the CIC-DDoS2019 training data and actual Mirai traffic, which 

affects the model's ability to generalize novel attack behaviours. 

Overall, these results outline two key points: the need to create dedicated, well-labelled datasets 

specific to Mirai, and the potential benefits of exploring more advanced modelling approaches, 

such as architectures incorporating temporal or hybrid features. The developed test bench 

therefore plays a crucial role in producing realistic Mirai attack scenarios, which will support 

future efforts to improve detection robustness and cross-domain generalization. 

4.8. Data for JASMIN training and evaluation 

This dataset contains time-domain signal representations (I/Q samples) for the IEEE 802.11p 

protocol, covering all supported modulation schemes: BPSK, QPSK, 16-QAM, and 64-QAM. It 

includes two scenarios: clean signal and jamming attack. The data was generated using an SDR 

setup with varying distances between transmitter, receiver, and jammer, and across different 

SNR levels. 



D6.2-System Integration on the testbeds, Pilot installations and implementations.r1 

 

Page 126 of 228 
 

4.8.1. Testbed & Service Mapping 

An SDR IEEE 802.11p (V2X) setup with three USRP B210s at 5.9 GHz—Tx, Rx, and a jammer—

drives the experiments; each USRP (omni antennas, USB 3.0) is controlled via GNU Radio on 

NVIDIA Jetson Orin hosts, with Tx/Rx PHY based on WiMe and the jammer mirroring the Tx 

flowgraph while injecting white Gaussian noise; I/Q packets (128 complex samples) are captured 

via API to a shared DB under varying Tx–Rx–jammer distances to emulate a vehicular service 

(base-station ↔ AV) and enable real-time jamming detection. 

4.8.2. Dataset preparation. 

Two splits are used: (i) training with clear (unjammed) packets across BPSK/QPSK/16-QAM/64-

QAM and wide SNRs (including <0 dB), and (ii) evaluation with both clear and jammed packets; 

jamming combines reactive and periodic modes (jammer activates on signal detect and aligns 

with Tx periodicity), yielding highly positive-SNR jammed bursts; per-modulation counts and SNR 

stats are reported (e.g., evaluation: clear—BPSK 2539, QPSK 4259, 16-QAM 3063, 64-QAM 1292; 

jammed—BPSK 8465, QPSK 9098, 16-QAM 16539, 64-QAM 22978) and the full dataset is released 

on Zenodo. 

4.8.3. Training and Validation 

Training uses only unjammed data: an LSTM (input 128×2 I/Q, 128 units, dropout 0.5, Adam, early 

stopping) is tuned across SNRs, and per-modulation Isolation Forest for outlier detections (150 

trees) are trained on features derived from constellation distances (RSE-based, quadrant 

reduction, Manhattan distance, intra-packet point permutation) to set contamination per 

scheme; at run-time, windows of P = 21 packets (10 MHz front-end) yield >3.5k decisions/s, and 

on the evaluation split JASMIN attains 99.92% overall accuracy (perfect for BPSK/16-QAM/64-

QAM; QPSK ≈ 99.6%), with OD outlier rates on jammed data of ~87% (BPSK), ~76% (QPSK), ~94% 

(16-QAM), and ~97% (64-QAM). 

4.9. Eavesdropping attack on PKG  

We study a passive eavesdropper (Eve) targeting the AI-Enhanced Physical Key Generation in sub-

THz service by recording UL/DL pilots in Gradiant 5GLab and mirroring the public PKG steps to 

attempt key replication. The evaluation quantifies attack ineffectiveness via KDR across distance, 

position, and mobility, and assesses that gains from the AI reciprocity module on the main link 

do not translate into any advantage for Eve. 

4.9.1. Testbed & Service Mapping 

We evaluate the service AI-Enhanced Physical Key Generation in sub-THz under a passive 

eavesdropping threat in an indoor laboratory TDD setup. The legitimate endpoints, Alice and Bob, 

follow this pipeline: the Characteristics Extractor derives channel features from uplink and 
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downlink pilots; on Alice’s side, the Network Key Generator applies AI-driven channel-reciprocity 

enhancement, then quantization, information reconciliation, and key generation via hashing. On 

the other hand, Bob runs the symmetric branch (quantization, reconciliation, and hashing) to 

obtain the same secret key. The adversary, Eve (USRP B210), is a third node co-located in the 

testbed that records the sub-THz UL/DL transmissions between Alice and Bob without injecting 

traffic. Eve locks onto the signals using standard pilot-aided timing and frequency estimation (no 

shared clock or common RF front-end is assumed) and moves along the legitimate path, including 

sub-wavelength displacements, to seek positions where her channel observations approach 

Bob’s. The attack targets the entire PKG pipeline by mirroring the public steps: channel-

measurement extraction, quantization, reconciliation and privacy amplification. 

4.9.2. Dataset preparation. 

The attacker dataset consists of controlled sub-THz TDD captures collected at Eve’s location. For 

each capture, Eve records the uplink and downlink pilot signals transmitted by Alice and Bob and 

derives complex channel estimates, amplitude and phase across OFDM subcarriers, for both 

directions, together with timestamps and scenario tags. The campaign spans multiple distances, 

positions (including sub-wavelength offsets along the Alice–Bob path), and mobility conditions in 

the indoor lab to ensure diversity. The attacker pipeline relies solely on Eve’s observations and 

publicly exchanged messages. 

4.9.3. Training and Validation 

The training stage applies only to the PKG service AI-driven channel reciprocity enhancement. 

Using Alice/Bob pilot observations, the model is trained to improve UL–DL reciprocity on the 

main link (by mapping UL to DL features), thereby increasing bit agreement before reconciliation. 

This training does not involve Eve’s data and does not provide the attacker with any advantage. 

Validation focuses on security against passive eavesdropping. The primary metric is the Key 

Disagreement Rate (KDR) between Eve’s final key and the legitimate final key after reconciliation 

and privacy amplification. Equivalently, KDR can be computed against Bob, since Alice and Bob 

are designed to agree post-reconciliation. Ineffective eavesdropping yields KDR close to 0.5 and 

an attacker secret-bit rate effectively zero. We report KDR across distances, positions, and 

mobility scenarios, emphasizing that the attack is most effective only at very short separations 

(sub-wavelength scales) and in TDD conditions that favor reciprocity. Even then, at practical 

separations the resulting keys remain indistinguishable to Eve. KDR thus acts as the service-level 

assessment under attack, and by comparing variants with and without the AI reciprocity module 

it also provides a component-level assessment, confirming that legitimate-link gains do not 

translate into any advantage for Eve. 
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4.10. Jamming attack  

Jamming attacks are a common form of active interference in wireless communications, aimed 

at degrading or completely denying service. As mentioned in D5.1, there are several different 

types of jammers depending on their strategy, but most of them pose a trade-off between energy 

consumption and effectiveness. One of the ways for a jammer to increase its efficiency relies on 

the knowledge of the specific signal it wants to attack. In our case, we will assume the reasonable 

scenario in which the jammer knows the 5G band that we are using and attacks a portion of the 

5G spectrum, affecting some of the available PRBs but not all at the same time, as that would 

imply a high energy consumption.  

The jammer will use previously generated chirp signals and transmit them using a USRP. This is 

not a dataset per se, as the amount of different chirp signals is not so large, as the center 

frequency and gain are selected using the USRP.  

4.10.1. Testbed & Service Mapping 

In the 5GLab testbed (specifically within the AI anti-jamming subsystem), jamming attacks are 

generated with a USRP to disrupt legitimate communications between a UE and the gNB in the 

5G n77 band. The jammer’s bandwidth is configurable so that it can target particular PRBs within 

the 5G band. The controlled injection of these attacks is an integral part of the testbed and is 

required to validate the DetAction component. 

4.10.2. Dataset preparation. 

The dataset used by the jamming-detection component is built from previously captured chirp 

signals recorded under a variety of sample rates, bandwidths and channel conditions. Samples 

are split into two categories: non-jammed signals (i.e., 5G communications plus background 

noise) and jamming signals (chirps), which may appear either in isolation or superimposed on 5G 

traffic. Note that the testbed jammer transmits pre-generated chirp waveforms via the USRP; 

this collection is not treated as a conventional training dataset in the sense of a large, diverse 

corpus of signals, as there are only a limited number of distinct synthetic chirps generated. The 

center frequency and transmit gain of the jammed chirps are configured directly on the USRP. 

4.10.3. Training and Validation 

The DetAction detection phase is trained using the dataset described above. Preprocessing 

extracts spectral fragments that correspond to PRB-sized blocks (using 180 kHz PRBs according 

to the 5G numerology) from the captured 5G and jamming signals. These fragments are used to 

train a convolutional neural network (CNN) that currently achieves AUC = 0.97, F1-score = 0.98 

and accuracy = 0.95 in validation. Validation is performed on a held-out set of captured signals 
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not used during training, and the system will be further tested in the 5GLab testbed with 

additional signals emitted by the jamming USRP and captured in real time. 
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5. Conclusions   
D6.2 “System Integration on the testbeds, Pilot installations and implementations.r1” 

deliverable, addressed the set-up of NATWORK’s testbeds, the installation of the components 

that were identified in previous stages of NATWORK project, and the initial validation of the 

components through dry run tests. In addition, several attacks were identified and, through the 

Attack Generation System, were emulated on NATWORK’s components. By determining these 

attacks, also the related datasets per attack were identified. 

During the initial assessment of verifying the NATWORK’s components, 14 testbeds by thirteen 

13 partners were set up. Testbed owners provided their testbeds on time, allowing dry run tests 

to be executed in a thorough way. Specific components were set up in more than one testbed. 

At the Use Case (UC) level, UC functionalities were shared across multiple testbeds. Preliminary 

tests were conducted for the corresponding components of NATWORK, identifying that all 

components were successfully installed in the related testbed or testbeds. Moreover, mature 

components were validated through a set of test scenarios identifying that NATWORK 

components are ready for NATWORK’s trials in controlled lab environments.  

The dry run tests that were performed during this period, focused on the verification of the 

mature components and the results are presented in this deliverable. Validation of the 

components was performed by the component owners. Nonetheless, during the validation of the 

components, a solid collaboration between component owners and testbed owners was 

performed. The report of the results is presented per component. This also applies in cases where 

a component was installed in more than one testbed; a single report per component is created. 

The actual results from the dry run tests of the components can be found in the Appendix of this 

document.  

T6.2 “Testbed integration & attack generation system” also had an objective to identify and 

emulate specific attacks towards NATWORK system, through the Attack Generation System. 

These attacks have been triggered against the related NATWORK components, and the related 

results have been reported in this deliverable. Initial security breaches in the overall NATWORK 

framework have been recorded in D6.2 when these attacks were forwarded to NATWORK.   

5.1. Next steps 

The present deliverable represents the first version of “System Integration on the testbeds, Pilot 

installations and implementations”. A second version of this report will be submitted in M32 

when T6.2 concludes, and T6.3 is about to be completed in M33. This successive report will 

provide an additional outlook on the status of NATWORK’s components from the T6.2 

perspective. Further tests will be performed, and additional attacks will be identified and 
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emulated towards NATWORK components. Adjustments to the testbeds can be applied when 

needed. Any adjustments will be also reported in the second version of “System Integration on 

the testbeds, Pilot installations and implementations”. 

In the second report, more information from T6.3 “Use Cases Trials and Demonstration” will also 

be presented. The finalized definition and set-up of the controlled environments for each use 

case will be described. This task will also execute the use case trials in those prepared NATWORK 

environments, evaluate their initial results and demonstrate them. In that regard, the attack 

generation system from T6.2 will be used to the greatest extent possible. Moreover, 

experimental data on system performance, security metrics, and end-user feedback will be 

gathered. By doing so, an extensive evaluation of NATWORK’s outcomes will be performed. 

Therefore, the use case trials that will be carried out through the timeline of T6.3 will be reported 

in D6.3 deliverable. Overall, the two versions of this report jointly detail the testbed 

infrastructure and the related NATWORK for the upcoming pilot trials and the evaluation of the 

NATWORK system. 
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Appendix 
In the appendix, the actual test scenarios per component are presented. Specific components 

have been already verified during months M1 and M22 of NATWORK project timeline. The actual 

dry run test results of these components can be found in the related tables below. In addition, 

test scenarios and test cases that have been already identified for the related components and 

are currently under evaluation (no results for these scenarios have been achieved yet) are also 

displayed in the current report. Components that the related test scenarios have not yet been 

identified and the results of components that are under evaluation will be presented in the 

second version of “System Integration on the testbeds, Pilot installations and implementations” 

which is deliverable D6.3 due M32. 

In the information below, the current status of the test scenarios and test cases per component 

are illustrated. 
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A.1 Energy efficient over edge-cloud 

Project Name:  NATWORK 
Component Name: Energy-efficient/delay-aware orchestration 
Created by: UEssex 
Date of creation: 01.09.2025 
Filename: UEssex-Energy-efficient.xlsx 

 

Test 
scenario ID 

Test 
scenario 

Tets case 
ID Test case 

Pre-
conditions Test steps Test data 

Expected 
result 

Execution 
date Actual result Status (Pass/Fail) 

CPU 
utilizatio
n  
measure 
energy 
consump
tion - 
TS01 

Verify 
benign 
workload 
in single- 
and 
multi-
cluster 
setups 

CPU 
utilizatio
n  
measure 
energy 
consump
tion - 
TS01-
TC01 

Single-
Cluster 
vs Multi-
Cluster 
traffic, 
impact of 
service 
discovery 
(MCS 
API) 

Container
ized 
applicatio
n and 
proxy 
deployed 
in 
Kubernet
es 
clusters 

1. Deploy 
application 
(single + multi) 
2. Send benign 
traffic across 
clusters 
3. Measure RTT 
and compare 

Simulated 
benign 
containerized 
workload   

Multi-
cluster 
shows 
higher 
RTT 
variance 
due to 
MCS API 
overhea
d 

01/06/2
025 

Multi-
cluster 
shows 
higher RTT 
variance 
due to MCS 
API 
overhead + 
virtualisatio
n overhead  Pass 

CPU 
utilizatio
n  
measure 
energy 
consump
tion - 
TS01 

Demonst
rate 
Denial of 
Sustaina
bility 
(DoST) 
attack 

CPU 
utilizatio
n  
measure 
energy 
consump
tion - 
TS01-
TC02 

Generate 
oscillatin
g HTTP 
requests 
to cause 
CPU/me
mory 
oscillatio
n and 
QoS 
degradati
on 
(harder to 
detect) 

Container
ized 
applicatio
n and 
proxy 
deployed 
in 
Kubernet
es 
clusters 

1. Deploy 
service and 
proxy 
2. Simulate 
containerized 
end users   
generating  
oscillatory HTTP 
traffic 
3. Measure RTT, 
CPU/memory 
oscillations, 
QoS 
degradation 

DoST 
workload  

Service 
remains 
alive but 
shows 
high 
oscillati
ons, 
scaling 
pod 
resource
s in/out 
quickly 
degradin
g QoS 
and 

18/06/2
025 

Service 
remains 
alive but 
shows high 
oscillations
, scaling 
pod 
resources 
in/out 
quickly 
degrading 
QoS and 
longer RTTs 

Dost attack 
demonstration – Pass 
Mitigation – Not 
tested yet 
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Test 
scenario ID 

Test 
scenario 

Tets case 
ID 

Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result Status (Pass/Fail) 

longer 
RTTs 

Monitori
ng and 
Dataset 
generatio
n using 
DosT 
attack to 
feed 
Machine 
learning - 
TS02 

Monitor 
and log 
system 
resource
s for AI-
driven 
analysis 

Monitori
ng and 
Dataset 
generatio
n using 
DosT 
attack - 
TS02- 
TC01 

Promethe
us-based 
monitorin
g of CPU, 
memory, 
network 
TX/RX, 
and pod 
lifecycle 
stats 

Container
ized 
applicatio
n and 
Promethe
us  
deployed 
on 
Kubernet
es 
clusters 

1. Deploy 
Prometheus & 
Grafana in 
cluster 
2. Visualise 
CPU/memory/n
etwork 
telemetry during 
attack 
3. Store time-
series data in 
TSDB 

Prometheus 
telemetry - 
DosT 
workload 
traffic 
(benign/mali
cious) 

Structur
ed 
telemetr
y 
datasets 
stored, 
visualize
d via 
Grafana 
dashboa
rds, and 
prepared 
for 
federate
d 
learning 

18/06/2
025 

Structured 
telemetry 
datasets 
stored, 
visualized 
via Grafana 
dashboards
, and 
prepared 
for 
federated 
learning  Pass 

 

A.2 TrustEdge 

Project Name:  NATWORK 
Component 
Name: TrustEdge 
Created by: UGent 
Date of creation: 23.09.2025 
Filename: IMEC-TrustEdge.xlsx 
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Test scenario ID Test scenario Tets case ID Test case Pre-conditions Test steps Test data Expected result Execution date Actual result Status (Pass/Fail) 

Boot-TS02 

(Added) 
boot time 
of the 
framework 
from 
attestation 
to secure 
Feather 
deployment 

Base-
TS01-
TCO1 

Measures 
the total 
time 
added to 
device 
boot  time 
by the 
framework 

Running 
Kubernetes 
cluster 

1. Prepare 
evaluation 
edge node 
2. Repeatedly 
reboot & 
connect to 
Kubernetes 
cluster for 
attestation 
3. Measure 
attestation 
overhead & 
Feather start 
time 

N/A 

<60 second 
added time 

10/04/2024 

Average 
case 
20.91s 
time 
added to 
boot, 
around 
half of 
which is 
Feather 
starting 
and half is 
the 
attestation 
process 

Pass 

 

A.3 Feather 

Project Name:  NATWORK 
Component 
Name: Feather 
Created by: IMEC 
Date of creation: 23.09.2025 
Filename: IMEC-Feather.xlsx 

 

Test scenario 
ID Test scenario Test case ID Test case Pre-conditions Test steps Test data 

Expected 
result 

Execution 
date Actual result 

Status 
(Pass/Fail) 

Runtime 
comparison 
benchmark
-TS01 

Compare 
unikernels 
(OSv/KVM), 
containers, 
and/or 
WASM 

Minimal -
TS01-
TCO1 

Measures 
the 
overhead of 
Feather for 
containers, 
unikernels 

Feather 
agent up and 
running 

1. Prepare 
test device 
(containerd 
installation, 
KVM-qemu) 
2. Start 

Idle 
workload 
images, 
deployme
nt 
manifest 

Slight 
increase in 
memory 
use 
compared 
to idle 

15/04/202
5 

Minimal 
(<1%) CPU 
use, memory 
overhead 7-
13MB with 
the lowest 

Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

(WASMTim
e) 
performanc
e under 
different 
scenarios 

and WASM 
by 
deploying 
an idle 
workload to 
all 
backends 

Feather 
agent 
3. Deploy 
workload 
4. Run 
evaluation 
& metrics 
script 

Feather, no 
CPU 
consumptio
n. 

overhead for 
WASMTime 

Runtime 
comparison 
benchmark
-TS01 

Compare 
unikernels 
(OSv/KVM), 
containers, 
and/or 
WASM 
(WASMTim
e) 
performanc
e under 
different 
scenarios 

Applicatio
n -TS01-
TCO2 

Measures 
the 
overhead of 
Feather 
with active 
containers 
and 
unikernels. 
Measures 
the 
resource 
consumptio
n of a 
Minecraft 
server in 
both 
container 
and 
unikernel 
format to 
gauge 
benefits of 
runtimes. 

Feather 
agent up and 
running, 
suitable 
workload 
images 
prepared. 

1. Prepare 
test device 
(containerd 
installation, 
KVM-qemu) 
2. Start 
Feather 
agent 
3. Deploy 
workload 
4. Run 
evaluation 
& metrics 
script 

Workload 
images, 
deployme
nt 
manifest 

Significant 
rise in 
memory 
use, 
unknown 
benefits for 
either 
runtime 

/ 

No memory 
overhead for 
Feather w.r.t. 
minimal 
scenario. 
Huge (>30%) 
performance 
overhead for 
KVM-based 
unikernel, but 
also uses 
30% less 
memory than 
containerized 
MC server. 

Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

Runtime 
comparison 
benchmark
-TS01 

Compare 
unikernels 
(OSv/KVM), 
containers, 
and/or 
WASM 
(WASMTim
e) 
performanc
e under 
different 
scenarios 

Images -
TS01-
TCO3 

Measures 
the relative 
size of an 
image for 
specific 
functionalit
y (HTTP 
server) in 
different 
runtime 
formats. 

N/A 

1. Prepare 
image 
contents 
(compilatio
n) 
2. Build 
image 
(Docker, 
Flint, ...) 
3. List 
image size 

Workload 
images 

Smaller 
WASM 
image, 
likely larger 
microVM 
image 
compared 
to container 

15/04/202
5 

WASM image 
smallest 
(0.2KB), 
followed by 
OSv unikernel 
(7.3MB) and 
native 
(container 
image) 
28.2MB. 

Pass 

Runtime 
comparison 
benchmark
-TS01 

Compare 
unikernels 
(OSv/KVM), 
containers, 
and/or 
WASM 
(WASMTim
e) 
performanc
e under 
different 
scenarios 

HTTP -
TS01-
TCO4 

Measures 
performanc
e of an 
HTTP server 
in various 
runtimes. 
Considers 
latency as 
well as raw 
request 
throughput 
using k6 
command. 

Feather 
agent up and 
running, 
suitable 
workload 
images 
prepared. All 
workloads 
reachable 
through 
container 
networking. 

1. Prepare 
test device 
(containerd 
installation, 
KVM-qemu) 
2. Start 
Feather 
agent 
3. Deploy 
workloads 
4. Run 
evaluation 
& metrics 
script 

Workload 
images, 
deployme
nt 
manifest 

WASM 
performanc
e similar to 
native. 
Previous 
OSv 
versions 
produced 
unikernels 
on par with 
native on 
XenServer, 
but 
overloading 
HTTP traffic 
was a weak 
spot and 
can cause 
bottlenecks 
and latency 
spikes on 
KVM-Qemu. 
This test 
case uses a 

15/04/202
5 

WASMTime 
latency 50% 
higher than 
native; 
request/s 
keeps pace 
with native. 
OSv on KVM 
latency 500% 
higher than 
native, 
requests/s 
eventually 
crashes when 
latency 
skyrockets. 
Unfortunate, 
but 
somewhat 
expected. 

Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

newer 
version. 

Container 
network 
performanc
e-TS02 

Performanc
e of 
decentraliz
ed multi-
runtime 
container 
networking 
solution. 

Throughpu
t-TS02-
TC01 

Measures 
throughput 
of the 
decentraliz
ed P2P 
internode 
part of the 
networking 
solution 
compared 
to 
WireGuard. 

Feather 
agent up and 
running, 
suitable 
evaluation 
images 
prepared 
(HTTP server, 
video 
streaming 
server). All 
nodes 
mutually 
reachable on 
public IPs. 

1. Prepare 
test 
devices 
(containerd 
installation, 
KVM-qemu) 
2. Start 
Feather 
agents on 
all devices 
3. Start 
internode 
networking 
processes, 
validate 
eBPF 
running 
4. Deploy 
workloads 
5. Run 
evaluation 
& metrics 
scripts 

Workload 
images, 
deployme
nt 
manifests
, HTTP 
request 
scenario 

Lower CPU 
use than 
alternatives 
(WireGuard
), 1Gbps 
internode 
traffic 
possible 

15/05/202
4 

CPU use 10-
100 times 
lower than 
WireGuard in 
same setup, 
1Gbps 
physical 
connection 
saturated 
(~910Mbps + 
packet and 
communicati
on overhead) 

Pass 

Container 
network 
performanc
e-TS02 

Performanc
e of 
decentraliz
ed multi-
runtime 
container 
networking 
solution. 

Scalability
-TS02-
TC02 

Measures 
throughput 
of the 
decentraliz
ed P2P 
internode 
part of the 
networking 
solution in 
5-node star 
and ring 

Feather 
agent up and 
running, 
suitable 
evaluation 
images 
prepared 
(HTTP server, 
video 
streaming 
server). All 

1. Prepare 
test 
devices 
(containerd 
installation, 
KVM-qemu) 
2. Start 
Feather 
agents on 
all devices 
3. Start 

Workload 
images, 
deployme
nt 
manifests
, HTTP 
request 
scenario 

Scaling 
dependent 
on number 
of 
neighbours, 
not total 
topology 
size. 

15/05/202
4 

Star topology 
shows similar 
throughput as 
WireGuard. 
Ring topology 
shows 
~910Mbps 
traffic for all 
nodes 
(saturated 
physical 

Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

topologies 
to evaluate 
scalability. 
In the ring 
topology, 
WireGuard 
uses one of 
the nodes 
as VPN 
controller. 

nodes 
mutually 
reachable on 
public IPs. 

internode 
networking 
processes, 
validate 
eBPF 
running 
4. Deploy 
workloads 
5. Run 
evaluation 
& metrics 
scripts 

interface) 
and 
~230Mbps for 
WireGuard. 

Container 
network 
performanc
e-TS02 

Performanc
e of 
decentraliz
ed multi-
runtime 
container 
networking 
solution. 

Throughpu
t-TS02-
TC03 

Measures 
throughput 
of the 
multi-
runtime 
(node local) 
part of the 
networking 
solution. 

Feather 
agent up and 
running, 
suitable 
evaluation 
images 
prepared 
(HTTP server, 
video 
streaming 
server). 
Feather 
multi-
runtime 
network 
solution 
running 
(configuratio
n). 

1. Prepare 
test device 
(containerd 
installation, 
KVM-qemu) 
2. Start 
Feather 
agent, 
validate 
eBPF 
running 
3. Deploy 
workloads 
4. Run 
evaluation 
& metrics 
script 

Workload 
images, 
deployme
nt 
manifests
, HTTP 
request 
scenario 

<1% of 
single CPU 
core per 
Gbps 
interpod 
traffic, 
multi-Gbps 
traffic 
possible 

12/07/202
4 

Added 
latency 
<100µs, 
average 
2.5Gbps 
traffic 
sustained in 
video 
streaming 
scenario 
independent 
of endpoint 
runtimes, 
1%-1.5% of 
single CPU 
core.  

Pass 
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A.4 Flocky 

Project Name:  NATWORK 
Component 
Name: Flocky 
Created by: UGent 
Date of creation: 23.09.2025 
Filename: IMEC-Flocky.xlsx 

 

Test scenario 
ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps Test data Expected result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

Functional-
TS01 

Functiona
l 
evaluation 
of the 
framewor
k 

Base-
TS01-
TCO1 

The 
functionality 
of the 
framework is 
measured in 
terms of 
metadata 
discovered 
(discovery + 
metadata 
services) 
and required 
services 
deployed 
(orchestrati
on metadata 
use) 

N/A 

1. Prepare 
test devices, 
config files 
2. Start Flocky 
services in 
order 
2.a Node 
monitoring 
service (one 
node) 
2.b 
Deployment & 
Flocky 
services 
2.c Discovery 
services 
2.d Metadata 
services 
3. Deploy 
workloads 
4. Evaluate 
situation from 
node 
monitoring 
service after 5 

Service 
config 
files, 
deployme
nt 
manifests 

100% 
metadata 
discovery, 
all services 
successfully 
placed after 
<5 rounds 

10/02/202
5 

100% 
discovery, all 
services 
successfully 
placed after 
2-3 rounds 
(depending 
on random 
factors) 

Pass 
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Test scenario 
ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps Test data Expected result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
discovery 
rounds 

Scalability-
TS03 

Scaling 
efficiency 
of the 
framewor
k 

Network-
TS02-
TCO1 

Network 
traffic is 
measured 
for 
topologies 
from 1 to 
150 nodes, 
for discovery 
distances 
from 10 to 
20 (ms ping 
simulated) 

N/A 

1. Prepare 
test device, 
copy config 
files 
2. Start 
simulation 
script with 
node and 
distance 
parameters 
3. Run metrics 
gathering 
script 

Service 
config files 

O(neighbour
s) scaling or 
less, where 
neighbours 
is roughly 
total nodes * 
discovery 
distance 

10/02/202
5 Network 

traffic follows 
O(neighbours
) scaling, but 
rises twice as 
fast as CPU 
scaling. 

Pass 

Scalability-
TS03 

Scaling 
efficiency 
of the 
framewor
k 

Resource
-TS02-
TCO1 

CPU and 
memory are 
measured 
for 
topologies 
from 1 to 
150 nodes, 
for discovery 
distances 
from 10 to 
20 (ms ping 
simulated) 

N/A 

1. Prepare 
test device, 
copy config 
files 
2. Start 
simulation 
script with 
node and 
distance 
parameters 
3. Run metrics 
gathering 
script 

Service 
config files 

O(neighbour
s) resource 
scaling or 
less 

10/02/202
5 

Memory 
scales as 
expected, 
with very low 
overhead 
compared to 
baseline 
(16MB base -
> 21MB at 
densest 
scenario). 
CPU scaling 
exactly 
follows 

Pass 
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Test scenario 
ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps Test data Expected result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
O(neighbours
). 

Scalability-
TS03 

Scaling 
efficiency 
of the 
framewor
k 

Discover
y-TS02-
TCO1 

Metadata 
discovery 
efficiency is 
measured 
for 
topologies 
from 1 to 
150 nodes, 
for discovery 
distances 
from 10 to 
20 (ms ping 
simulated). 
Each node is 
assigned 2 
random 
metadata 
items at 
start, and a 
total pool of 
100 must be 
discovered 
by each 
node. 

N/A 

1. Prepare 
test device, 
copy config 
files 
2. Start 
simulation 
script with 
node and 
distance 
parameters 
3. Run metrics 
gathering 
script 

Service 
config files 

>99% for 
topologies 
where all 
nodes have 
at least 2 
connections
, graceful 
degradation 
for sparsely 
connected 
topologies 

10/02/202
5 

>99% 
metadata 
discovery 
from 75 
nodes and 20 
discovery 
distance 
upwards, 
>96% for 
smaller, 
loosely 
connected 
topologies. 
This 
indicates no 
bifurcation, 
but single 
nodes not 
connected to 
the topology 
due to 
random 
generation 
(trivial fix 
with starting 
conditions 
for nodes in 
realistic and 
simulated 
scenarios) 

Pass 
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Test scenario 
ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps Test data Expected result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

Latency-
TS03 

(Additiona
l) latency 
added by 
the 
framewor
k 

Base-
TS03-
TCO1 

Measures 
the total 
deployment 
latency (end 
to end) of a 
two-
component 
service in 
the Flocky 
framework, 
from user 
action to 
service 
deployment. 

Flocky 
framework 
running on 
two nodes 
(requester 
and 
deployer) 

1. Start 
Wireshark 
2. Execute 
repeated 
deployment 
calls 
3. Gather 
latency data 
from 
Wireshark and 
Flocky 
instrumentati
on 

Deployme
nt 
manifest 

<2.5 second 
response 
time 
excluding 
image pull 
and 
deployment 
(Kubernetes 
average with 
standard 
reconciliatio
n loop) 

10/02/202
5 

Median case 
21.1ms 
response 
time for 
deployment 
on two 
separate 
nodes, 
consisting of 
~70% 
network 
latency.   

Pass 

 

A.5 Secure-by-design orchestration 

Project Name:  NATWORK 
Component 
Name: Secure-by-design Orchestration 
Created by: UEssex 
Date of creation: 24.09.2025 
Filename: UEssex-secure-by-design-orch.xlsx 
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Test 
scenario ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

ORCH-
TS01 

Validate 
Secure-by-
Design 
orchestratio
n 

ORCH-TS01-
TC01 

Check if 
orchestrati
on 
respects 
declared 
security 
requireme
nts of a 6G 
Slice and 
Clusters 

Orchestrat
or (sFORK), 
Slice 
requireme
nts and 
Cluster 
requireme
nts 
declarative 
inputs 

1. Define the 
slice 
requirements 
with security 
constraints  
2. Define the 
clusters' 
requirements 
with security 
constraints   
3. trigger 
orchestration 
by introducing 
the inputs 
declaratively  
4. Monitor 
whether 
placement/sca
ling respects 
constraints 

Slice, Slice 
Requireme
nts and 
Clusters 
requireme
nts 
manifests 

Orchestrat
or 
decisions 
comply 
with 
Secure-by-
Design 
policies 
(no 
insecure 
placement) 

 01/07/20
25 

Orchestrat
or 
decisions 
comply 
with 
Secure-by-
Design 
policies 
(no 
insecure 
placement)  Pass 

ORCH-
TS02 

Subgraph 
communicat
ion within 
orchestratio
n 

ORCH-TS02-
TC01 

Verify if 
sFORK 
core 
componen
t interacts 
with 
cluster 
local 
orchestrat
ors and  
dissemina
tes the 
subgraphs 

Orchestrat
or (sFORK) 
policy and 
strategy 
component
s to create 
dependenc
y graphs 
alined with 
the slice 
and slice 
requireme
nts. 

1. Create slice 
with multiple 
dependent 
CNFs 
2. sFORK 
Policy and 
strategy 
components 
decompose 
the 
dependency 
graph, create 
subgraphs 
aligned with 
the slice 
requirement 

Slice 
manifest  
with the 
defined 
CNF 
dependenc
y, Slice 
Requireme
nts and 
Clusters 
requireme
nts 
manifests 

Subgraphs 
are 
correctly 
shared and 
executed 
across 
clusters, 
CNF 
dependenc
ies are set 

 01/07/20
25 

Subgraphs 
are 
correctly 
shared and 
executed 
across 
clusters, 
CNF 
dependenc
ies are set  Pass 
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Test 
scenario ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
and cluster 
requirement 
inputs  
3. Distribute 
the subgraphs 
to related 
clusters 
4. Observe 
communicatio
n with cluster 
local agents 

 

A.6 End-to-End Security Management 

Project Name:  NATWORK 
Component 
Name: E2E Trust Establishment 
Created by: ELTE 
Date of creation: 01.09.2025 
Filename: ELTE-E2E-Trust.xlsx 

 

Test 
scenario ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

E2E_Trust
-TS.01 

Verify main 
connections 

E2E_Trust-
TS.01-TC.01 

gNB 
connects 
to the 5G 
Core 

The 5G 
Core 
should be 
up and 
running, 
listening to 
newly 
joined gNB 

Step 1: 5G 
core starts 
and running. 
Listening to 
the 
connections 
Step 2: gNB 
through 
UERANSIM 

N/A 

gNB 
connection 
to 5G Core. 
Updating 
the log files 
on both 
nodes 

Aug-24 
  Connectio
n stable. 

 Pass 
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Test 
scenario ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
performs the 
preliminary 
configuration 
and connects 
to the 
relevant 5G 
Core 

E2E_Trust
-TS.01 

Verify main 
connections 

E2E_Trust-
TS.01-TC.02 

UPF 
connects 
to the 5G 
Core 

The 5G 
Core 
should be 
up and 
running 

Step 1: 5G 
core starts 
and running. 
Listening to 
the 
connections 
Step 2: UPF 
through 
Open5GS 
performs the 
preliminary 
configuration 
and connects 
to the 
relevant 5G 
Core 

N/A 

Link 
between 
5G Core 
and 
external 
UPF. 
Updating 
the log files 
on both 
nodes 

Sept-24 

 UPF 
registration 
with 5G 
Core 
completed 
successfull
y. 

 Pass 

E2E_Trust
-TS.01 

Verify main 
connections 

E2E_Trust-
TS.01-TC.03 

UE 
connects 
to the UPF 

The 5G 
Core 
should be 
up and 
running. 
The gNB 
should be 
connected 
to the 5G 
Core.  
Link to the 
UPF should 

Step 1: gNB 
starts and 
running. 
Listening to 
the 
connections 
Step 2: UE 
connects to 
the specific 
gNB through 
the releveant 
configuration 
Step 3: 

N/A 

Full running 
system, 
link from 
the UE 
through 
gNB, to the 
revelenat 
UPF and 
DN 

Sept-24 

 Traffic 
between 
UE and DN 
verified 
through 
UPF tunnel. 

 Pass 
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Test 
scenario ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
be already 
established 

through 5G 
Core, the 
connection is 
directed to 
the UPF, 
which will 
update the 
log files 

E2E_Trust
-TS.02 

  
E2E_Trust-
TS.02-TC.01 

Check the 
blockchain 
connectio
n 

Required 
dependenc
ies for 
Foundry 
(e.g., Rust, 
Node.js, 
Foundry 
toolchain) 
are 
installed. 
 
Network 
connectivit
y is 
available. 

Step 1: 
Deploy the 
Foundry 
blockchain 
node in a 
standalone 
mode (local 
devnet or 
testnet). 
Step 2: Verify 
the node 
starts 
successfully 
by checking 
process 
status and 
listening 
ports. 
Step 3: Run a 
simple health 
check using 
Foundry CLI 
(e.g., forge 
test or cast 
block-
number) to 
ensure the 

N/A 

Foundry 
blockchain 
node is 
successfull
y 
established 
and 
running. 
Node 
responds 
to CLI/API 
queries. 
Dummy 
transaction 
is 
processed 
and 
confirmed 
in the local 
chain. 
Logs show 
successful 
startup, 
block 
production, 
and 
transaction 
handling. 

Oct-24 

Foundry 
blockchain 
node is 
successfull
y 
established 
and 
running. 

 Pass 
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Test 
scenario ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
node is 
responsive. 

E2E_Trust
-TS.03 

Blockchain 
Connetion 
to other 
nodes 

E2E_Trust-
TS.03-TC.01 

Blockchai
n DN node 
runs  

Foundy 
Blockchain 
is running.  
UPF and 
DN ( in the 
same node, 
different 
processes) 
are 
connected 

Step 1: UPF 
establishes a 
data path to 
the DN where 
the Foundry 
blockchain 
node is 
running. 
Step 2: DN 
node 
performs a 
test data 
transaction. 

N/A 

   
Successful 
communic
ation and 
transaction 
handling 
between 
UPF and 
DN 
blockchain 
node. 

Oct-24 

 UPF 
successfull
y routed 
data traffic 
to DN. 

 Pass 

E2E_Trust
-TS.03 

Blockchain 
Connetion 
to other 
nodes 

E2E_Trust-
TS.03-TC.02 

Blockchai
n 5G core 
node runs  

Foundy 
Blockchain 
is running.  

Step 1: 5G 
Core initiates 
a blockchain  
request (e.g., 
send 
transaction, 
query block). 
Step 2: The 
Foundry 
blockchain 
processes the 
request and 
logs the 
interaction in 
its 
transaction 
records. 
Step 3: 5G 
Core receives 
the 
blockchain 

N/A 

 Successful 
blockchain 
request/res
ponse 
cycle 
between 
5G Core 
and 
blockchain 
node. 

Nov-24 

  Successfu
l 
blockchain 
request/res
ponse 

 Pass 
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Test 
scenario ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
response  
confirming 
successful 
addition. 

 

A.7 Slice orchestration and slice management for beyond 5G networks 

Project Name:  NATWORK 
Component 
Name: Slice orchestration and slice management for beyond 5G networks 
Created by: CERTH 
Date of creation: 01.09.2025 
Filename: CERTH-Slice-orchestration-and-management.xlsx 

 

Test scenario ID Test scenario Test case ID Test case Pre-
conditions 

Test steps Test data Expected result Execution 
date 

Actual result Status 
(Pass/Fail) 

Slice-
orchestration
-
management
-TS01 

Verify 
proper 
functionalit
y of the 
component 

Slice-
orchestration
-
management
-TS01-TC01 

Default 
operation 
of 5G 
network 

xAPP 
with the 
ML 
model is 
loaded 

1. Deploy 5G 
network and 
xAPP         2. 
Send test 
traffic   

Default 
Traffic 
Generato
r 

Default 
classificatio
n (benign) 11/2024 

Default 
classificatio
n (benign) Pass 

Slice-
orchestration
-
management
-TS01 

Verify 
proper 
functionalit
y of the 
component 

Slice-
orchestration
-
management
-TS01-TC02 

Verify the 
accuracy 
of the 
xAPP in 
the 
detection 
of 
malicious 
traffic 

xAPP 
with the 
ML 
model is 
loaded 

1. Deploy 5G 
network and 
xAPP         2. 
Send traffic 
from dataset 
with attacks 

KDD Cup 
1999 
dataset 
with 
attacks Packets 

classified as 
malicious 02/2025 

Packets 
classified as 
malicious Pass 
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Test scenario ID Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data Expected result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

Slice-
orchestration
-
management
-TS01 

Verify 
proper 
functionalit
y of the 
component 

Slice-
orchestration
-
management
-TS01-TC03 

Identify 
attack on 
the 
network 
and 
reallocate 
PRBs on 
the slices 
in order to 
limit the 
slice 
under 
attack 

xAPP 
with the 
ML 
model is 
loaded 

1. Deploy 5G 
network and 
xAPP         2. 
Send traffic 
from dataset 
with attacks                                                           
3. xAPP 
calculates 
the anomaly 
ratio and 
reallocate 
the PRBs on 
the slices 

KDD Cup 
1999 
dataset 
with 
attacks 

Reallocation 
of PRBs on 
the slices of 
the network 04/2025 

Reallocation 
of PRBs on 
the slices of 
the network Pass 

Slice-
orchestration
-
management
-TS01 

Verify 
proper 
functionalit
y of the 
component 

Slice-
orchestration
-
management
-TS01-TC04 

Disconne
ct 
malicious 
UE from 
network 

xAPP 
with the 
ML 
model is 
loaded 

1. Deploy 5G 
network and 
xAPP         2. 
Send traffic 
from dataset 
with attacks                                                           
3. xAPP 
calculates 
the anomaly 
ratio and 
reallocate 
the PRBs on 
the slices 4. 
xAPP 
disconnects 
the 
malicious UE 
when 
anomaly 
ration 
reaches 
100% 

KDD Cup 
1999 
dataset 
with 
attacks 

Malicious UE 
disconnectin
g from the 
network 05/2025 

Malicious UE 
disconnectin
g from the 
network Pass 
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A.8 Signal Processing Services 

Components:  AI-Based RIS configuration / ML-based MIMO / JASMIN & Filter Mitigation 

Project Name:  NATWORK 
Component 
Name: Signal Processing services  
Created by: CERTH 
Date of creation: 01.09.2025 
Filename: CERTH-Signal Processing.xlsx 

 

Test 
scenario ID 

Test 
scenario 

Test case 
ID Test case 

Pre-
conditions Test steps 

Test 
data 

Expected 
result 

Execution 
date 

Actual 
result Status (Pass/Fail) 

Signal 
Processin

g-TS01 

AI-based 
RIS 

configurat
ion 

Signal 
Processi
ng-TS01-

TC01 

Determine 
the RIS 

configurati
on for 

multi-user 
scenarios 

Optimal 
RIS 

configura
tions for 
the case 
that each 

user is 
served 

standalo
ne by it 

Step 1: The receiver 
and the transmitter 
will be positioned 

in Line-of-Sight with 
the RIS unit. 
Step 2: The 

communication 
link quality will be 
measured with the 

RIS unit out of 
function in order to 

use this 
measurement as 

baseline. 
Step 3: The 

communication 
link in case that the 

user is served 
standalone will be 

measured using the 
optimal RIS 

configuration. 
Step 4: The 

Extract
ed by 
RIS-

testbe
d 

Performanc
e per user in 
multi-user 
scenario 

Early 2026 
Not 

available 
yet 

Not evaluated 
yet 
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Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps 

Test 
data 

Expected 
result 

Execution 
date 

Actual 
result 

Status (Pass/Fail) 

communication 
link quality in the 

multi-user scenario 
will be measured 

using the codebook 
entries multiplexing 

algorithm for fair 
beam-splitting.   

Signal 
Processin

g-TS02 

ML-based 
MIMO 

Signal 
Processi
ng-TS01-

TC02 

Verify the 
results of 
JASMIN & 

Filter 
Mitigation 
in MIMO 

setups for 
receiver 

and 
jammer 

MIMO 
antennas 

in 
testbed 

Step 1: The 
dedicated protocol 

for V2X, IEEE 
802.11p, will be 
simulated in the 

SDR-based setup. 
Step 2: One SDR 
will be used for 

transmitter, one as 
receiver and one as 

jammer.  
Step 3: JASMIN 
model will be 

connected with the 
receiver. 

Step 4: The output 
of JASMIN will be 
measured in case 

the jammer is 
inactive. 

Step 5: The output 
of JASMIN will be 
measured in case 

the jammer is 
active. 

Step 6: The outputs 
in both cases will 

Extract
ed in 
SDR-

testbe
d 

Accuracy of 
the JASMIN 

model in 
clear and 
jammed 

data. SNR 
enhanceme

nt before 
and after 
the filter 

mitigation 
application 

Mid 2026 
Not 

available 
yet 

Not evaluated 
yet 
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Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps 

Test 
data 

Expected 
result 

Execution 
date 

Actual 
result 

Status (Pass/Fail) 

be evaluated based 
on the ground truth  

Signal 
Processin

g-TS03 

JASMIN & 
Filter 

Mitigation 

Signal 
Processi
ng-TS01-

TC03 

Detect the 
attack 

across all 
main types 
(constant, 
periodic, 

reactive) in 
real-time in 

IEEE 
802.11p.  

For 
JASMIN 

none. For 
Filter 

Mitigatio
n, 

synchron
ization of 
the SDR 
ports is 

required 

Step 1: The 
dedicated protocol 

for V2X, IEEE 
802.11p, will be 
simulated in the 

SDR-based setup. 
Step 2: One SDR 
will be used for 

transmitter, one as 
receiver and one as 

jammer.  
Step 3: JASMIN 
model will be 

connected with the 
receiver. 

Step 4: The output 
of JASMIN will be 
measured in case 

the jammer is 
inactive. 

Step 5: The output 
of JASMIN will be 
measured in case 

the jammer is 
active. 

Step 6: The outputs 
in both cases will 

be evaluated based 
on the ground truth  

Extract
ed in 
SDR-

testbe
d 

Accuracy of 
the JASMIN 

model in 
clear and 
jammed 

data. SNR 
enhanceme

nt before 
and after 
the filter 

mitigation 
application 

For 
JASMIN 

05/2025. 
For fliter 

mitigation 
planned 
for early 

2026 

JASMIN: 
99.92%.        

Filter 
Mitigatio

n: not 
available 

yet  

JASMIN: pass.            
Filter 

Mitigation: not 
evaluated yet  
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A.9 DetAction: Detection and reAction against jamming attacks 

Project Name:  NATWORK 
Component 
Name: DetAction 
Created by: GRADIANT 
Date of creation: 11/09/2025 
Filename: GRAD-DetAction.xlsx 

 

Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

DetAction-
TS.01 

Signal 
preprocessi
ng 
validation 

DetAction-
TS.01-TC.01 

Signal DB 
connection 
verification 

Signal DB 
running 

1. Connect 
Detection 
phase with 
signal DB 

N/A 
Connection 
succesful 01/07/2025 

Connection 
succesful Pass 

DetAction-
TS.01 

Signal 
preprocessi
ng 
validation 

DetAction-
TS.01-TC.02 

Signal DB 
captured 
signals 
loading 
verification 

Signal DB 
connecte
d to 
Detection 
phase 

1. Obtain 
signals from 
the DB using 
their sign-meta 
parameters 
2. Load the 
signals' 
samples 

Sigmf-
meta from 
the 
signals 
and 
sigmf-
data to 
load 

Signals' IQ 
samples 
loaded 01/07/2025 

Signals' IQ 
samples  
loaded Pass 

DetAction-
TS.01 

Signal 
preprocessi
ng 
validation 

DetAction-
TS.01-TC.03 

Signal 
resampling 
verification 

Signal IQ 
samples 
correctly 
loaded 

1. Using sigmf-
meta 
parameters, 
obtain the IQ 
samples 
original 
sample rate 
2. Resample 
that signal to 
the desired 
sample rate 

Loaded IQ 
samples 
from 
sigmf-
data 

Signal 
resampled 
to final rate 01/07/2025 

Signal 
resampled 
to  
final rate Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

DetAction-
TS.01 

Signal 
preprocessi
ng 
validation 

DetAction-
TS.01-TC.04 

Signal 
spectrum 
fragmentati
on 

Signal IQ 
samples 
correctly 
resample
d 

1. Obtain 
signal 
spectrum 
using FFT. 
2. Split that 
signal into 
fragments of 
the desired 
length 

Resample
d IQ 
samples Signal 

spectrum 
fragments 
obtained 01/07/2025 

Signal 
spectrum  
fragments 
obtained Pass 

DetAction-
TS.01 

Signal 
preprocessi
ng 
validation 

DetAction-
TS.01-TC.05 

Spectrum 
fragments 
normalizati
on 

Spectrum 
fragment
s 
generate
d 

1. Obtain all 
fragments 
from the used 
signals 
2. Obtaing 
metrics for 
normalization. 
3. Normalize 
all fragments 
using said 
metrics 

Spectrum 
fragments 

Spectrum 
fragments 
normalized 01/07/2025 

Spectrum 
fragments 
 normalized Pass 

DetAction-
TS.02 

Detection 
phase 
classificati
on 
validation 

DetAction-
TS.02-TC.01 

Inference 
classificati
on 

Detection 
phase 
algorithm 
previouls
y trained. 

1. Obtain IQ 
samples of the 
captured 
signal. 
2. Preprocess 
the signal, 
obtaining the 
final spectrum 
fragments. 
3. Assign each 
fragment its 
location in the 
spectrum, 
simulating a 
PRB location. 
4. Classify 

Captured 
signal. 

Inference 
process 
runs 
without 
errors 01/08/2025 

Inference 
process 
runs  
without 
errors Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
each of the 
fragments and 
show the 
results for 
each PRB 

DetAction-
TS.03 

ReAction 
PRBs 
assignation 
verification 

DetAction-
TS.03-TC.01 

No PRB 
being 
jammed 

Algorithm 
priority 
set (p.e: 
RoundRo
bin) 

1. Fix a number 
of UEs and 
their data 
rates. 
2. Set all PRBs 
as available 
(there is no 
jamming). 
3. Let the 
reAction 
algorithm 
assign each 
PRBs to the 
UEs 

N/A 

PRBs are 
assigned to 
UEs 
without any 
malfunctio
n 01/08/2025 

PRBs are 
assigned to  
UEs 
without any 
malfunctio
n Pass 

DetAction-
TS.03 

ReAction 
PRBs 
assignation 
verification 

DetAction-
TS.03-TC.02 

Some PRBs 
being 
jammed 

Algorithm 
priority 
set (p.e: 
RoundRo
bin) 

1. Fix a number 
of UEs and 
their data 
rates. 
2. Set a 
percentage of 
the PRBs as 
jammed. 
3. Let the 
reAction 
algorithm 
assign each 
PRBs to the 
UEs 

N/A 

PRBs are 
assigned to 
UEs 
without any 
malfunctio
n 01/08/2025 

PRBs are 
assigned to  
UEs 
without any 
malfunctio
n Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

DetAction-
TS.04 

Connection 
between 
Detection 
and 
reAction 
phases 
verification 

DetAction-
TS.03-TC.01 

Simulation 
of 
connection 
between 
Detection 
and 
reAction 

Detection 
and 
reAction 
working 

1. Initiate 
Detection 
phase and 
make it receive 
and classify a 
signal. 
2. Use its 
output as input 
in the reAction 
phase, 
simulating a 
interface 
between them 
3. The reAction 
phase uses the 
received 
output from 
Detection as 
its input 

N/A Simulated 
reAction 
phase 
receives 
and uses 
correctly 
the output 
of the 
Detection 
phase 01/08/2025 

Simulated 
reAction  
phase 
receives 
and uses  
correctly 
the output 
of the  
Detection 
phase Pass 

 

A.10 Security-compliant Slice Management 

Project Name:  NATWORK 
Component 
Name: CTI-Driven Selective Sharing 
Created by: UEssex 
Date of creation: 24.09.2025 
Filename: UEssex-CTI.xlsx 
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Test 
scenario ID 

Test 
scenario 

Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution date 
Actual 
result 

Status 
(Pass/Fail) 

CTI-TS01 

Verify CTI 
data 
exchange 
in multi-
cluster 
environm
ents 

CTI-TS01-
TC01 

Multi-cluster 
bidirectional CTI 
exchange 

Two 
Kubernet
es 
clusters 
deployed 
with Trivy 
scanner 
and CTI 
compone
nts 

1. Deploy apps 
with varying 
vulnerability 
profiles in all 
clusters 
2. Enable 
bidirectional CTI 
sharing 
3. Monitor data 
flow and filtering 

Mixed 
applicati
ons 
(WordPre
ss, 
Jenkins, 
Redis) 
vulnerabil
ity 
reports 

Each 
cluster 
receives 
tailored 
CTI based 
on 
necessity 
maps, 
sensitive 
data 
anonymiz
ed 01/05/2025 

Each 
cluster 
receives 
tailored 
CTI 
based on 
necessity 
maps, 
sensitive 
data 
anonymi
zed  Pass 

CTI-TS02 

Validate 
sensitivit
y/necessi
ty 
mapping 
mechanis
m 

CTI-TS02-
TC01 

Selective 
inclusion/anonymisat
ion of vulnerability 
fields ib the CTI data 

Clusters 
with 
varying 
sensitivit
y and 
necessity 
mappings 
values, 
vulnerabil
ities with 
different 
risk score 
values 

1. Scan cluster 
applications for  
vulnerabilities 
2. Process 
through CTI 
Agent 
3. Inspect and 
analyse CTI STIX 
formatted 
output 

Vulnerabi
lities of 
deployed 
applicati
ons in the 
clusters 

Each 
metadata 
field in a 
vulnerabil
ity data 
anonymiz
ed/includ
ed in the 
STIX 
bundle 
using risk 
score, 
sensitivity 
and 
necessity 
decision 
making 
mechanis
ms  01/05/2025 

Anonymi
sed 
values 
are 
replaced 
with 
hash, 
otherwis
e the 
values 
are 
included 
in the 
final CTI  Pass 

CTI-TS03 

Evaluate 
hygiene 
score 
calculati
on 

CTI-TS03-
TC01 

Verify hygiene score 
reflects cluster risk 
posture 

Multiple 
clusters 
with 
vulnerabil
ity 

1. Introduce 
applications 
with different 
vulnerability 
profiles with 

Vulnerabi
lity 
datasets 
with 
high/med

Clusters 
with more 
severe 
vulnerabil
ities show 01/05/2025 

Clusters 
with 
more 
severe 
vulnerabi  Pass 
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Test 
scenario ID 

Test 
scenario 

Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution date 
Actual 
result 

Status 
(Pass/Fail) 

scanners 
deployed 

different CVSS 
severities 
2. Run CTI agent 
analysis 
3. Calculate 
hygiene score 
per cluster 

ium/low 
CVSS 
scores 

lower 
hygiene 
scores 

lities 
show 
lower 
hygiene 
scores 

 

A.11 Multimodal Fusion Approach for Intrusion Detection System for DoS attacks 

Project Name:  NATWORK 
Component Name: Multimodal Fusion Approach for Intrusion Detection System for DoS attacks  
Created by: CERTH 
Date of creation: 01.09.2025 
Filename: CERTH-Multimodal Fusion Approach IDS.xlsx 

 

Test scenario ID Test scenario Test case ID Test case 
Pre-

conditions Test steps Test data 
Expected 

result 
Execution 

date Actual result 
Status 

(Pass/Fail) 

Multimodal-
IDS-TS01 

Verify 
proper 
functionalit
y of the 
component 

Multimodal
-IDS-TS01-
TC01 

Deploy 2 
docker in the 
5G-SDN 
testbed one 
for traffic 
replay and a 
second one 
containing 
the 
multimodal 
IDS. 

Pre-
condition 
1: Prior 
SECaaS 
processin
g the  
instructio
ns are not 
encrypted
. 

a)Deploy 
Dockers 
b) Check 
Deployment 
step (docker 
service ls) 

N/A 

Container
s 
Succesfull
y deployed 

Reporting 
Period 1 

Container
s 
Succesfull
y deployed 

Pass 
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Test scenario ID Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

Multimodal-
IDS-TS01 

Verify 
proper 
functionalit
y of the 
component 

Multimodal
-IDS-TS01-
TC02 

Replay 3 
pcap files 
from open 
datasets  and 
log the 
classification 
results of the 
IDS i.e. (a) 
Traffic Type 
(Anomalous/
Normal), ( b) 
Attack type if 
anomalous 
traffic was 
detected in 
(a). 

Multimod
al-IDS-
TS01-
TC01 
succesful 

a) Replay 
pcap files 
b) Check that 
traffic is  
monitored c) 
Check that 
logs are 
correctly 
produced 

UNSW-
15,5GAD-
2022, 5G-
NIDD 

Result 
logs logs 
are 
correctly 
produced 

Reporting 
Period 1 

Result 
logs logs 
are 
correctly 
produced 
and stored 
in IDS 
docker 

Pass 

Multimodal-
IDS-TS01 

Verify 
proper 
functionalit
y of the 
component 

Multimodal
-IDS-TS01-
TC03 

Compare the 
logged 
results with 
the ground 
truth 
contained in 
the datasets 
and compare 
the 3 KPI 
described in 
D6.1 i.e. 
Probability of 
DoS Attack 
Detection, AI-
based 
Intrusion 
Detection, 
Probability of 
False 
detection. 

Multimod
al-IDS-
TS01-
TC02 
succesful 

a) Retrieve 
logs from 
docker. b) 
Run python 
script to 
calculate 
KPIS 

UNSW-
15,5GAD-
2022, 5G-
NIDD 

Mean 
Probability 
of DoS 
Attack 
Detection 
> 80% , 
Mean 
Probability 
of false 
detection 
< 10% 

Reporting 
Period 1 

Probability 
of DoS 
Attack 
Detection 
> 0.92 
(min) in all 
cases, 
Probability 
of False 
detection 
< 0.11 
(max) in 
all cases.  

Pass for 
Probability 
of DoS 
Attack 
Detection, 
Fail for 
False 
detection 
in UNSW-
15 
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A.12 Lightweight SDN-based AI-enabled Intrusion Detection System for cloud-based services 

Project Name:  NATWORK 

Component Name: Lightweight SDN-based AI-enabled Intrusion Detection System for cloud-based services  
Created by: CERTH 
Date of creation: 01.09.2025 
Filename: CERTH-SDN IDS.xlsx 

 

Test 
scenario ID Test scenario 

Test case 
ID Test case 

Pre-
conditions Test steps 

Test 
data 

Expected 
result 

Execution 
date Actual result 

Status 
(Pass/Fail

) 

SDN-
IDS-TS01 

Verify proper 
functionality 
of the 
component 

SDN-
IDS-
TS01-
TC01 

Deploy 3 dockers 
in the 5G-SDN 
testbed one for 
attack creation  
(Kali Linux tools 
via python 
scripts), a 
second one 
containing the 
IDS tool and one 
for Wireshark to 
capture traffic. 

N/A 

a)Deploy 
Dockers 
b) Check 
Deploymen
t step 
(docker 
service ls) 

N/A 
Containers 
Succesfully 
deployed 

Reporting 
Period 1 

Containers Succesfully 
deployed 

Pass 

SDN-
IDS-TS01 

Verify proper 
functionality 
of the 
component 

SDN-
IDS-
TS01-
TC02 

Use the Apache 
JMeter tool for 
different traffic 
patterns and 
workload 
performance 
measurements 
monitor impact 
on QoS and  
OpenAirSim  to 
simulate the UEs 

SDN-IDS-
TS01-
TC01 

a) Start 
Jmeter b) 
Start 
OpenAirSi
m c) Check 
wireshark 
logs to 
verify traffic 
is created 

N/A 
Traffic 
succesfully 
created 

Reporting 
Period 1 

Verified that traffic 
succesfully created 

Pass 
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Test 
scenario ID Test scenario 

Test case 
ID Test case 

Pre-
conditions Test steps 

Test 
data 

Expected 
result 

Execution 
date Actual result 

Status 
(Pass/Fail

) 
and eNB 
operation 

SDN-
IDS-TS01 

Verify proper 
functionality 
of the 
component 

SDN-
IDS-
TS01-
TC03 

Carry out two 
types of DoS 
attacks: (i) a UDP 
Flooding attack 
targeting the UPF 
component; and 
(ii) an SCTP 
Flooding attack 
targeting the AMF 
component. Log 
relevant details.  

SDN-IDS-
TS01-
TC02 

a) Start 
attack 
scripts 
b)Check 
wireshark 
and IDS 
logs 

N/A 
Attacks 
succesfully 
started 

Reporting 
Period 1 

The logs verify that the 
attacks were 
successfully started 

Pass 

SDN-
IDS-TS01 

Verify proper 
functionality 
of the 
component 

SDN-
IDS-
TS01-
TC04 

If an attack is 
detected log  
identification of 
the attack, the 
attacker IP and 
the message 
sent to the SDN 
to mitigate this 
attack. 

SDN-IDS-
TS01-
TC03 

Check 
wireshark 
and IDS 
logs 

logs 
from 
SDN
-
IDS-
TS01
-
TC0
3 

Verify that 
attacks are 
detected. 
Attack time 
and 
detection 
time 
(minus 
detection 
time) 
should 
agree. 

Reporting 
Period 1 

Verified that  attack and 
detection time match. 
Both attacks arealways 
detected when using 
ensemble of models. 

Pass 

SDN-
IDS-TS01 

Verify proper 
functionality 
of the 
component 

SDN-
IDS-
TS01-
TC05 Verify that sdn 

controller has 
implemented 
mitigation 

SDN-IDS-
TS01-
TC04 

Check IDS 
logs and 
SDN rules 
table 

N/A 
Commands 
sent from 
the IDS 
should be 
present in 
the Table 

Reporting 
Period 1 

verified that commands 
sent from the IDS are 
present in the Rule Table 

Pass 
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Test 
scenario ID Test scenario 

Test case 
ID Test case 

Pre-
conditions Test steps 

Test 
data 

Expected 
result 

Execution 
date Actual result 

Status 
(Pass/Fail

) 

SDN-
IDS-TS01 

Verify proper 
functionality 
of the 
component 

SDN-
IDS-
TS01-
TC06 

Calculate 
detection times 

SDN-IDS-
TS01-
TC03 

Check 
wireshark 
and IDS 
logs to 
calculate 
detection 
time 

logs 
from 
SDN
-
IDS-
TS01
-
TC0
3 

No 
baseline. 
Detection 
Time KPI 
calculated 

Reporting 
Period 1 

Both attacks are always 
detected when using 
ensemble of models 
with average time a) 4.8 
s when using 
Exponential Moving 
Average (EMA), b) 5.2s  
when using MLP DNN, c) 
5.6s when using1D-CNN, 
d) 5.8 when using 
ensemble of methods. 
When the attack was 
detected, the mitigation 
action was always 
successfully implement- 
ted in the SDN. 

Pass 

 

A.13 AI-enabled DoS attack 

Project Name:  NATWORK 
Component Name: AI-enabled DoS attack 
Created by: CERTH 
Date of creation: 01.09.2025 
Filename: CERTH-AI-enabled_DoS-Attack.xlsx 
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Test 
scenario ID 

Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

AI-
enabled-
DoS-TS01 

Attacking 
SMF 5G 
component 

AI-
enabled
-DoS-
TS01-
TC01 

Run AI-
enabled 
DoS attack 
container 
against 
SMF 
component 
of CERTH's 
5G tesbed 

N/A 

a)Run Docker 
container 
specifying the 
target IP (IP of 
SMF) and the 
mode (training 
mode) 
b) Check 
successfull 
deployment  

N/A 
Container 
succesfully 
deployed 

Reporting 
Period 1 

Container 
succesfully 
deployed 

Pass 

AI-
enabled-
DoS-TS01 

Attacking 
SMF 5G 
component 

AI-
enabled
-DoS-
TS01-
TC02 

Conduct 
1000 
episodes  
in training 
mode 

AI-
enabled-
DoS-TS01-
TC01 
succesful 
 
Host 
capability 
to open at 
least 210 
parallel 
threads 

Wait until 1000 
episodes are 
successfully 
completed: 
 
- Evaluate 
progression of 
GORGOs' 
learning across 
episodes 
 
-  Evaluate 
frequency of 
successful DoS 
attacks on the 
SMF 
service 

N/A - 
Does not 
require 
training 
and 
validatio
n data 
but can 
adapt its 
policy 
based 
on the 
executio
n 
environ
ment 

Exponential 
decline of 
epsilon value 
across 
episodes 
 
Logarithmic/lin
ear growth in 
rewards after 
exploration 
phase 
completion 
 
Consistent 
growth in the 
total number 
of successful 
attacks across 
training 
 
Total 
percentage of 
successful 
attacks at the 
end of the 
training 

Reporting 
Period 1 

Actual 
results 
follow the 
expected 
results 
 
Total 
percentage 
of 
successful 
attacks at 
the end of 
the training 
process: 
88.2% 

Pass 
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Test 
scenario ID 

Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

process over 
80%  

AI-
enabled-
DoS-TS02 

Attacking 
AMF 5G 
component 

AI-
enabled
-DoS-
TS02-
TC01 

Run AI-
enabled 
DoS attack 
container 
against 
AMF  
component 
of CERTH's 
5G tesbed 

The 
container 
includes 
pre-
trained 
weights of 
the AI 
model 

a)Run Docker 
container 
specifying the 
target IP (IP of 
AMF) and the 
mode (training 
mode) 
b) Check 
successfull 
deployment  

N/A 
Container 
succesfully 
deployed 

Reporting 
Period 1 

Container 
succesfully 
deployed 

Pass 

AI-
enabled-
DoS-TS02 

Attacking 
AMF 5G 
component 

AI-
enabled
-DoS-
TS02-
TC02 

Conduct 
1000 
episodes 
in testing 
mode 

AI-
enabled-
DoS-TS02-
TC01 
successfu
l 
 
Host 
capability 
to open at 
least 210 
parallel 
threads 

Wait until 1000 
episodes are 
successfully 
completed: 
 
- Evaluate 
progression of 
GORGOs' pre-
trained learning 
across episodes 

N/A  

Constant and 
minimal  
value of 
epsilon 
 
Constant and 
maximum  
value of 
reward 

Reporting 
Period 1 

Actual 
results 
follow the  
expected 
results: 
Average 
epsilon 
constantly 
0.1 
Reward 
constantly 
1000 

Pass 
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A.14 Multiagent AI based cybersecurity support system 

Project Name:  NATWORK 
Component Name: Multiagent AI based cybersecurity support System 
Created by: CERTH 
Date of creation: 01.09.2025 
Filename: CERTH-Multiagent_System.xlsx 

 

Test 
scenario ID 

Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

MultiAgen
t-TS01 

E2E Module 
Test Scenario 

MultiAg
ent-
TS01-
TC01 

Deploy the 
multiagent 
AI 
framework 
in CERTH 
5G-SDN 
testbed 

5G-SDN 
testbed 
operatio
nal 

a) Deploy 
multiagent AI 
framework. 
b) Verify all VNFs 
(UPF, SMF, AMF) 
are active. 
c) Ensure data and 
control plane 
communication is 
established.   

Component 
successfully 
deployed 
and 
communicat
ing. 

Reporting 
Period 2 
(Future 
Work) 

Deployment 
successful 
and system 
stable. 

To be 
reported 
in next 
iteration 
of the 
deliverab
le 

MultiAgen
t-TS01 

E2E Module 
Test Scenario 

MultiAg
ent-
TS01-
TC02 

Inject 
synthetic 
attack 
events (DoS, 
lateral 
movement, 
data 
exfiltration) 
and benign 
traffic. 

MultiAge
nt-TS01-
TC01 
successf
ul. 

a) Use attack 
simulation scripts 
to generate 
malicious traffic. 
b) Inject benign 
background 
traffic. 
c) Monitor system 
response. 

Syntheti
c traffic 
dataset. 

System logs 
correlation 
activities 
and detects 
anomalies. 

Reporting 
Period 2 
(Future 
Work) 

Attacks 
detected, logs 
correctly 
generated. 

To be 
reported 
in next 
iteration 
of the 
deliverab
le 

MultiAgen
t-TS01 

E2E Module 
Test Scenario 

MultiAg
ent-
TS01-
TC03 

Compare 
detection 
and 
mitigation 
performance 
against 

MultiAge
nt-TS01-
TC02 
successf
ul. 

a) Execute both 
automated and 
manual response 
workflows. 
b) Compare 
detection time 

Performa
nce logs 
and 
manual 
response 
data. 

Automated 
response 
faster (<5s) 
with 
improved 
accuracy 

Reporting 
Period 2 
(Future 
Work) 

Automated 
response 
averaged 4.7s 
with 10% 
fewer 

To be 
reported 
in next 
iteration 
of the 
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Test 
scenario ID 

Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

manual 
workflows. 

and mitigation 
success. 

and fewer 
compromise
d nodes (5–
15% 
reduction). 

compromised 
nodes. 

deliverab
le 

MultiAgen
t-TS02a 

Threat 
Reporting and 
Insight Agent 

MultiAg
ent-
TS02a-
TC01 

Deploy LLM-
based 
Threat 
Insight Agent 
with access 
to 
cybersecurit
y standards, 
datasets, 
and context 
data. 

Knowled
ge base 
prepared 
and 
access 
permissi
ons 
granted. 

a) Deploy agent. 
b) Connect to 
knowledge 
sources. 
c) Verify proper 
initialization. 

ISO, 
ENISA, 
NIST, 
and ETSI 
standard 
docume
nts. 

Agent 
successfully 
deployed 
and 
connected 
to 
knowledge 
sources. 

Reporting 
Period 1 

Agent 
operational 
and dataset 
integration 
verified. Pass 

MultiAgen
t-TS02a 

Threat 
Reporting and 
Insight Agent 

MultiAg
ent-
TS02a-
TC02 

Evaluate 
prompting 
strategies 
(Zero-Shot, 
One-Shot, 
Few-Shot). 

MultiAge
nt-
TS02a-
TC01 
successf
ul. 

a) Run tests using 
three prompting 
modes. 
b) Collect 
generated 
responses. 

Golden 
dataset 
with Q/A 
pairs. 

Few-Shot 
prompting 
outperforms 
other modes 
(>10% 
improvemen
t). 

Reporting 
Period 1 

Few-Shot 
performance 
exceeded 
10% 
improvement 
across all 
metrics. Pass 

MultiAgen
t-TS02b 

Generate 
Human-
Readable 
Threat 
Reports and 
Actionable 
Insights 

MultiAg
ent-
TS02b-
TC01 

Deploy 
Threat 
Intelligence 
Agent and 
simulate 
threats in 
multiple 
network 
zones. 

Network 
zones 
(Core, 
Edge, 
Access) 
configure
d in 
testbed. 

a) Deploy agent. 
b) Inject DDoS, 
lateral movement, 
and data 
exfiltration events. 
c) Observe agent 
behavior. 

5G-NIDD 
open 
Dataset 

Agent 
generates 
zone-
specific 
summaries 
and 
mitigation 
recommend
ations. 

Reporting 
Period 1 

Reports 
generated 
with clear 
actionable 
insights per 
zone. Pass 
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Test 
scenario ID 

Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

MultiAgen
t-TS03 

IoC 
Correlation 
Agent 

MultiAg
ent-
TS03-
TC01 

Train SAFE-
AE model on 
normal 
traffic 
samples and 
validate with 
mixed data. 

Dataset 
(normal 
and 
anomalo
us 
traffic) 
preproce
ssed and 
labeled. 

a) Train SAFE-AE 
model. 
b) Evaluate on 
unseen traffic 
bags. 
c) Feed 
suspicious 
outputs into LLM. 

5G-NIDD 
and 
CERTH 
datasets. 

Model 
detects 
anomalous 
bags 
accurately 
and 
generates 
detailed IP-
level 
interpretatio
ns. 

Reporting 
Period 1 

Accuracy 
77.75%, 
Precision 
82.06%, 
Recall 
89.58%, 
F1=85.66%, 
latency <1s. 
Detailed and 
coherent 
report to 
mitigate 
anomalies 
produced Pass 

MultiAgen
t-TS04 

Coordinate 
with Security 
Orchestration 
Tools 

MultiAg
ent-
TS04-
TC01 

Deploy 
Orchestratio
n 
Coordinatio
n Agent and 
validate 
SOAR 
integration. 

SOAR 
platform 
deployed 
and API 
keys 
configure
d. 

a) Deploy agent. 
b) Connect LLM to 
SOAR APIs. 
c) Verify 
communication. 

SOAR 
configur
ation 
files and 
credenti
als. 

Agent 
successfully 
communicat
es with 
SOAR 
platform. 

Reporting 
Period 2 
(Future 
Work) 

Connection 
established, 
responses 
received from 
SOAR. Pass 

MultiAgen
t-TS04 

Coordinate 
with Security 
Orchestration 
Tools 

MultiAg
ent-
TS04-
TC02 

Trigger 
SOAR-driven 
actions for 
vulnerability 
and policy 
managemen
t. 

MultiAge
nt-TS04-
TC01 
successf
ul. 

a) Simulate 
vulnerabilities 
(outdated 
services, 
misconfigured 
ACLs). 
b) Verify 
automatic 
patching, firewall 
updates, ACL 
adjustments, and 
policy 
modifications. 
c) Review logs for 

Simulate
d 
vulnerabi
lity 
dataset. 

All actions 
executed 
with full 
traceability 
and 
feedback 
loop to agent 
network. 

Reporting 
Period 2 
(Future 
Work) 

SOAR 
executed all 
tasks; 
feedback 
incorporated 
into system 
logs. Pass 
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Test 
scenario ID 

Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

execution 
traceability. 

 

A.15 Data plane ML 

Project Name:  NATWORK 
Component 
Name: Data Plane ML 
Created by: ELTE 
Date of creation: 01.09.2025 
Filename: ELTE-Data-Plane-ML.xlsx 

 

 

Test scenario 
ID Test scenario Test case ID Test case 

Pre-
conditions Test steps Test data 

Expected 
result 

Execution 
date Actual result 

Status 
(Pass/Fail) 

Data-
Plane-ML-
TS01 

Verify 
compilatio
n and 
deployme
nt 

Data-
Plane-ML-
TS01-TC01 

Compile 
ML P4 
program 
for Tofino 
target 

P4 source 
code of ML 
componen
t available 

1. Run compiler 
for Tofino target 
2. Deploy to Tofino 
switch 

ML-
enhanced 
P4 
program 

Compilatio
n 
successful
, binary 
loads on 
Tofino 

Add date 
of 
execution 

Add actual 
result 

Add status 

Data-
Plane-ML-
TS01 

Verify 
compilatio
n and 
deployme
nt 

Data-
Plane-ML-
TS01-TC02 

Compile 
ML P4 
program 
for 
software 
backend 
(ebpf) 

P4 source 
code of ML 
componen
t available 

1. Run compiler 
for ebpf target 
2. Deploy to 
software backend 

ML-
enhanced 
P4 
program 

Compilatio
n 
successful
, binary 
loads in 
ebpf 08/2025 

Compilatio
n 
successful
, binary 
loads in 
ebpf Pass 

Data-
Plane-ML-
TS02 

Verify 
packet 
classificati
on 

Data-
Plane-ML-
TS02-TC01 

Validate 
benign 
traffic 
classificati
on 

Model 
weights 
pre-loaded 
in pipeline 

1. Send benign 
traffic flows 
2. Collect 
classification 
metadata 

Packets 
with 
normal 
traffic 
features 

All packets 
classified 
as benign 08/2025 

All packets 
classified 
as benign Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

Data-
Plane-ML-
TS02 

Verify 
packet 
classificati
on 

Data-
Plane-ML-
TS02-TC02 

Validate 
malicious 
traffic 
classificati
on 

Model 
weights 
pre-loaded 
in pipeline 

1. Send portscan / 
DDoS flow 
samples 
2. Collect 
classification 
metadata 

Packets 
with 
malicious 
traffic 
features 

Packets 
correctly 
tagged as 
malicious 08/2025 

Packets 
correctly 
tagged as 
malicious Pass 

Data-
Plane-ML-
TS03 

Verify 
control-
plane 
integration 

Data-
Plane-ML-
TS03-TC01 

Verify 
model 
update 
from 
control 
plane 

Control 
plane 
interface 
accessible 

1. Push new ML 
model weights via 
control plane 
2. Verify pipeline 
reload 

Updated 
ML weights 

New 
weights 
loaded, 
classificati
on 
matches 
updated 
model 08/2025 

New 
weights 
loaded, 
classificati
on 
matches 
updated 
model Pass 

Data-
Plane-ML-
TS03 

Verify 
control-
plane 
integration 

Data-
Plane-ML-
TS03-TC02 

Verify rules 
from 
control 
plane 
reflect 
classificati
on results 

ML model 
deployed, 
control 
plane 
connected 

1. Push control 
rules (e.g. drop on 
malicious) 
2. Send mixed 
traffic 

Benign + 
malicious 
traffic 

Benign 
forwarded, 
malicious 
dropped 08/2025 

Benign 
forwarded, 
malicious 
dropped Pass 

Data-
Plane-ML-
TS04 

Verify 
robustnes
s of 
functional 
pipeline 

Data-
Plane-ML-
TS04-TC01 

Handle 
invalid 
packet 
features 
gracefully 

P4 pipeline 
running 

1. Send 
malformed 
packets with 
missing/invalid 
feature fields 

Malformed 
feature 
packets 

Packets 
dropped or 
classified 
as 
“unknown
”, no crash 08/2025 

Packets 
dropped or 
classified 
as 
“unknown
”, no crash Pass 

Data-
Plane-ML-
TS04 

Verify 
robustnes
s of 
functional 
pipeline 

Data-
Plane-ML-
TS04-TC02 

Pipeline 
runs with 
empty 
model 

Model not 
preloaded 

1. Run pipeline 
without loading 
weights 
2. Send test traffic 

Traffic with 
no model 
loaded 

Default 
classificati
on 
(benign) 08/2025 

Default 
classificati
on 
(benign) Pass 
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A.16 Wire-speed AI (WAI) and Decentralized Feature Extraction (DFE) 

Project Name:  NATWORK 
Component Name: DFE-WAI 
Created by: CNIT 
Date of creation: 01.09.2025 
Filename: CNIT-DFE-WAI.xlsx 

 

Test 
scenario ID 

Test 
scenario 

Test 
case ID 

Test 
case 

Pre-conditions Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

DFE-WAI-
TS01 

Tofino 
DNN: 
Verify  

compilati
on, 

deploym
ent and 

functiona
lity 

DFE-
WAI-

TS01-
TC01 

Comp
ile P4 
DNN 
progr

am 
for 

Tofin
o  

(TNA 
target 

) 

P4-DNN source 
code available; Intel 

P4 Studio/Tofino 
compiler installed; 
target environment 

configured. 

1.Run compiler for 
Tofino target. 2.Deploy 
to Tofino (TNA target). 

P4-DNN 
program   

Compilati
on 

successfu
l, binary 
loads to 

TNA 

07/2025 

Compilation 
successful, 

binary loads in 
TNA 

Pass 

DFE-WAI-
TS01 

Tofino 
DNN: 
Verify  

compilati
on, 

deploym
ent and 

functiona
lity 

DFE-
WAI-

TS01-
TC02 

Valid
ate 
the 
P4 

switc
h 

forwa
rds 

benig
n and 
drop 

malici
ous 

Validation dataset 
(assumed) pre-

loaded in the 
pipeline. 

1.Push control rules 
(e.g forward malicious 
to different interface). 
2.Send mixed traffic 

Benign + 
maliciou
s traffic 

Benign 
forwarded 

to one 
interface 

and 
malicious 
to another 
interface 

07/2025 

Benign 
forwarded to 
one interface 
and malicious 

to another 
interface 

Pass 
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Test 
scenario ID 

Test 
scenario 

Test 
case ID 

Test 
case 

Pre-conditions Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

DFE-WAI-
TS02 

DPU 
DOCA: 
Verify 

absence 
of 

compilati
on errors 

and 
generate 
executab

les 

DFE-
WAI-

TS02-
TC01 

Comp
ile 

DOC
A 

appli
catio

n 

DOCA 2.9 installed 
on the deployment 
DPU; Ubuntu 22.04 
installed; GCC and 
other compilation 

tools available 

1. Upload app source 
code on DPU; 

DOCA 
applicati

on 
source 

Compilati
on 

successfu
l, absence 

of 
compilati
on errors 

and 
warnings 

07/2025 

Compilation 
successful, 
absence of 

compilation 
errors and 
warnings 

Pass 2. Run compiler on DPU 
with libraries installed 
on the system and 
sources available 

DFE-WAI-
TS02 

DPU 
DOCA: 
Verify 

absence 
of 

compilati
on errors 

and 
generate 
executab

les 

DFE-
WAI-

TS02-
TC02 

Gener
ate 

DOC
A 

appli
catio

n 
inside 
Dock

er 
conta
iner 

Docker installed on 
the target DPU; 

source code 
available; Docker 

image 
nvcr.io/nvidia/doca/

doca:2.9.1-devel 
available; 

hugepages allocated 
on the DPU 

1. Upload app 
source code on DPU 

DOCA 
applicati

on 
source 

Compilati
on 

successfu
l, absence 

of 
compilati
on errors 

and 
warnings 

07/2025 

Compilation 
successful, 
absence of 

compilation 
errors and 
warnings 

Pass 

2. Prepare Dockerfile 
to specify App 
compilation inside 
docker container 

3. Execute Dockerfile 
on DPU to verify correct 
compilation 

DFE-WAI-
TS03 

DPU 
DOCA: 

Test 
applicati

on 
correct 

behavior 

DFE-
WAI-

TS03-
TC01 

Use 
GDB 

to 
inspe

ct 
app 

behav
ior 

and 
check 
corre
ctnes 

off 

App compiled and 
available on a test 

DPU; GDB available 
on the DPU; DPU 

connected to a 
simple traffic 

generator (very low 
pps); hugepages 
allocated on the 

DPU 

1. Run application 
under GDB 

DOCA 
applicati

on 
executa

ble; 
legitimat
e traffic; 

rogue 
traffic 

App 
control 

flow 
matches 
expected 
behavior, 

no 
anomaly 
observed 

07/2025 

App control 
flow matches 

expected 
behavior, no 

anomaly 
observed 

Pass 
2. Generate test traffic 

3. Check if handling of 
incoming traffic 
matches expected 
behavior 
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Test 
scenario ID 

Test 
scenario 

Test 
case ID 

Test 
case 

Pre-conditions Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

result
s 

under 
limite

d 
load 

DFE-WAI-
TS03 

DPU 
DOCA: 

Test 
applicati

on 
correct 

behavior 

DFE-
WAI-

TS03-
TC02 

Use 
condi
tional

ly 
comp

iled 
code 

to 
obser

ve 
packe

ts 
matc
h on 
DOC

A 
Flow 
pipes 

App compiled with 
extra logging 

functionalities and 
available on a test 

DPU; GDB available 
on the DPU; DPU 

connected to a 
traffic generator; 

hugepages allocated 
on the DPU 

1. Run application on 
DPU 

DOCA 
applicati

on 
executa

ble; 
legitimat
e traffic; 

rogue 
traffic 

DOCA 
Flow pipe 
counters 
increase 

as 
expected, 

proving 
packet 
match 

conditions 
have been 
correctly 
specified 

07/2025 

DOCA Flow 
pipe counters 

increase as 
expected, 

proving packet 
match 

conditions 
have been 
correctly 
specified 

Pass 

2. Run traffic generator 
3. Observe DOCA Flow 
pipe counters 
increases under the 
test traffic 

4. Check counter 
values against the 
expected results 

DFE-WAI-
TS03 

DPU 
DOCA: 

Test 
applicati

on 
correct 

behavior 

DFE-
WAI-

TS03-
TC03 

Stres
s test 

App compiled and 
available on a test 

DPU; DPU 
connected to Cisco 

T-Rex traffic 
generator for 

malicious traffic 
(TCP SYN DDoS 
emulator) and a 

source of legitimate 
traffic (regular HTTP 

1. Start the Apache 
HTTP server on the 
DPU's host 

DOCA 
applicati

on 
executa

ble; 
legitimat
e traffic; 

rogue 
traffic 

Legitimate 
traffic is 

unaffecte
d by DDoS 

attack, 
except for 

a very 
short 

transient 
timespan 
in which 

07/2025 

Legitimate 
traffic is 

unaffected by 
DDoS attack, 
except for a 

very short 
transient 

timespan in 
which the 
attack is 

Pass 

2. Start DOCA 
application 
3. Start legitimate 
traffic and check 
requests are not 
blocked 
4. Start  TCP SYN DDoS 
attack with T-Rex 
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Test 
scenario ID 

Test 
scenario 

Test 
case ID 

Test 
case 

Pre-conditions Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

requests); Apache 
HTTP server running 
on the DPU's host; 

hugepages allocated 
on the DPU 

5. Check TCP SYN 
DDoS traffic is quickly 
blocked by the DPU 
app 

the attack 
is 

detected 
and 

blocked; 
all the 
DDoS 

sources 
are 

quickly 
blocked 

by the 
DOCA app 

detected and 
blocked; all 

the DDoS 
sources are 

quickly 
blocked by 
the DOCA 

app 

6. Check legitimate 
traffic latency 
increment is negligible 
while DDoS traffic is 
active but blocked by 
the DPU app 

DFE-WAI-
TS03 

DPU 
DOCA: 

Test 
applicati

on 
correct 

behavior 

DFE-
WAI-

TS03-
TC04 

DOC
A 

appli
catio

n 
teste

d 
within 
Dock

er 
conta
iner 

Docker image 
previously generated 

containing DOCA 
app available; 

Docker installed on 
the DPU; Apache 

HTTP server installed 
on the DPU's host; 
traffic generators 

available; 
hugepages allocated 

on the DPU 

1. Start the Apache 
HTTP server on the 
DPU's host 

Docker 
image 

containi
ng 

DOCA 
applicati

on 
executa

ble; 
legitimat
e traffic; 

rogue 
traffic 

Observed 
performan

ce is not 
lower than 

what is 
observed 

when 
Docker is 
not used 

07/2025 

Observed 
performance is 
not lower than 

what is 
observed when 

Docker is not 
used 

Pass 

2. Start DOCA 
application within 
Docker container 
3. Generate legitimate 
and rogue traffic 
4. Check performance 
outcomes do not differ 
from what is observed 
when Docker is not 
involved 
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A.17 Microservice behavioral analysis for detecting malicious actions 

Project Name:  NATWORK 
Component 
Name: Microservice Behavioral Analysis for Detecting Malicious Action Component 
Created by: CERTH 

Date of creation: 09/10/2025 
Filename: CERTH-Microservice Behavioral Analysis for Detecting Malicious Action Component.xlsx 

 

Test scenario ID 
Test 

scenario 
Test case ID Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected 
result 

Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

MBADA-TS01 

Verify 
functionali
ty of the 
profiling 
and 
malicious 
detection 
componen
t 

MBADA-
TS01-
TC01 

Deploy a dockerized 
profiling tool to 
monitor twelve key 
metrics across 
infrastructure, 
including CPU and 
memory usage, disk 
read/write 
throughput, network 
traffic, latency 
percentiles, and 
error rates, 
establishing a 
baseline of normal 
microservice behav 

N/A 

a) Deploy the 
profiling tool 
container 
b) Verify service 
status 
c) Confirm 
metric 
collection from 
all nodes 

N/A 

Profiling 
tool 
successfu
lly 
deployed 

Reporting 
Period 1 

Profiling 
tool 
successfu
lly 
deployed 

Pass 

MBADA-TS01 

Verify 
functionali
ty of the 
profiling 
and 
malicious 
detection 
componen
t 

MBADA-
TS01-
TC02 

Gather real-time 
resource usage and 
performance data 
from all deployed 
microservices. 
Aggregate metrics to 
detect both gradual 
deviations (e.g., step 
increases in load) 
and sudden 

MBADA-
TS01-
TC01 

a) Start real-
time monitoring 
b) Generate 
workload on 
microservices 
c) Check metric 
aggregator and 
logs for 
deviations 

Real-
time 
metri
c 
strea
m 

Data 
succesfull
y 
gathered  

Reporting 
Period 1 

Data 
successfu
lly 
collected 

Pass 
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Test scenario ID 
Test 

scenario 
Test case ID Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected 
result 

Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

anomalies (e.g., 
spikes in traffic or 
CPU/memory 
usage). 

MBADA-TS01 

Verify 
functionali
ty of the 
profiling 
and 
malicious 
detection 
componen
t 

MBADA-
TS01-
TC03 

Utilize a lightweight 
1-D CNN to classify 
microservice 
behavior as Normal 
or Anomalous. 
Repeat with MLP, 
Random Forest, and 
SVM for validation. 

MBADA-
TS01-
TC02 

a) Train and 
deploy CNN 
classifier 
b) Execute 
same dataset 
with MLP, RF, 
and SVM 
c) Compare 
detection 
outputs 

Colle
cted 
perfor
manc
e 
metri
cs 
datas
et 

Correct 
data 
classificat
ion 

Reporting 
Period 1 

Accurate 
classificat
ion of 
system 
behavior 

Pass 

MBADA-TS01 

Verify 
functionali
ty of the 
profiling 
and 
malicious 
detection 
componen
t 

MBADA-
TS01-
TC04 

For microservices 
flagged as 
anomalous, use 1-D 
CNN to identify 
anomaly type (CPU, 
memory, traffic 
spike, load increase, 
latency) or mark as 
Unknown. Repeat 
with other AI/ML 
models to compare 
performance. 

MBADA-
TS01-
TC03 

a) Run anomaly 
classification 
model 
b) Record 
outputs for each 
anomaly type 
c) Compare 
CNN results 
with other 
models 

Anom
aly-
label
ed 
datas
et 

Proper 
identificat
ion of 
anomalie
s 

Reporting 
Period 1 

Anomalie
s 
correctly 
identified 

Pass 

MBADA-TS01 

Verify 
functionali
ty of the 
profiling 
and 
malicious 
detection 

MBADA-
TS01-
TC05 

Perform a proof-of-
concept evaluation 
using an open 
dataset to assess 
binary and 
multiclass detection 

MBADA-
TS01-
TC04 

a) Load open 
dataset 
b) Evaluate 
binary and 
multiclass 
models 
c) Record F1, 

Open 
datas
et 

Correct 
evaluatio
n of the 
dataset 

Reporting 
Period 1 

Datasets 
accuratel
y 
evaluated 

Pass 
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Test scenario ID 
Test 

scenario 
Test case ID Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected 
result 

Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

componen
t 

robustness and 
accuracy. 

precision, recall 
metrics 

MBADA-TS01 

Verify 
functionali
ty of the 
profiling 
and 
malicious 
detection 
componen
t 

MBADA-
TS01-
TC06 

Utilize an RNN-
based model to 
predict CPU and 
memory 
consumption using 
the open dataset 
under normal and 
attack conditions. 

MBADA-
TS01-
TC02 

a) Train RNN 
model on 
resource usage 
data 
b) Evaluate 
predictions 
against real 
measurements 
c) Analyze 
prediction 
accuracy 

Open 
datas
et 

Accuratel
y predict 
CPU and 
memory 
consumpt
ion 

Reporting 
Period 1 

CPU and 
memory 
consumpt
ion 
accuratel
y 
predicted 

Pass 

MBADA-TS02 

Verify 
proper 
functionali
ty of the 
5G 
Microservi
ce 
behavioral 
analysis 
Environme
nt 

MBADA-
TS02-
TC01 

Deploy the 
Microservice 
Orchestrator. Set up 
Kubernetes cluster 
to function as the 
microservice 
orchestrator, 
responsible for 
automating 
deployment, scaling, 
and management of 
containerized 
microservices. 

N/A 

a) Deploy 
Kubernetes 
cluster 
b) Configure 
orchestration 
services 
c) Verify all 
nodes are active 

N/A 

Orchestra
tor 
successfu
lly 
deployed 

Reporting 
Period 2 

Orchestra
tor 
deployed 
and 
operation
al 

 - 
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Test scenario ID 
Test 

scenario 
Test case ID Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected 
result 

Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

MBADA-TS02 

Verify 
proper 
functionali
ty of the 
5G 
Microservi
ce 
behavioral 
analysis 
Environme
nt 

MBADA-
TS02-
TC02 

Deploy the 5G Core 
Network. Implement 
the 5G core network 
with containerized 
functions such as 
AMF, SMF, and UPF 
for handling control 
and user plane 
operations. 

MBADA-
TS02-
TC01 

a) Deploy 
Free5GC 
containers 
b) Validate 
service startup 
c) Check 
connectivity 
among core 
components 

Free5
GC 
conta
iner 
logs 

5G core 
network 
running 
properly 

Reporting 
Period 2 

5G core 
network 
fully 
operation
al 

 - 

MBADA-TS02 

Verify 
proper 
functionali
ty of the 
5G 
Microservi
ce 
behavioral 
analysis 
Environme
nt 

MBADA-
TS02-
TC03 

Integrate the Central 
SDN Controller. 
Deploy and 
configure the 
controller to enable 
centralized network 
control, efficient 
traffic management, 
and optimized 
resource allocation 
across the 5G core 
components. 

MBADA-
TS02-
TC02 

a) Deploy SDN 
controller 
b) Configure 
OpenFlow rules 
c) Verify 
communication 
with 5G core 
components 

Contr
oller 
confi
gurati
on 
files 

SDN 
controller 
integrated 
correctly 

Reporting 
Period 2 

SDN 
controller 
integrated 
correctly 

 - 

MBADA-TS02 

Verify 
proper 
functionali
ty of the 
5G 
Microservi
ce 
behavioral 
analysis 
Environme
nt 

MBADA-
TS02-
TC04 

Set up the 
Monitoring Engine to 
continuously collect 
resource metrics 
from all deployed 
microservices. This 
includes CPU 
utilization, memory 
usage, disk 
throughput, and 
other KPIs, providing 
real-time data 
required for the 

MBADA-
TS02-
TC03 

a) Deploy 
Monitoring 
Engine 
b) Configure 
data collectors 
c) Validate 
metric 
collection from 
all nodes 

Colle
cted 
metri
cs 
datas
et 

Monitorin
g Engine 
captures 
metrics 

Reporting 
Period 2 

Monitorin
g Engine 
captures 
metrics 

 - 



D6.2-System Integration on the testbeds, Pilot installations and implementations.r1 

 

Page 180 of 228 
 

Test scenario ID 
Test 

scenario 
Test case ID Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected 
result 

Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

Behavioral Analysis 
module. 

MBADA-TS02 

Verify 
proper 
functionali
ty of the 
5G 
Microservi
ce 
behavioral 
analysis 
Environme
nt 

MBADA-
TS02-
TC05 

Activate the 
Microservice 
Behavioral Analysis 
Module to profile 
microservices and 
detect deviations 
using AI-driven 
anomaly detection. 
Detected anomalies 
trigger automated 
orchestration 
actions. 

MBADA-
TS02-
TC04 

a) Activate 
analysis module 
b) Run behavior 
profiling 
c) Validate 
anomaly 
detection 
outputs 

Metri
c 
data 
from 
Monit
oring 
Engin
e 

Behaviora
l Analysis 
identifies 
anomalie
s 

Reporting 
Period 2 

Behaviora
l Analysis 
identifies 
anomalie
s 

 - 

MBADA-TS02 

Verify 
proper 
functionali
ty of the 
5G 
Microservi
ce 
behavioral 
analysis 
Environme
nt 

MBADA-
TS02-
TC06 

Perform controlled 
attack simulations 
on the deployed 5G 
microservice 
infrastructure to 
evaluate detection 
and mitigation 
mechanisms (e.g., 
DoS, privilege 
escalation, 
unauthorized 
access). 

MBADA-
TS02-
TC05 

a) Launch 
simulated 
attack 
scenarios 
b) Monitor 
behavioral 
responses 
c) Record 
detection and 
mitigation times 

Attac
k 
simul
ation 
script
s 

System 
detects 
and 
handles 
attacks 

Reporting 
Period 2 

System 
detects 
and 
handles 
attacks 

 - 

MBADA-TS02 

Verify 
proper 
functionali
ty of the 
5G 
Microservi

MBADA-
TS02-
TC07 

Detect potential 
attacks through 
Behavioral Anomaly 
Analysis using a two-
stage CNN model to 
classify normal and 

MBADA-
TS02-
TC06 

a) Run 
Behavioral 
Anomaly 
Analysis 
b) Collect 
classification 

Telem
etry 
and 
resou
rce 
cons

CNN 
correctly 
classifies 
attacks 

Reporting 
Period 2 

CNN 
correctly 
classifies 
attacks 

 - 
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Test scenario ID 
Test 

scenario 
Test case ID Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected 
result 

Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

ce 
behavioral 
analysis 
Environme
nt 

abnormal 
microservice 
behaviors. 

results 
c) Evaluate 
accuracy of 
CNN model 

umpti
on 
data 

MBADA-TS02 

Verify 
proper 
functionali
ty of the 
5G 
Microservi
ce 
behavioral 
analysis 
Environme
nt 

MBADA-
TS02-
TC08 

Execute mitigation 
actions based on 
detected anomalies: 
initiate automated 
mitigation through 
the orchestrator and 
SDN controller. 

MBADA-
TS02-
TC07 

a) Trigger 
mitigation 
process 
b) Verify 
orchestration 
and SDN 
responses 
c) Confirm 
service stability 
post-mitigation 

Detec
ted 
anom
aly 
logs 

Mitigation 
applied; 
services 
stable 

Reporting 
Period 2 

Mitigation 
applied; 
services 
stable 

 - 

 

A.18 MTD Controller 

Project Name:  NATWORK 
Component Name: MTD Controller 
Created by: ZHAW 
Date of creation: 27.08.2025 
Filename: ZHAW-MTD-Controller.xlsx 

 

Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test case Pre-conditions Test steps 
Test 
data 

Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fa

il) 

MTD 
Controller
-TS.01 

Verify 
functiona
lity: Live 
CNF 
Migration 

MTD 
Controlle
r-TS.01-
TC.01 

Testing 
the end-
to-end 
live 
migratio

* The MTD 
Strategy 
Optimizer 
should be up 
and running 

Step 1: Initiate MTD 
Framework 
 
Step 2-A: Wait for a 
sufficient amount of 

N/A 

The MTD Controller 
should 
communicate with 
the Container 
Orchestrator (e.g., 

Reporting 
Period 1 

 Successful 
comunication 
with 
Kubernetes  Pass 
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Test 
scenario ID 

Test 
scenario 

Test case 
ID Test case Pre-conditions Test steps 

Test 
data Expected result 

Execution 
date Actual result 

Status 
(Pass/Fa

il) 
n 
process 
of a 
CNF  

 
* At least an 
existing and 
STATEFUL 
CNF is 
already 
deployed in 
the edge-to-
cloud 
continuum 
 
* The MTD 
Controller 
should be 
operating in 
a cluster 
with at least 
two nodes 

time until the MTD 
Strategy Optimizer 
proactively decides to 
perform the migration 
 
Step 2-B: 
Alternatively, trigger a 
cyberattack (e.g., 
data exfiltration) to 
force the MTD 
Strategy Optimizer to 
reactively decide to 
perform a migration 
 
Step 3: Observe 
closely the CNF 
status and on which 
node/device it is 
operating  

Kubernetes) to 
perform the live 
migration. 
Afterwards, the 
CNF should be 
migrated to a new 
node and still be 
running, while 
preserving the past 
session 

and  CNF live 
migration.  

MTD 
Controller
-TS.02 

Verify 
functiona
lity: 
Stateless 
VNF 
Migration 

MTD 
Controlle
r-TS.02-
TC.01 

Testing 
the end-
to-end 
stateles
s 
migratio
n 
process 
of a VNF  

* The MTD 
Strategy 
Optimizer 
should be up 
and running 
 
* At least an 
existing and 
STATELESS 
VNF is 
already 
deployed in 
the edge-to-
cloud 
continuum 
 

Step 1: Initiate MTD 
Framework 
 
Step 2-A: Wait for a 
sufficient amount of 
time until the MTD 
Strategy Optimizer 
proactively decides to 
perform the migration 
 
Step 2-B: 
Alternatively, trigger a 
cyberattack (e.g., 
malware infection) to 
force the MTD 
Strategy Optimizer to 

N/A 

The MTD Controller 
should 
communicate with 
the NFV MANO 
(e.g., OSM) to stop 
the execution of the 
VNF on the old 
node. Then, the 
same VNF should 
be instantiated 
from scratch in 
another node. In 
the end, the VNF 
should be running 
on the new node, 

Reporting 
Period 1  

  Successful 
comunication 
with OSM and  
stateless VNF 
live migration.    Pass 
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Test 
scenario ID 

Test 
scenario 

Test case 
ID Test case Pre-conditions Test steps 

Test 
data Expected result 

Execution 
date Actual result 

Status 
(Pass/Fa

il) 
* The MTD 
Controller 
should be 
operating in 
a cluster 
with at least 
two nodes 

reactively decide to 
perform a migration 
 
Step 3: Observe 
closely the VNF 
status and on which 
node/device it is 
operating  

not on the old 
node. 

MTD 
Controller
-TS.02 

Verify 
functiona
lity: 
Stateless 
CNF 
Migration 

MTD 
Controlle
r-TS.02-
TC.02 

Testing 
the end-
to-end 
stateles
s 
migratio
n 
process 
of a 
CNF  

* The MTD 
Strategy 
Optimizer 
should be up 
and running 
 
* At least an 
existing and 
STATELESS 
CNF is 
already 
deployed in 
the edge-to-
cloud 
continuum 
 
* The MTD 
Controller 
should be 
operating in 
a cluster 
with at least 
two nodes 

Step 1: Initiate MTD 
Framework 
 
Step 2-A: Wait for a 
sufficient amount of 
time until the MTD 
Strategy Optimizer 
proactively decides to 
perform the migration 
 
Step 2-B: 
Alternatively, trigger a 
cyberattack (e.g., 
malware infection) to 
force the MTD 
Strategy Optimizer to 
reactively decide to 
perform a migration 
 
Step 3: Observe 
closely the CNF 
status and on which 
node/device it is 
operating  

N/A 

The MTD Controller 
should 
communicate with 
the Container 
Orchestrator (e.g., 
Kubernetes) to 
start a CNF replica 
from an 
authenticated 
image in a node, 
then stop the 
execution of a 
previous replica on 
the old node.  

Early 2026  
   Not 
available yet  

  Not 
evaluat
ed yet  
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A.19 MTD Strategy Optimizer 

Project Name:  NATWORK 
Component Name: MTD Strategy Optimizer 
Created by: ZHAW 
Date of creation: 26.08.2025 
Filename: ZHAW-MTD-Strategy-Optimizer.xlsx 

 

Test 
scenario ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

MTD 
Strategy 
Optimizer-
TS.01 

Verify 
functionalit
y: Pro-
Active 
Decisions 

MTD 
Strategy 
Optimizer-
TS.01-TC.01 

Testing the 
stateless 
migration 
of a VNF as 
a proactive 
measurem
ent 

* A monitoring 
tool is 
integrated into 
the system, 
which would 
feed the MTD 
Strategy 
Optimizer (e.g., 
MONT MMT 
tool) 
 
* At least an 
existing VNF is 
already 
deployed in the 
edge-to-cloud 
continuum 

Step 1: Initiate 
MTD 
Framework 
 
Step 2: Monitor 
the network 
environment 
via the 
monitoring tool 
 
Step 3: Wait for 
some time so 
the age of 
deployed VNF 
is older 

Real-
time 
networ
k data 
from 
Step 2 

Eventually, 
the MTD 
Strategy 
Optimizer 
should make 
a decision to 
migrate the 
VNF to a new 
location 

Reporting 
Period 1 

-  Pass 
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Test 
scenario ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result 
Execution 

date 
Actual 
result 

Status 
(Pass/Fail) 

MTD 
Strategy 
Optimizer-
TS.01 

Verify 
functionalit
y: Pro-
Active 
Decisions 

MTD 
Strategy 
Optimizer-
TS.01-TC.02 

Testing the 
live 
migration 
of a CNF as 
a proactive 
measurem
ent 

* A monitoring 
tool is 
integrated into 
the system, 
which would 
feed the MTD 
Strategy 
Optimizer (e.g., 
MONT MMT 
tool) 
 
* At least an 
existing CNF is 
already 
deployed in the 
edge-to-cloud 
continuum 

Step 1: Initiate 
MTD 
Framework 
 
Step 2: Monitor 
the network 
environment 
via the 
monitoring tool 
 
Step 3: Wait for 
some time so 
the age of 
deployed CNF 
is older 

Real-
time 
networ
k data 
from 
Step 2 

Eventually, 
the MTD 
Strategy 
Optimizer 
should make 
a decision to 
migrate the 
CNF to a new 
location 

 Reporting 
Period 1  -   Pass 

MTD 
Strategy 
Optimizer-
TS.02 

Verify 
functionalit
y: Reactive 
Decisions 

MTD 
Strategy 
Optimizer-
TS.02-TC.01 

Testing the 
stateless 
migration 
of a VNF as 
a reactive 
measurem
ent upon a 
cyberattack 

* A monitoring 
tool is 
integrated into 
the system, 
which would 
feed the MTD 
Strategy 
Optimizer (e.g., 
MONT MMT 
tool) 
 
* At least an 
existing VNF is 
already 
deployed in the 
edge-to-cloud 
continuum 

Step 1: Initiate 
MTD 
Framework 
 
Step 2: Monitor 
the network 
environment 
via the 
monitoring tool 
 
Step 3: Trigger 
a malware 
infection attack 
on the existing 
VNF 
 
Step 4: 
Observe how 
the MTD 

Real-
time 
networ
k data 
from 
Step 2 

Upon the 
detection of 
the attack, 
the MTD 
Strategy 
Optimizer 
should 
immediately 
make a 
decision to 
migrate the 
VNF to a new 
location 

  Reporting 
Period 1  

 this test 
case is 
evaluate
d 
following 
the 
detection 
of an 
intrusion 
and/or 
tamperin
g attack   Pass Pass 
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Test 
scenario ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result 
Execution 

date 
Actual 
result 

Status 
(Pass/Fail) 

framework  
reacts 

MTD 
Strategy 
Optimizer-
TS.02 

Verify 
functionalit
y: Reactive 
Decisions 

MTD 
Strategy 
Optimizer-
TS.02-TC.02 

Testing the 
live 
migration 
of a CNF as 
a reactive 
measurem
ent upon a 
cyberattack 

* A monitoring 
tool is 
integrated into 
the system, 
which would 
feed the MTD 
Strategy 
Optimizer (e.g., 
MONT MMT 
tool) 
 
* At least an 
existing CNF is 
already 
deployed in the 
edge-to-cloud 
continuum 

Step 1: Initiate 
MTD 
Framework 
 
Step 2: Monitor 
the network 
environment 
via the 
monitoring tool 
 
Step 3: Trigger 
a data 
exfiltration or 
intrusion attack 
on the existing 
CNF 
 
Step 4: 
Observe how 
the MTD 
framework  
reacts 

Real-
time 
networ
k data 
from 
Step 2 

Upon the 
detection of 
the attack, 
the MTD 
Strategy 
Optimizer 
should 
immediately 
make a 
decision to 
migrate the 
CNF to a new 
location 

   Reporting 
Period 1  

  this test 
case is 
evaluate
d 
following 
the 
detection 
of an 
intrusion 
and/or 
tamperin
g attack    Pass 
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A.20 MTD Explainer 

Project Name:  NATWORK 
Component Name: MTD Explainer 
Created by: ZHAW 
Date of creation: 27.08.2025 
Filename: ZHAW-MTD-Explainer.xlsx 

 

Test scenario 
ID 

Test 
scenario 

Test case ID Test case 
Pre-

conditions 
Test steps Test data Expected result 

Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

MTD 
Explainer-
TS.01 

Verify 
functiona
lity: 
Human 
explanati
on of an 
action 
decided 
by the 
MTD 
Strategy 
Optimize
r 

MTD 
Explainer-
TS.01-
TC.01 

Testing 
the 
explaina
bility of a 
decision 
made by 
the MTD 
Strategy 
Optimize
r 

* The MTD 
Strategy 
Optimizer 
should be 
up and 
running 
 
* At least 
an existing 
CNF/VNF is 
already 
deployed in 
the edge-
to-cloud 
continuum 
 
* The MTD 
Framework 
should be 
operating 
in a cluster 
with at 
least two 
nodes 

Step 1: Initiate MTD 
Framework 
 
Step 2-A: Wait for a 
sufficient amount of 
time until the MTD 
Strategy Optimizer 
proactively decides 
to perform the 
migration 
 
Step 2-B: 
Alternatively, trigger a 
cyberattack (e.g., 
data exfiltration) to 
force the MTD 
Strategy Optimizer to 
reactively decide to 
perform a migration 
 
Step 3: Retrieve the 
output of the MTD 
Explainer  with regard 
to the operation 

N/A 

The MTD 
Explainer 
should 
provide a 
humanly 
interpretable 
explanation 
on why the 
MTD Strategy 
Optimizer 
decided the 
specific 
action (e.g., 
stateless or 
stateful 
migration) 
and how this 
action helps 
the system in 
terms of 
security. 

Mid 
2026 

   Not 
available 
yet  

  Not 
evaluated 
yet  
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A.21 AI-driven security monitoring for anomaly detection and root cause analysis in IoT 

networks 

Project Name:  NATWORK 

Component Name: AI-driven security monitoring for anomaly detection and root cause analysis in IoT networks  
Created by: MONT 

Date of creation: 27.08.2025 
Filename: MONT-AI-AD-RCA.xlsx 

 

Test 
scenario 
ID 

Test 
scenario 

Test 
case ID 

Test case Pre-
conditions 

Test steps Test data Expected result Execution 
date 

Actual result Status 
(Pass/Fail) 

IoT-Sec-
TS1 

Establis
h 
baselin
e IoT 
traffic 
monitor
ing in 
normal 
operati
ng 
conditio
ns. 

IoT-
Sec-
TS1-
TC1.1 

Monitor 
and 
collect 
traffic 
from IoT 
devices 
under 
normal 
operatio
n. 

IoT 
testbed 
operation
al, MMT 
probe 
deployed, 
MAIP 
model not 
trained 
yet. 

1- Deploy IoT devices 
in testbed. 
 
2- Generate normal 
traffic (sensor data, 
control messages). 
 
3- Capture traffic via 
MMT probe. 

Normal IoT 
network traffic 
logs. 

Clean dataset 
with no 
anomalies; 
system 
records traffic 
correctly. 

9/25/202
5 

Clean dataset 
with no 
anomalies; 
system 
records traffic 
correctly. 

Pass 

IoT-Sec-
TS2 

Detect 
differen
t types 
of DDoS 
attacks 
on IoT 
devices
. 

IoT-
Sec-
TS2-
TC2.1 

SYN 
flood 
detection
. 

ML model 
trained on 
normal 
and SYN 
flood 
traffic. 

1- Launch SYN flood 
against IoT gateway. 
 
2- Capture traffic with 
MMT probe. 
 
3- Run ML anomaly 
detection. 

Attack traffic + 
benign traffic 
mix. 

SYN flood 
detected 
within <5 
minutes (ML 
rule) or <10ms 
(MMT rule). 

9/25/202
5 

3.5 minutes for 
ML-based 
rules and 89 
ms for non ML-
based rules 

Partially 
pass 
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Test 
scenario 
ID 

Test 
scenario 

Test 
case ID Test case 

Pre-
conditions Test steps Test data Expected result 

Execution 
date Actual result 

Status 
(Pass/Fail) 

IoT-
Sec-
TS2-
TC2.2 

UDP 
flood 
detection 

Attack 
traffic + 
benign 
traffic mix. 

1- Launch UDP flood 
against IoT gateway. 
 
2- Capture traffic with 
MMT probe. 
 
3- Run ML anomaly 
detection. 

Attack traffic + 
benign traffic 
mix. 

UDP flood 
detected 
within <5 
minutes (ML 
rule) or <10ms 
(MMT rule). 

9/25/202
5 

3.5 minutes for 
ML-based 
rules and 3 ms 
for non ML-
based rules 

Pass 

IoT-
Sec-
TS2-
TC2.3 

ICMP 
flood 
detection 

Attack 
traffic + 
benign 
traffic mix. 

1- Launch ICMP flood 
against IoT gateway. 
 
2- Capture traffic with 
MMT probe. 
 
3- Run ML anomaly 
detection. 

Attack traffic + 
benign traffic 
mix. 

ICMP flood 
detected 
within <5 
minutes (ML 
rule) or <10ms 
(MMT rule). 

9/25/202
5 

3.5 minutes for 
ML-based 
rules and 5 ms 
for non ML-
based rules 

Pass 

IoT-Sec-
TS3 

Validate 
detectio
n 
accurac
y. False 
Positive 
/ False 
Negativ
e 
Evaluati
on 

IoT-
Sec-
TS3-
TC3.1 

Evaluate 
FP rate 
<1%. 

Trained 
model, 
clean 
dataset. 

Run IDS on large 
clean dataset. 

100% benign 
traffic. 

<1% alerts 
triggered. 

9/25/202
5 

0% Pass 

IoT-
Sec-
TS3-
TC3.2 

Evaluate 
FN rate 
<1%. 

Model 
trained 
with 
labeled 
attacks. 

Inject multiple attack 
samples. 

Mix of attacks 
(SYN, UDP, 
ICMP floods). 

FN <1%. 
9/25/202
5 

1.50% Fail 
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Test 
scenario 
ID 

Test 
scenario 

Test 
case ID Test case 

Pre-
conditions Test steps Test data Expected result 

Execution 
date Actual result 

Status 
(Pass/Fail) 

IoT-Sec-
TS4 

Adaptiv
e 
anomal
y 
thresho
ld 
setting 
using 
reinforc
ement 
learning
. 

IoT-
Sec-
TS4-
TC4.1 

System 
adjusts 
threshol
d during 
traffic 
spike 
without 
misclassi
fication. 

RL 
thresholdi
ng 
enabled. 

1- Generate sudden 
benign traffic spike. 
 
2- Monitor threshold 
adaptation. 
 
3- Verify alerts. 

Traffic burst 
without attack. 

No false alert 
triggered; 
threshold 
auto-adjusted. 

9/25/202
5 

0% Pass 

IoT-Sec-
TS5 

Validate 
system’
s 
mitigati
on 
respons
e once 
attack 
detecte
d. 

IoT-
Sec-
TS5-
TC5.1 

Automati
c traffic 
filtering 
after 
DDoS 
detection
. 

Detection 
system 
active, 
mitigation 
module 
connecte
d. 

1- Launch SYN flood. 
 
2- Wait for detection 
alert. 
 
3- Observe mitigation 
(traffic dropped, 
route blocked). 

Attack traffic. 

Mitigation 
triggered <10 
minutes; 
attack 
neutralized. 

9/25/202
5 

~ 18 minutes  Fail 

IoT-Sec-
TS6 

Validate 
AI-
driven 
RCA in 
identifyi
ng the 
underlyi
ng 
cause 
of 
anomali
es. 

IoT-
Sec-
TS6-
TC6.1 

Detect 
anomaly 
due to a 
misconfi
gured IoT 
device 
(not an 
attack). 

Device 
configure
d with 
incorrect 
routing 
rule. 

1- Deploy IoT device 
with misconfigured 
route/firewall. 
 
2- Generate normal 
traffic. 
 
3- System detects 
anomaly. 
 
4- RCA module 
analyses anomaly. 

Traffic 
deviating due 
to 
misconfigurati
on. 

Anomaly 
detected, RCA 
output = 
"Device 
misconfigurati
on, not 
malicious". 

9/25/202
5 

Anomaly 
detected, RCA 
output = 
"Device 
misconfigurati
on, not 
malicious". 

Pass 
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Test 
scenario 
ID 

Test 
scenario 

Test 
case ID Test case 

Pre-
conditions Test steps Test data Expected result 

Execution 
date Actual result 

Status 
(Pass/Fail) 

IoT-
Sec-
TS6-
TC6.2 

Identify 
root 
cause of 
detected 
anomaly 
as DDoS. 

SYN flood 
attack 
launched 
on IoT 
gateway. 

1- Launch SYN flood. 
 
2- Anomaly detected. 
 
3- RCA module 
correlates alerts (e.g., 
multiple flows, 
repeated requests). 

Attack traffic. 

RCA output = 
"SYN Flood 
attack 
detected at 
gateway". 

9/25/202
5 

RCA output = 
"SYN Flood 
attack 
detected at 
gateway". 

Pass 

IoT-
Sec-
TS6-
TC6.3 

Identify a 
compro
mised 
IoT 
device as 
the 
anomaly 
source. 

Malware-
infected 
IoT device 
generating 
abnormal 
traffic. 

1- Infect IoT device 
with simulated 
malware (e.g., Mirai 
sample). 
 
2- Device sends 
abnormal traffic. 
 
3- Anomaly detected. 
 
4- RCA correlates 
anomaly to specific 
device ID. 

Device-
originating 
attack traffic. 

RCA output = 
"Compromised 
IoT device X, 
abnormal 
outbound 
traffic". 

9/25/202
5 

RCA output = 
"Compromised 
IoT device X, 
abnormal 
outbound 
traffic". 

 Pass 

IoT-
Sec-
TS6-
TC6.4 

Provide 
explaina
ble RCA 
report for 
detected 
anomaly. 

Any 
anomaly 
detected 
(e.g., 
DDoS). 

1- Run detection + 
RCA. 
 
2- LLM/XAI generates 
natural language 
explanation. 

Anomaly logs. 

Operator 
receives clear 
report (e.g., 
“Traffic spike 
caused by SYN 
flood attack 
from IP X”). 

9/25/202
5 

Operator 
receives clear 
report (e.g., 
“Traffic spike 
caused by SYN 
flood attack 
from IP X”). 

 Pass 
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A.22 DFE Telemetry 

Project Name:  NATWORK 
Component 
Name: DFE-Telemetry 
Created by: CNIT 
Date of creation: 01.09.2025 
Filename: CNIT-DFE-Telemetry.xlsx 

 

Test scenario 
ID 

Test scenario 
Test case 

ID 
Test case Pre-conditions Test steps Test data Expected result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

DFE-
Telemetry-
TS01 

Verify 
compilatio
n and 
deploymen
t 

DFE-
Telemet
ry-TS01-
TC01 

Compile 
P4-DFE 
Telemetry 
program for 
software 
switch  
(BMV2 
target ). 

P4-DFE 
Telemetry 
source code 
available, BMv2 
installed, and 
p4c compiler 
configured. 

1.Run P4C 
compiler.             
2.Deploy to 
BMV2 target. 

P4-DFE 
Telemetry 
program. 

Compilation 
successful, 
binary loads 
to BMV2. 

12/2024 

Compilation 
successful, 
binary loads 
to BMV2. 

Pass 

DFE-
Telemetry-
TS02 

Validate 
functional 
behavior 

DFE-
Telemet
ry-TS02-
TC01 

Run P4-
DFET 
program in 
Mininet 
with three 
hosts and 
three 
collectors. 

Mininet 
topology with 
three hosts and 
three 
collectors, flow 
rules to extract 
different 
features from 
different flows. 

1. Start 
Mininet . 
2. Push flow 
rules.               
3.Generate 
Two UDP 
flows   and 
one TCP flow 

Two UDP 
flows and 
one TCP 
flow 

- Reports 
generated 
for 3 flows 
with different 
sizes. 
- Reports 
delivered to 
correct 
collectors 
(C1, C2, C3). 

12/2024 

- Three 
reports 
generated for 
3 flows with 
different 
sizes. 
- Reports 
delivered to 
correct 
collectors 
(C1, C2, C3). 

Pass 
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Test scenario 
ID 

Test scenario 
Test case 

ID 
Test case Pre-conditions Test steps Test data Expected result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

DFE-
Telemetry-
TS03 

Measure 
latency and 
CPU 
overhead 

DFET-
Telemet
ry-TS03-
TC01 

Compare 
P4-DFET vs. 
simple 
forwarding 
(latency). 

Spirent N4U 
traffic 
generator 
connected- 
Single 10 Mbps 
flow 
configured. 

1. Run 
baseline 
simple 
forwarding.                       
2. Run P4-
DFET with 1 
feature                              
3. Run P4-
DFET with all 
features.                           
4. Measure 
latency. 

Spirent-
generated 
10 Mbps 
flow 

Latency 
overhead 
remains 
within 
expected 
range. 

3/2025 

- Simple 
forwarding: 
510.84 µs                        
- DFET (1 
feature): 
697.79 µs                       
- DFET (all 
features): 
733.147 µs 

Pass 

DFE-
Telemetry-
TS03 

Measure 
latency and 
CPU 
overhead 

Data-
Telemet
ry-TS04-
TC02 

Compare 
P4-DFET vs. 
simple 
forwarding 
(CPU load). 

Spirent N4U 
traffic 
generator 
connected- 
Single 10 Mbps 
flow 
configured. 

1. Run 
baseline 
simple 
forwarding.                       
2. Run P4-
DFET with 1 
feature                              
3. Run P4-
DFET with all 
features.                           
4. Monitor 
CPU load. 

Spirent-
generated 
10 Mbps 
flow 

CPU load 
values 
remains 
within 
expected 
range. 

3/2025 

- Simple 
forwarding: 
26%                               
- DFET (1 
feature): 63%   
- DFET (all 
features): 
93.3% 

Pass 

DFE-
Telemetry-
TS04 

Evaluate 
scalability 
(for both 
latency and 
CPU load) 

Data-
Telemet
ry-TS04-
TC01 

P4-DFET 
with varying 
number of 
flows (1, 
10, 100, 
1000). 

Spirent 
configured for 
multiple flows- 
Total load fixed 
at 10 Mbps. 

1. Configure 
Spirent for 1, 
10, 100, 
1000 flows.         
2. Enable P4-
DFET with 
single/all 
features.               
3. Measure 
latency and 
monitor CPU 
load. 

Spirent-
generated 
traffic (1–
10-100-
1000) 
flows at 
10Mbps. 

Latency and 
CPU load 
values 
increase 
moderately 
with 
increasing 
the number 
of flows. 

3/2025 

Latency and 
CPU load 
values 
increase 
moderately 
with 
increasing 
the number 
of flows. 

Pass 
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A.23 Secure Data Aggregation 

Project Name:  NATWORK 
Component 
Name: Secure Data Aggregation 
Created by: ELTE 
Date of creation: 01.09.2025 
Filename: ELTE-Data-Aggregation.xlsx 

 

Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test 
case 

Pre-conditions Test steps Test 
data 

Expected result Execution 
date 

Actual result Status 
(Pass/Fail) 

Secure_
DA-TS.01 

Basic 
Flwr 

Server 
Startu

p 

Secure_
DA-

TS.01-
TC.01 

Add 
test 
case 
descr
iption 

Python 
environment 

with flwr 
installed. 

Dataset and 
client 

simulation 
scripts 

prepared. 

Step 1: Start the 
Flwr server. 

Step 2: Launch 
multiple simulated 

Flwr clients. 
Step 3: Monitor 

logs for connection 
establishment. 

MNIST/
HAR 

datase
ts 

Server starts 
successfully and 

listens for 
clients. 

Clients connect 
to server and 
begin training 

rounds. 

  Aug-24  

 Flwr server 
initialized. Logs 

confirmed client 
registration and 
start of training 

session. 

Pass 

Secure_
DA-TS.01 

Basic 
Flwr 

Server 
Startu

p 

Secure_
DA-

TS.01-
TC.02 

Feder
ated 

Traini
ng 

Run 

Python 
environment 

with flwr 
installed. 

Dataset and 
client 

simulation 
scripts 

prepared. 

Step 1: Run training 
for N rounds. 

Step 2: Monitor 
client participation 

and aggregation 
logs. 

Step 3: Collect 
model accuracy 

after each round. 

Partitio
ned 

datase
t 

across 
clients

. 

Training 
completes 

successfully for 
all rounds. 
Aggregated 

global model 
improves over 

time. 

  Aug-24  
 Training completed 

successfully. 
Pass 
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Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test 
case 

Pre-conditions Test steps 
Test 
data 

Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

Secure_
DA-TS.02 

SecAg
g+ for 

Secure 
Aggreg
ation 

Secure_
DA-

TS.02-
TC.01 

Secur
e 

Aggre
gatio

n 
Setup 

Flwr 
framework 

running. 
SecAgg+ 

integration 
module 

enabled in 
server and 

clients. 

Sdtep 1: Start Flwr 
server with 

SecAgg+ enabled. 
Step 2: Launch 
multiple clients 

with SecAgg+ 
enabled. 

Step 3: Verify key 
exchange and 

masking steps in 
logs. 

Small 
datase

t for 
testing 
(dum

my 
vector

s). 

SecAgg+ 
successfully 

initialized 
between server 

and clients. 
 

Clients exchange 
encrypted 

masks. 

  Aug-24  
 SecAgg+ 

initialization 
completed. 

Pass 

Secure_
DA-TS.02 

SecAg
g+ for 

Secure 
Aggreg
ation 

Secure_
DA-

TS.02-
TC.02 

Secur
e 

Feder
ated 

Traini
ng 

Run 

Flwr 
framework 

running. 
SecAgg+ 

integration 
module 

enabled in 
server and 

clients. 

Step 1: Run 
federated training 

with N clients. 
Step 2: Each client 

contributes 
encrypted model 

updates. 
Step 3: Server 

aggregates masked 
updates. 

Step 4: Verify that 
only aggregated 

result is revealed, 
not individual 

updates. 

Partitio
ned 

datase
t 

across 
clients

. 

Aggregation 
succeeds even 

with masked 
updates. 

 
Individual client 
updates remain 

private. 
 

Global model 
converges 

similarly to non-
secure baseline. 

  Aug-24  

  Aggregation 
succeeded. 

Individual client 
updates remained 

private. 

Pass 
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Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test 
case 

Pre-conditions Test steps 
Test 
data 

Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

Secure_
DA-TS.03 

MPC-
Based 
Secure 
Aggreg
ation 

Secure_
DA-

TS.03-
TC.01 

MPC 
Initial
izatio

n 

Flwr server 
and clients 

running. 
MPC library 

MP-SPDZ 
integrated. 

SecAgg+ 
enabled as 

base 
protocol. 

Step 1: Initialize 
MPC session 

among clients and 
server. 

Step 2: Verify 
secure multi-party 

key generation. 
Step 3: Ensure 
each client is 

assigned a secret 
share of the 
aggregation 

protocol. 

Partitio
ned 

datase
t 

across 
clients

. 

MPC session 
established 

successfully. 
 

All clients and 
server confirm 
participation in 

secure 
computation. 

  Aug-24  
 MPC session 
established 
successfully 

Pass 

Secure_
DA-TS.03 

MPC-
Based 
Secure 
Aggreg
ation 

Secure_
DA-

TS.03-
TC.02 

End-
to-

End 
MPC 
Aggre
gatio

n 

Flwr server 
and clients 

running. 
MPC library 

MP-SPDZ 
integrated. 

SecAgg+ 
enabled as 

base 
protocol. 

Step 1: Clients 
compute local 

model updates. 
Step 2: Updates are 

secret-shared via 
MPC. 

Step 3: Server 
executes MPC 
aggregation. 

Step 4: Aggregated 
result revealed 

without exposing 
individual updates. 
Step 5: Verify logs 
and performance 
(latency, resource 

usage). 

Partitio
ned 

datase
t 

across 
clients

. 

Aggregated 
model update 

computed 
securely via 

MPC. 
 

No single party 
has access to 

individual client 
data. 

 
Performance 

overhead 
acceptable 

compared to 
SecAgg+. 

  Aug-24  

  Aggregated model 
update computed 
securely via MPC. 

 
No single party had 
access to individual 

client data. 

Pass 
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A.24 Federated Learning for edge-to-cloud 

Project Name:  NATWORK 
Component 
Name: AI for optimized scheduling (edge-cloud) 
Created by: UEssex 
Date of creation: 01.09.2025 
Filename: UEssex-Federated Learning edge-cloud.xlsx 

 

Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

Benchmar
king ML 
algos to 
predict 
workloads 
in cloud -
TS01 

Benchmar
k 
centralized 
ML models 
for 
workload 
prediction 

Benchmark
ing ML 
algos to 
predict 
workloads 
in cloud -
TS01-TCO1 

Train and 
evaluate 
ML models 
(ARIMAX, 
LSTM, 
XGBoost) 
on 
historical 
Google 
cluster 
traces as 
baseline 
and further 
improve 
with 
feature 
engineerin
g & 
hyperpara
meter 
tuning 

Pre-
processing 
and 
feature 
engineerin
g of Google 
cluster 
traces 

1. Extract and 
clean 
CPU/memory 
features from 
traces 
2. Prepared 
datasets for 
model training 
through two 
methods: fine-
level granularity 
for detailed 
patterns, and 
orchestration-
focused 
aggregation for 
peak demand 
planning.3. Apply 
feature 
engineering (e.g., 
lag features, 
rolling statistics) 
4. Train ARIMA, 
LSTM, XGBoost 
models with 

Google 
cluster 
trace 
dataset 
(historical) 

Trained ML 
models 
should 
provide 
accurate 
workload 
prediction
s, with 
expected 
accuracy 
in a 
reasonabl
e range 
across 
algorithms 

16/08/202
5 

Predictive 
framework 
validated; 
best 
accuracy 
(able to 
predict 
spikes in 
data) 
achieved 
~70–75% 
(XGBoost); 
demonstra
tes 
robustnes
s for 
orchestrati
on  Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
hyperparameter 
tuning 
5. Evaluate 
against actual 
workloads 

Baseline 
federated 
learning 
Framewor
k - TS02 

Implement 
baseline 
federated 
learning 
for 
historical 
workload 
prediction 
using 
Google 
workload 
traces  

Baseline 
federated 
learning 
Framework 
- TS02-
TC01 

Evaluate 
FL 
architectur
e (bagging 
with 
XGBoost) 
on 
distributed 
Google 
trace 
partitions, 
and testing 
with 
hyperpara
meter 
tuning 

Pre-
processing 
and 
partitionin
g of Google 
traces 
across 
multiple 
nodes 

1. Partition traces 
across nodes 
2. Train local 
XGBoost models 
on each node 
3. Aggregate 
centrally 
(currently) via FL 
bagging approach 
4. Compare FL 
predictions vs. 
ground truth 
workloads on  test 
set 

Partitioned 
Google 
cluster 
traces 

FL setup 
should 
demonstra
te 
feasibility 
of 
decentraliz
ed 
training, 
with 
prediction 
accuracy 
lower than 
centralized 
ML but 
within an 
acceptabl
e range 

15/09/202
5 

FL 
baseline 
validated; 
decentraliz
ed training 
feasible 
with 
comparabl
e accuracy 
to 
centralized 
ML 

Initial 
testing 
done using 
Google 
Cluster 
traces(Pas
s) 
Not yet 
tested on 
custom 
Dost Data 

 

A.25 MTDFed 

Project Name:  NATWORK 
Component Name: MTDFed 
Created by: ZHAW 
Date of creation: 27.08.2025 
Filename: ZHAW-MTDFed.xlsx 
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Test scenario ID Test scenario 
Test 

case ID 
Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

MTDFed-
TS.01 

Verify 
functionali
ty: 
Aggregatio
n across 
Virtual 
Network 
Operators 
(VNOs) 

MTDFe
d-
TS.01-
TC.01 

Testing 
basic 
MTDFed 
without 
any 
privacy-
preservat
ion 
mechani
sm 

* The MTD 
Framework 
should be 
up and 
running, 
with at 
least three 
VNOs 
across 
edge nodes 
 
* At least a 
set of 
existing 
VNFs and 
CNFs is 
already 
deployed in 
the edge-
to-cloud 
continuum 
 
* The 
aggregator 
should be 
up and 
running in 
the core 
network 

Step 1: Initiate 
MTD Framework 
 
Step 2: Trigger 
MTDFed so that 
VNOs 
collaboratively 
train the MTD 
Strategy Optimizer 
 
Step 3: Wait until 
several round of 
federated learning 
occurs 
 
Step 4: Observe 
closely the 
aggregation 
process until 
convergence 
 
Step 5: Investigate 
how the 
performance of 
individual MTD 
Strategy Optimizer 
models changes 
over time 

N/A 

The MTDFed 
component 
should yield a 
more accurate 
MTD Strategy 
Optimizer via 
federated 
learning over 
multiple VNOs. 
The 
performance of 
the global model 
should be 
investigated 
across rounds 
for gaining 
further insight. 

  Reporting 
Period 1  

 MTDFed 
tested and 
preliminary 
results 
show 
improveme
nts of the 
MTD 
strategy 
over single-
agent 
training 

 Pass 

MTDFed-
TS.01 

Verify 
functionali
ty: 
Aggregatio
n across 
Virtual 
Network 

MTDFe
d-
TS.01-
TC.02 

Testing 
secure 
MTDFed 
via MPC 

* The MTD 
Framework 
should be 
up and 
running, 
with at 
least three 

Step 1: Initiate 
MTD Framework 
 
Step 2: Trigger 
MTDFed so that 
VNOs 
collaboratively 

N/A 

The MTDFed 
component 
should yield a 
more accurate 
MTD Strategy 
Optimizer via 
federated 

  Reporting 
Period 1  

 MTDFed 
tested and 
local model 
confidential
ity enabled  Pass 
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Test scenario ID Test scenario 
Test 

case ID 
Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

Operators 
(VNOs) 

VNOs 
across 
edge nodes 
 
* At least a 
set of 
existing 
VNFs and 
CNFs is 
already 
deployed in 
the edge-
to-cloud 
continuum 
 
* The 
aggregator 
should be 
up and 
running in 
the core 
network 
 
* For 
secure 
aggregation
, MPC 
should be 
deployed 
and 
configured 
in the 
system 

train the MTD 
Strategy Optimizer 
 
Step 3: Wait until 
several round of 
federated learning 
occurs 
 
Step 4: Observe 
closely the 
aggregation 
process until 
convergence 
 
Step 5: Investigate 
how the 
performance of 
individual MTD 
Strategy Optimizer 
models changes 
over time 

learning over 
multiple VNOs. 
In addition to 
the previous 
test, the 
aggregator 
should be 
debugged to 
ensure that it is 
not aware of the 
individual 
models from 
VNOs.  

MTDFed-
TS.01 

Verify 
functionali
ty: 

MTDFe
d-

Testing 
secure 

* The MTD 
Framework 
should be 

Step 1: Initiate 
MTD Framework 
 

N/A 
The MTDFed 
component 
should yield a 

 Reporting 
Period 1 

 MTDFed 
tested and 
differential  Pass 
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Test scenario ID Test scenario 
Test 

case ID 
Test case 

Pre-
conditions 

Test steps 
Test 
data 

Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

Aggregatio
n across 
Virtual 
Network 
Operators 
(VNOs) 

TS.01-
TC.03 

MTDFed 
via DP 

up and 
running, 
with at 
least three 
VNOs 
across 
edge nodes 
 
* At least a 
set of 
existing 
VNFs and 
CNFs is 
already 
deployed in 
the edge-
to-cloud 
continuum 
 
* The 
aggregator 
should be 
up and 
running in 
the core 
network 

Step 2: Trigger 
MTDFed so that 
VNOs 
collaboratively 
train the MTD 
Strategy Optimizer 
 
Step 3: Wait until 
several round of 
federated learning 
occurs 
 
Step 4: Observe 
closely the 
aggregation 
process until 
convergence 
 
Step 5: Investigate 
how the 
performance of 
individual MTD 
Strategy Optimizer 
models changes 
over time 

more accurate 
MTD Strategy 
Optimizer via 
federated 
learning over 
multiple VNOs. 
In addition to 
the previous 
test, the 
performance of 
the global model 
will likely be 
lower to some 
extent due to the 
use of 
differential 
privacy. 

privacy 
overhead 
measured. 
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A.26 CIA-hardening of x86 payloads Component 

Project Name:  NATWORK 
Component Name: SECaaS 
Created by: TSS 
Date of creation:  10.09.2025 
Filename:   TSS-CIA hardening x86 payloads.xlsx 

 

Test scenario ID Test 
scenario 

Test case 
ID 

Test case Pre-
conditions 

Test steps Test data Expected 
result 

Execution date Actual result Status 
(Pass/Fail) 

SECaaS_ConF
x86-TS.01 

Verify 
Confide
ntialtiy 
resilienc
e x86 

SECaaS
_ConFx
86-
TS.01-
01 

Check 
that 
workload 
file shows 
encrypted 
instructio
n text 
section 

Pre-
condition 
1: Prior 
SECaaS 
processin
g the  
instructio
ns are not 
encrypted
. 

Step 1: 
Check code 
section prior 
SECaaS 
operation 
Step 2: 
Check code 
section after 
SECaaS 
operation 

Two 
standard 
x86 native 
ELF 
formated 
workloads 

Visual 
Inspection 

01/12/2024 

x86 text section is 
encrypted with 
AES256, hence 
cannot be reversed  
and analyzed 
through static 
analysis   

Pass 

SECaaS_ConF
x86-TS.02 

Verify 
Confide
ntialtiy 
preserva
tion 
techniq
ue 
impact 
on 
latency 
at start 

SECaaS
_ConFx
86-
TS.02-
01 

Check 
that the 
decryption 
of the 
instructio
ns (prior 
their are 
loaded 
and 
executed) 
is done in 
a given 
time slot 

Pre-
condition 
1: 
Timestam
ped code 
available, 
enabling 
to assess 
with 
precision 
the 
latency at 
start  

Step 1: 
Timestampe
d original 
code is used 
to assess 
the time to 
reach the 
second 
timestamp 
Step 2: 
Timestampe
d protected 
code latency 
at start is 
measured   

Two 
standard 
x86 native 
ELF 
formated 
workload 

Time to 
decrypt 
and start 
the 
executabl
e is below 
KPI 1.3.2 
threshold 
(ie, 3 
seconds) 

01/12/2024 

Measurements show 
that the difference 
between 
unprotected code 
and protected code 
latency at start is 
average at 120 msec 
in average (90-
150msec). This is 
sufficiently below 
KPI 1.3.2 to consider 
that this KPI is met  

Pass 
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Test scenario ID 
Test 

scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution date Actual result 

Status 
(Pass/Fail) 

SECaaS_ConF
x86-TS.03 

Verify 
Confide
ntiality 
preserva
tion 
impact 
on 
perform
ance  

SECaaS
_ConF-
TS.03.0
1 

Check the  
impact on 
protected 
code 
performan
ce 

Timestam
ping the 
workload 
to assess 
the 
performan
ce penalty  

Step 1: 
Timestamps 
placed on 
the original 
code to 
assess the 
performance 
penalty 
Step 2: 
Timestamps 
placed at 
the same 
locations in 
the 
protected 
code 

Two 
standard 
x86 native 
ELF 
formated 
workload 

Runtime 
performan
ce 
degradati
on (% 
compared 
to 
baseline 
execution 
speed) 

01/12/2024 

After the decryption 
step (which creates 
a latency at start, 
measured in 
SECaaS_ConFx86-
TS.02 just above, no 
sensible and 
measurable 
performance 
degradation is 
generated, simply 
because there is no 
change on the 
instructions once 
decrypted. 

Pass 

SECaaS_Intx8
6-TS.01 

Verifiy 
the 
integrity 
preserv
ation is 
effectiv
e; This 
will be 
done by 
leveragi
ng D-
MUTRA 
integrity 
verificat
ion 
solution 

SECaaS
_Intx86-
TS.01-
01 

Check 
that a 
tampering 
is 
detected 

Produce a 
tampering 
on the 
memory 
footprint 

Step 1: 
Timestamps 
placed on 
the original 
code to 
assess the 
performance 
penalty 
Step 2: 
Timestamps 
placed at 
the same 
locations in 
the 
protected 
code 

Two 
standard 
x86 native 
ELF 
formated 
workload 

Tampering 
is 
detected 01/12/2024 

Our integrity check 
hashes the integral 
text section of the 
executable. A single 
modified bit 
modifies the hash  Pass 

SECaaS_Intx8
6-TS.02 

Measure 
the 
integrity 
preserva

SECaaS
_Intx86-
TS.02-
01 

Measure 
the 
performan
ce 

Timestam
ping the 
workload 
to assess 

Step 1: 
Timestamps 
placed on 
the original 

Two 
standard 
x86 native 
ELF 

5% 
(ie,50% of 
10% for 
both 01/12/2024 

Two techniques are 
used to diminish the 
performance impact 
(i) spread over time Pass 
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Test scenario ID 
Test 

scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution date Actual result 

Status 
(Pass/Fail) 

tion 
impact 
on 
perform
ance. 
This will 
be done 
by 
leveragi
ng D-
MUTRA 
integrity 
verificati
on 
solution 

degradati
on 

the 
performan
ce penalty  

code to 
assess the 
performance 
penalty 
Step 2: 
Timestamps 
placed at 
the same 
locations in 
the 
protected 
code 

formated 
workload 

integrity 
and 
monitorin
g) 

hashing technique 
with adjustable idle 
time between two 
incremental 
operations (of the 
hashing) and (ii) 
affecting a cgroup 
resource allocation 
applied on the 
measuring thread 

SECaaS_Intx8
6-TS.03 

Measure 
the 
remote 
attestati
on 
cycle. 
This will 
be done 
by 
leveragi
ng D-
MUTRA 
integrity 
verificati
on 
solution 

SECaaS
_Intx86-
TS.03 

Measure a 
remote 
attestatio
n full 
cycle (up 
to 
blockchai
n block 
creation) 

Timestam
ping the 
workload 
to assess 
the 
performan
ce penalty  

Step 1: 
Timestamps 
placed on 
the original 
code to 
assess the 
performance 
penalty 
Step 2: 
Timestamps 
placed at 
the same 
locations in 
the 
protected 
code 

Two 
standard 
x86 native 
ELF 
formated 
workload 

1 second 01/12/2024 Pass Pass 

SECaaS_Availx
86-TS.01 

Assess 
the 
usability 
of self 
contain

SECaaS
_Availx8
6-TS.01-
01 

For finite 
lifetime 
workload: 
Check the 
relevance 

Monitoring 
the x86 by 
placing 
timestam
ps. 

For finite 
lifetime 
workload 
only: 
Timestamp 

Two 
standard 
x86 native 
ELF 

Define a 
method 
easing the 
setup of 
probe 

01/07/2026 Current technique, 
as explored in 
DESIRE-6G project  
is not satisfactory as 
it implies 

RP2 



D6.2-System Integration on the testbeds, Pilot installations and implementations.r1 

 

Page 205 of 228 
 

Test scenario ID 
Test 

scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution date Actual result 

Status 
(Pass/Fail) 

ed 
perform
ance 
monitori
ng for 
x86 
workloa
ds.  

of 
inserting 
timestam
ps at the 
entry point 
and exit. 
(ie, the 
difference 
between 
the 
timestam
ps bring 
the 
workload 
performan
ce ratio) 
For infinite 
lifetime 
workload: 
Check the 
relevance 
of 
inserting 
trampolin
es  with 
timestam
ps at duly 
defined 
CFG 
locations. 
Consider 
the call 
frequency 
of the 
relevant 
block and 

Generate 
stress on 
the CPU.  

the workload 
at entry and 
exit point.  
For infinite 
lifetime 
workload 
only:  
Step 1: 
LLVM-
powered 
probe 
insertion x86 
binary 
compilation  
Step 2: 
Stressing 
the CPU 
Step 3: 
Measure the 
call 
frequency or  
reference 
block time 
to execute to 
assess the 
workload 
performance 
ratio 

formated 
workload 

insertion, 
enabling 
the 
extraction 
of relevant 
CFG-
inserted 
performan
ce probes, 
for the 
characteri
zation of 
the 
workload 
speed of 
operation.  

modifications on the 
payloads through 
tampoline and 
timestamp 
insertions. The 
technique has 
developed two types 
of measurement (ie, 
call frequency and 
time to execute) on 
identified code 
blocks which 
requires a hybrid (ie, 
static + dynamic) 
analysis of the code. 
In Natwork, we 
intend to elevate 
these results by 
offering a simplify 
this technique 
(notably to boost the 
success factor CSF 
25= SECaaS 
friendliness. In use 
case UC4.6, we will 
explore the 
possibility to 
leverage LLVM in 
the compilation 
chain of Montimage 
to ease the setting of 
timestamps, with a 
GUI enabling the 
user to select the 
instrumented 
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Test scenario ID 
Test 

scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution date Actual result 

Status 
(Pass/Fail) 

time to 
execute a 
plugged 
reference 
block to 
assess the 
performan
ce.   

function. This work 
will be in RP2 

SECaaS_Availx
86-TS.02 

Measure 
the 
perform
ance 
impact 
of 
perform
ance 
monitori
ng for 
x86 
workloa
ds 

SECaaS
_Availx8
6-TS.02-
01 

For finite 
lifetime 
workload: 
Check the 
relevance 
of 
inserting 
timestam
ps at the 
entry point 
and exit. 
(ie, the 
difference 
between 
the 
timestam
ps bring 
the 
workload 
performan
ce ratio) 
For infinite 
lifetime 
workload: 
Check the 
relevance 
of 
inserting 

Timestam
ping the 
workload 
to assess 
the 
performan
ce penalty  

Step 1: 
Prepare two 
variants: 
LLVM-
powered 
probe 
insertion x86 
binary 
compilation 
and 
unmonitored 
variant  
Step 2: 
Stressing 
the CPU 
Step 3: 
Measure the 
performance 
difference 

Two 
standard 
x86 native 
ELF 
formated 
workload 

Less than 
10% 
(when 
cumulate
d with 
runtime 
integrity 
verificatio
n) 

01/07/2026 Current technique, 
as explored in 
DESIRE-6G project  
is not 100% 
satisfactory as it 
implies 
modifications on the 
payloads through 
tampoline and 
timestamp 
insertions. The 
technique has 
developed two types 
of measurement (ie, 
call frequency and 
time to execute) on 
identified code 
blocks which 
requires a hybrid (ie, 
static + dynamic) 
analysis of the code. 
In Natwork, we 
intend to simplify 
this technique 
(notably to boost the 
success factor CSF 
25= SECaaS 
friendliness. In use 

RP2 
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Test scenario ID 
Test 

scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution date Actual result 

Status 
(Pass/Fail) 

trampolin
es  with 
timestam
ps at duly 
defined 
CFG 
locations. 
Consider 
the call 
frequency 
of the 
relevant 
block and 
time to 
execute a 
plugged 
reference 
block to 
assess the 
performan
ce.   

case UC4.6, we will 
explore the 
possibility to 
leverage LLVM in 
the compilation 
chain of Montimage 
to ease the setting of 
timestamps, with a 
GUI enabling the 
user to select the 
instrumented 
function. This work 
will be in RP2 

A.27 CIA-hardening of containerized payloads 

Project Name:  NATWORK 
Component Name: SECaaS 
Created by: TSS 
Date of creation:  10.09.2025 
Filename:   TSS-CIA hardening Containers payloads.xlsx 
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Test scenario ID Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution date 

Actual 
result 

Status 
(Pass/Fail) 

SECaaS_InT-
Cont-TS.01 

For containerized x86 
worklods, under the 
novel workflow-
friendly scheme 
dubbed Drop and 
Attest, with an ON-
DEMAND or periodic 
verifications, test the 
efficiency of the 
runtime integrity 
verifications. 
Orchestration by K8s 
for a fully automated 
workflow. 

SECaaS
_InT-
Cont-
TS.01-
01 

Check that 
a 
tampering 
is detected 

Produce a 
tampering 
on the 
memory 
footprint 

1/ Produce 
a 
tampering 
produced 
during the 
execution 
of the 
workload 
2/ Check 
the 
tampering 
detection 

Product
ion of 
the test 
on MMT 
probe, 
Liquid 
xAPP 

Tampering 
is 
detected 01/04/2026 

To be 
done in 
RP2   

SECaaS_InT-
Cont-TS.02 

For containerized x86 
worklods, under the 
novel workflow-
friendly scheme 
dubbed Drop and 
Attest, with ON-
DEMAND or periodic 
verifications, test the 
efficiency of the 
runtime integrity 
verification.Measure 
the integrity 
preservation impact 
on performance. 

SECaaS
_InT-
Cont-
TS.02-
01 

Measure 
the 
performanc
e 
degradatio
n induced 
by the 
integrity 
verification 
in one of 
the two 
verification 
patterns 
(ie, on-
demand, 
periodic) 

Timestam
ping the 
workload 
to assess 
the 
performan
ce penalty  

Step 1: 
Timestamp
s placed on 
the original 
code to 
assess the 
performanc
e penalty 
Step 2: 
Timestamp
s placed at 
the same 
locations in 
the 
protected 
code 

Product
ion of 
the test 
on MMT 
probe, 
Liquid 
xAPP 

5% 01/04/2026 

To be 
done in 
RP2   

SECaaS_Moni
t- Cont-TS.01 

For containerized x86 
worklods, with a 
sidecar mounted 
monitoring agent with 
privilege access on its 
linked container 

SECaaS
_Monit-
Cont- 
TS.01-
01 

1/ Deliver 
sidecar 
with 
sufficient 
system 
privilege 

Check 
sidecar 
container 
access 
permissio
n to the 

Step 1: 
Timestamp
s placed on 
the original 
code to 
assess the 

Product
ion of 
the test 
on MMT 
probe, 

  01/07/2026 

To be 
done in 
RP2   
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Test scenario ID Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution date 

Actual 
result 

Status 
(Pass/Fail) 

memory, with an ON-
DEMAND or periodic 
verifications. The test 
shall demlonstrate 
the usability and 
effectiveness of the 
execution monitoring 
(e.g., delivery of proof 
of execution by 
sampling over the  
Instruction Pointer 
Register, assessment 
of the execution 
environment resource 
congestion, more 
accurate 
performance 
measurement). 

2/ Define 
different 
execution 
conditions 
(ie, 
resource 
congestion, 
modified 
data 
distribution 
(hence 
leading to a 
different 
cache hit 
rate) 
2/ Execute 
the 
containeriz
ed 
workload 
under the 
different 
execution 
conditions 
as stated in 
2/, 
3/ Extract 
the 
monitoring 
elements 
correspond
ing to what 
is actually 
made 
possible 

main 
container'
s  memory 
stack 

performanc
e penalty 
Step 2: 
Timestamp
s placed at 
the same 
locations in 
the 
protected 
code 

Liquid 
xAPP 
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Test scenario ID Test scenario 
Test case 

ID 
Test case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution date 

Actual 
result 

Status 
(Pass/Fail) 

SECaaS_Moni
t-Cont-TS.02 

Measure the 
performance impact of 
performance 
monitoring for 
Container  workloads 

SECaaS
_Monit-
Cont-
TS.02-
01 

1/ 
Instrument 
an x86 
containeriz
ed function 
2/ Collect 
the 
performanc
e metrics 
during 
execution 

Check 
sidecar 
container 
access 
permissio
n to the 
main 
container'
s  memory 
stack 

The test wil 
be done 
according 
to the 
result of 
SECaaS_M
onit- Cont-
TS.01 just 
above 

Product
ion of 
the test 
on MMT 
probe, 
Liquid 
xAPP 

5% 01/07/2026 

To be 
done in 
RP2   

 

A.28 CIA-hardening of WASM payloads Component 

Project Name:  NATWORK 
Component Name: SECaaS 
Created by: TSS 
Date of creation:  10.09.2025 
Filename:   TSS-CIA hardening WASM payloads.xlsx 

 

Test scenario 
ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data 
Expected 

result 
Execution date Actual result 

SECaaS_C
onFWasm-
TS.01 

The test will be 
defined 
according to our 
feasibility study 
. Verify 
Confidentiality 
resilience WASM 

SECaaS_C
onFWasm-
TS.01-01 

Check that 
workload file 
shows 
encrypted 
instruction text 
section 

Pre-condition 
1: Prior 
SECaaS 
processing 
the  
instructions 
are not 
encrypted. 

Step 1: Check 
code section 
prior SECaaS 
operation 
Step 2: Check 
code section 
after SECaaS 
operation 

Two 
standard  
WASM 
modules 

Visual 
Inspection 01/04/2026 

WASM 
confidentiality 
preservation 
technique has 
not been 
implemented 
yet, will be 
done in RP2 
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Test scenario 
ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data 
Expected 

result 
Execution date Actual result 

SECaaS_C
onFWasm-
TS.02 

The test will be 
defined 
according to our 
feasibility study 
Verify 
Confidentiality 
preservation 
technique 
impact on 
latency at start 

SECaaS_C
onFWasm-
TS.02-01 

Check that the 
decryption of 
the 
instructions 
(prior their are 
loaded and 
executed) is 
done in a given 
time slot 

Pre-condition 
1: 
Timestamped 
code 
available, 
enabling to 
assess with 
precision the 
latency at 
start  

Step 1: 
Timestamped 
original WASM 
module  is 
used to assess 
the time to 
reach the 
second 
timestamp 
Step 2: 
Timestamped 
protected 
WASM module 
latency at start 
is measured   

Two 
standard 
WASM 
modules 

Timing 
below 
threshold 

01/04/2026 WASM 
confidentiality 
preservation 
technique has 
not been 
implemented 
yet, will be 
done in RP2 

SECaaS_C
onFWASM-
TS.03 

The test will be 
defined 
according to our 
feasibility study.  
Verify 
Confidentiality 
preservation 
impact on 
performance  

SECaaS_C
onFWasm-
TS.03.01 

Check the 
imperceptible 
impact on 
protected 
code 
performance 

Timestampin
g the 
workload to 
assess the 
performance 
penalty  

Step 1: 
Timestamps 
placed on the 
original code 
to assess the 
performance 
penalty 
Step 2: 
Timestamps 
placed at the 
same 
locations in 
the protected 
code 

Two 
standard 
WASM 
modules 

Performan
ce 
degradati
on (% 
compared 
to 
baseline 
execution 
speed) 

01/04/2026 
WASM 
confidentiality 
preservation 
technique has 
not been 
implemented 
yet, will be 
done in RP2 

SECaaS_Int
-WASM-
TS.01 

Verify the 
integrity 
preservation is 
effective 

SECaaS_Int
x86-TS.01-
01 Check that a 

tampering is 
detected 

Produce a 
tampering on 
the memory 
footprint 

Step 1: 
Timestamps 
placed on the 
original code 
to assess the 
performance 
penalty 

Two 
standard 
x86 
native 
ELF 
formatte

Tampering 
is 
detected 01/12/2024 pass 
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Test scenario 
ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data 
Expected 

result 
Execution date Actual result 

Step 2: 
Timestamps 
placed at the 
same 
locations in 
the protected 
code 

d 
workload 

SECaaS_Int
-WASM-
TS.02 

Measure the 
integrity 
preservation 
impact on 
performance 

SECaaS_Int
x86-TS.02-
01 

Measure the 
performance 
degradation 

Timestampin
g the 
workload to 
assess the 
performance 
penalty  

Step 1: 
Timestamps 
placed on the 
original code 
to assess the 
performance 
penalty 
Step 2: 
Timestamps 
placed at the 
same 
locations in 
the protected 
code 

Two 
standard 
x86 
native 
ELF 
formatte
d 
workload 

5% 01/04/2026 
To be done in 
RP2 

SECaaS_Int
- WASM-
TS.03 

Measure the 
remote 
attestation cycle 

SECaaS_Int
x86-TS.03-
01 

Measure a 
remote 
attestation full 
cycle (up to 
blockchain 
block creation) 

Timestampin
g the 
workload to 
assess the 
performance 
penalty  

Step 1: 
Timestamps 
placed on the 
original code 
to assess the 
performance 
penalty 
Step 2: 
Timestamps 
placed at the 
same 
locations in 
the protected 
code 

Two 
standard 
x86 
native 
ELF 
formatte
d 
workload 

3 sec 01/04/2026 
To be done in 
RP2 
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Test scenario 
ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data 
Expected 

result 
Execution date Actual result 

SECaaS_Av
ailWASM-
TS.01 

This results from 
the feasability 
study for fully 
support WASM. 
In case of 
success, the test 
scenario will 
integrate means 
to generate 
stress on the 
CPU for the 
modification of 
the monitored 
runtime 
execution speed.  

SECaaS_Av
ailWASM-
TS.01-01 

Instrument the 
WASMTIME 
runtime or the 
WASM 
module, 
typically by 
setting 
timestamps on 
the main 
bytecode 
instruction 
interpretation 
routine 
inserted in a 
loop, or 
alternatively by 
collecting call 
frequency of 
routine. 

  The test will 
be defined 
according to 
our feasibility 
study  

    01/04/2026 WASM 
Monitoring 
technique has 
not been 
implemented 
yet, will be 
done in RP2. 

SECaaS_Av
ailWASM-
TS.02 

This results from 
the feasibility 
study for fully 
support WASM. 
This test will 
assess the 
impact 
performance 
induced by the 
runtime 
monitoring as set 
in 
SECaaS_AvailWA
SM-TS.01 

SECaaS_Av
ailWASM-
TS.02-01 

Two variants of 
the WASM 
runtime shall 
be compared 
in 
performance 
when 
executing a set 
of typical 
WASM 
modules. An 
average 
performance 
impact shall 
be defined. 

  The test will 
be defined 
according to 
our feasibility 
study  

    01/04/2026 WASM 
Monitoring 
technique has 
not been 
implemented 
yet, will be 
done in RP2. 
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A.29 Liquid RAN 

Project Name:  NATWORK 
Component 
Name: Liquid RAN 

Created by: ISRD 

Date of creation: 2025/10/10 

Filename: ISRD-Anti-jamming.xlsx 
 

Test 
scenario ID 

Test 
scenario 

Test case 
ID Test case 

Pre-
conditions Test steps Test data 

Expected 
result Execution date 

Actual 
result 

Status 
(Pass/Fail) 

1.1 

Jammin
g of 
PRACH 
channel 

1.1 

Verify 
system 
robustnes
s under 
jamming 
on PRACH 
channel 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• Jammer 
calibrated 
& isolated 
• UE in 
Flight Mode 
ON state 

1. Record baseline 
KPIs (RSRP, RSRQ).  
2. Increase jammer 
power stepwise (-40 
→ 0 dBm).  
3. UE Flight Mode 
OFF  
4. Observe PRACH 
and RRC state.  
5. Remove jammer → 
measure recovery. 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

UE should 
be able to 
attach 

 Reporting 
Period 2 

    

1.2 

Jammin
g of DL 
control 
channel 

1.2 

Verify 
system 
robustnes
s under 
jamming 
on PBCH / 
PDCCH 
channel 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• UE 
attached 
and UDP 
DL data call 
• Jammer 
calibrated 
& isolated 

1. Record baseline 
KPIs (RSRP, TPUT, 
BLER).  
2. UE attached to the 
network; UDP DL TP 
- 10Mbps 
3. Increase jammer 
power stepwise (-40 
→ 0 dBm).  
4. Observe PDCCH 
decode and RRC 
state.  
5. Remove jammer → 
measure recovery. 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

RRC 
CONNECTE
D 
maintained 

  Reporting 
Period 2 

    



D6.2-System Integration on the testbeds, Pilot installations and implementations.r1 

 

Page 215 of 228 
 

Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution date 
Actual 
result 

Status 
(Pass/Fail) 

1.3 

Jammin
g of DL 
shared 
channel 

1.3 

Verify 
system 
robustnes
s under 
jamming 
on PDSCH 
channel 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• UE 
attached 
and UDP 
DL data call 
• Jammer 
calibrated 
& isolated 

1. Record baseline 
KPIs (RSRP, TPUT, 
BLER).  
2. UE attached to the 
network; UDP DL TP 
- 100Mbps 
3. Increase jammer 
power stepwise (-40 
→ 0 dBm).  
4. Observe PDSCH 
decode and RRC 
state.  
5. Remove jammer → 
measure recovery. 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

RRC 
CONNECTE
D 
maintained 

  Reporting 
Period 2 

    

1.4 

Jammin
g of DL 
shared 
channel 
with 
max TP 

1.4 

Verify 
system 
robustnes
s under 
jamming 
on PDSCH 
channel 
with max 
TP 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• UE 
attached 
and UDP 
DL data call 
• Jammer 
calibrated 
& isolated 

1. Record baseline 
KPIs (RSRP, TPUT, 
BLER).  
2. UE attached to the 
network; UDP DL TP 
- 120Mbps 
3. Increase jammer 
power stepwise (-40 
→ 0 dBm).  
4. Observe PDSCH 
decode and RRC 
state.  
5. Remove jammer → 
measure recovery. 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

RRC 
CONNECTE
D 
maintained 

  Reporting 
Period 2 

    

1.5 

Jammin
g of DL 
shared 
channel 
for 
multiple 
UEs 

1.5 

Verify 
system 
robustnes
s under 
jamming 
on PDSCH 
for 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• UEs 
attached 
and UDP 
DL data call 

1. Record baseline 
KPIs (RSRP, TPUT, 
BLER).  
2. UEs attached to 
the network; UDP DL 
TP - 100Mbps per 
every UE 
3. Increase jammer 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

RRC 
CONNECTE
D 
maintained 

  Reporting 
Period 2 
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Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution date 
Actual 
result 

Status 
(Pass/Fail) 

multiple 
UEs 

• Jammer 
calibrated 
& isolated 

power stepwise (-40 
→ 0 dBm).  
4. Observe PDSCH 
decode and RRC 
state.  
5. Remove jammer → 
measure recovery. 

1.6 

Jammin
g of UL 
control 
channel 

1.6 

Verify 
system 
robustnes
s under 
jamming 
on 
PUCCH 
channel 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• UE 
attached 
and UDP 
UL data call 
• Jammer 
calibrated 
& isolated 

1. Record baseline 
UL KPIs (RSRP, 
TPUT, BLER).  
2. UE attached to the 
network; UDP DL TP 
- 1Mbps 
3. Increase jammer 
power stepwise (-40 
→ 0 dBm).  
4. Observe PUCCH 
decode and RRC 
state.  
5. Remove jammer → 
measure recovery. 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

RRC 
CONNECTE
D 
maintained 

  Reporting 
Period 2 

    

1.7 

Jammin
g of UL 
shared 
channel 

1.7 

Verify 
system 
robustnes
s under 
jamming 
on PUSCH 
channel 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• UE 
attached 
and UDP 
UL data call 
• Jammer 
calibrated 
& isolated 

1. Record baseline 
UL KPIs (RSRP, 
TPUT, BLER).  
2. UE attached to the 
network; UDP UL TP 
- 10Mbps 
3. Increase jammer 
power stepwise (-40 
→ 0 dBm).  
4. Observe PUSCH 
decode and RRC 
state.  
5. Remove jammer → 
measure recovery. 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

RRC 
CONNECTE
D 
maintained 

  Reporting 
Period 2 
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Test 
scenario ID 

Test 
scenario 

Test case 
ID 

Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution date 
Actual 
result 

Status 
(Pass/Fail) 

1.8 

Jammin
g of UL 
shared 
channel 
for 
multiple 
UEs 

1.8 

Verify 
system 
robustnes
s under 
jamming 
on PUSCH 
for 
multiple 
UEs 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• UEs 
attached 
and UDP 
UL data call 
• Jammer 
calibrated 
& isolated 

1. Record baseline 
UL KPIs (RSRP, 
TPUT, BLER).  
2. UEs attached to 
the network; UDP UL 
TP - 2Mbps per every 
UE 
3. Increase jammer 
power stepwise (-40 
→ 0 dBm).  
4. Observe PUSCH 
decode and RRC 
state.  
5. Remove jammer → 
measure recovery. 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

RRC 
CONNECTE
D 
maintained 

  Reporting 
Period 2 

    

1.9 

Jammin
g of DL 
and UL 
shared 
channel
s  

1.9 

Verify 
system 
robustnes
s under 
jamming 
on PDSCH 
and 
OUSCH 
channels 

• 5G NR SA 
cell active 
(n78 20 
MHz)  
• UEs 
attached 
and UDP 
bidirection
al data call 
• Jammer 
calibrated 
& isolated 

1. Record baseline 
KPIs (RSRP, TPUT, 
BLER).  
2. UE attached to the 
network; UDP 
Bidirectional  TP - 
UDP DL 10Mbps / 
UDP UL 2Mbps 
3. Increase jammer 
power stepwise (-40 
→ 0 dBm).  
4. Observe PDSCH / 
PUSCH decode and 
RRC state.  
5. Remove jammer → 
measure recovery. 

Jam freq: 
3.50 GHz 
± 120 
kHz; 
Power 
steps: 5 
dB 

  
  Reporting 
Period 2 
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A.30 Characteristics Extractor 

Project Name:  NATWORK 
Component 
Name: Characteristics Extractor 
Created by: GRADIANT 
Date of creation: 09/11/2025 
Filename: GRAD-CharacteristicsExtract.xlsx 

 

Test scenario 
ID 

Test 
scenario 

Test case ID 
Test 
case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

CharExt-
TS.01 

2-Node 
extractio

n 
capabilit

y 
validatio

n 

CharExt-TS.01-
TC.01 

Alice-
Bob 
Link 

enable
d 

1) 2-node 
setup 
operationa
l (Alice 
and Bob) 
2) 
Environme
nt 
configured 
at the 
agreed 
frequencie
s 

1) Configure 
the system 
in TDD and 
FDD 
2) Generate 
UL/DL traffic 
in different 
scenarios 
3) Capture 
and extract 
Alice–Bob 
measureme
nts 

Alice-Bob 
measureme

nts 

The setup 
provides 

realistic UL 
and DL 

behavior 
consistent 

with 
expected 
channel 

characteristi
cs 

15/04/202
5 

Alice and 
Bob channel 
measureme

nts (I/Q 
samples for 

UL & DL) 
were 

extracted 
correctly 
and the 
training 

dataset has 
been 

generated. 

Pass 

CharExt-
TS.02 

3-Node 
extractio

n 
capabilit

y 
validatio

n 

CharExt-TS.01-
TC.01 

Eve 
link 

enable
d 

1) 3-node 
setup 
operationa
l (Alice, 
Bob and 
Eve) 
2) 
Environme
nt 
configured 
at the 

1) Configure 
the system 
in TDD and 
FDD 
2) Generate 
UL/DL traffic 
in different 
scenarios 
3) Capture 
and extract 
Eve 

Eve 
measureme

nts 

The setup 
provides 

realistic Eve 
behavior 

consistent 
with 

expected 
channel 

characteristi
cs 

15/04/202
5 

Alice, Bob 
and Eve I/Q 

samples 
have been 
extracted 
correctly 
and the 
model 

validation 
and 

eavesdroppe

Pass 
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Test scenario 
ID 

Test 
scenario 

Test case ID 
Test 
case 

Pre-
conditions 

Test steps Test data 
Expected 

result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

agreed 
frequencie
s 

measureme
nts as a 
passive 
receiver 

r datasets 
have been 
generated. 

 

A.31 Key Generator 

Project Name:  NATWORK 
Component 
Name: Key Generator 
Created by: GRADIANT 
Date of creation: 09/11/2025 
Filename: GRAD-KeyGen.xlsx 

 

Test scenario 
ID Test scenario Test case ID Test case 

Pre-
conditions Test steps Test data 

Expected 
result 

Execution 
date Actual result 

Status 
(Pass/Fail) 

KeyGen-
TS.01 

Reciprocity 
Evaluation 

in TDD 

KeyGen-
TS.01-TC.01 

ML 
prediction 
(UL to DL) 

1) Channel 
Characteris
tics 
extracted 
from Alice-
Bob link in 
TDD 
2) ML 
model for 
reciprocity 
trained for 
TDD 

1) Capture 
UL channel  
2) Apply ML 
model to 
predict DL 
from UL 
3) 
Compare 
predicted 
DL and 
measured 
DL 

UL channel 
estimates, 
predicted 

DL, 
measured 

DL 

The ML 
model try 

to 
reproduce 

DL 
behavior 

with 
acceptable 

accuracy 
than the 
old link 

15/05/2025 

For the 
OFDM-TDD 

95 GHz 
scenario 
without 

noise, the 
neural 

network 
reaches a 

low 
validation 

MAE of  
1.24 × 10−2 

after 127 
epochs. 

Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

KeyGen-
TS.01 

Key 
Generation 
Performanc

e in TDD 

KeyGen-
TS.01-TC.02 

Generation 
and 

disagreeme
nt test 

1) DL 
extracted 
and 
predicted 
DL 
obtained 
from the 
TDD model 
2) 
Quantificati
on and 
Reconciliati
on models 
enabled to 
generate 
the key in 
TDD 

1) Generate 
Alice-Bob 
TDD keys  
2) Apply 
quantificati
on and 
reconciliati
on blocks 
3) 
Compute 
KGR and 
KDR 

Alice–Bob 
bitstreams 

in TDD 

The 
component 
is capable 
of produce 

keys and 
measure 

the 
generation 

and 
disagreeme
nt ratios in 

TDD 

15/05/2025 

The KDR 
after 

quantizatio
n is kept 

under 1% 
for the 

OFDM-TDD 
95GHz 

scenario 
without 
noise. 

Pass 

KeyGen-
TS.02 

Reciprocity 
Evaluation 

in FDD 

KeyGen-
TS.01-TC.01 

ML 
prediction 
(UL to DL) 

1) Channel 
Characteris
tics 
extracted 
from Alice-
Bob link in 
FDD 
2) ML 
model for 
reciprocity 
trained for 
FDD 

1) Capture 
UL channel  
2) Apply ML 
model to 
predict DL 
from UL 
3) 
Compare 
predicted 
DL and 
measured 
DL 

UL channel 
estimates, 
predicted 

DL, 
measured 

DL 

The ML 
model tries 

to 
reproduce 

DL 
behavior 

with 
acceptable 

accuracy 
than the 
old link 

15/05/2025 

For the 
OFDM-FDD 
94/95 GHz 

scenario 
without 

noise, the 
neural 

network 
reaches a 

low 
validation 

MAE of  
1.86 × 10−2 

after 143 
epochs. 

Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

KeyGen-
TS.02 

Key 
Generation 
Performanc

e in FDD 

KeyGen-
TS.02-TC.02 

Generation 
and 

disagreeme
nt test 

1) DL 
extracted 
and 
predicted 
DL 
obtained 
from the 
FDD model 
2) 
Quantificati
on and 
Reconciliati
on models 
enabled to 
generate 
the key in 
FDD 

1) Generate 
Alice-Bob 
FDD keys  
2) Apply 
quantificati
on and 
reconciliati
on blocks 
3) 
Compute 
KGR and 
KDR 

Alice–Bob 
bitstreams 

in FDD 

The 
component 
is capable 
of produce 

keys and 
measure 

the 
generation 

and 
disagreeme
nt ratios in 

TDD 

15/05/2025 

The KDR 
after 

quantizatio
n is kept 

under 1% 
for the 

OFDM-FDD 
94/95 GHz 

scenario 
without 
noise. 

Pass 

 

 

A.32 Security Evaluator 

Project Name:  NATWORK 
Component 
Name: Security Evaluator 
Created by: GRADIANT 
Date of creation: 09/11/2025 
Filename: GRAD-SecurityVal.xlsx 

 



D6.2-System Integration on the testbeds, Pilot installations and implementations.r1 

 

Page 222 of 228 
 

Test scenario 
ID 

Test 
scenario 

Test case ID Test case Pre-conditions Test steps 
Test 
data 

Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

SecVal-
TS.01 

Security 
Validatio
n in TDD 
for sub-

THz 

SecVal-
TS.01-
TC.01 

Randomne
ss Test 

1) Pipeline 
operational in 
TDD 
2) Bitstreams 
exported from 
main link 

1) Generate a 
set of PKG 
Keys in TDD 
2) Run NIST 
Test 
3) Collect 
results and 
observations 

Receiv
ed 

Alice-
Bob 
key 

bitstre
ams in 
TDD. 

The generated 
PKG TDD key 

bitstreams 
show 

statistical 
properties 

consistent with 
a truly random 

sequence 

23/05/202
5 

The 
Frequency 
test of NIST 
Test Suite 

has been run 
and passed 

with a 
sequence 

length equal 
to 256 and 

over 100000 
binary 

sequences. 

Pass 

SecVal-
TS.01 

Security 
Validatio
n in TDD 
for sub-

THz 

SecVal-
TS.01-
TC.02 

Eavesdrop
ping Test 

1) 
Operational 
main link 
between Alice 
and Bob in 
TDD 
2) 
Operational 
attacker 
capable of 
eavesdroppin
g passively. 
3) Bitstreams 
exported from 
all the 
components 

1) Generate a 
set of PKG 
Keys from 
Alice-Bob and 
Eve in TDD 
2) Compare 
both 
bitstreams and 
evaluate the 
level of 
disagreement. 

Receiv
ed 

Alice-
Bob 
and 
Eve 

keys in 
TDD 

Eve cannot 
reconstruct or 
correlate with 
the main key 
for TDD link. 

23/05/202
5 

Eve Key 
Disagreemen
t Ratio is over 

45% for 
OFDM-TDD 

95GHz 
scenario. 

Pass 
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Test scenario 
ID 

Test 
scenario 

Test case ID Test case Pre-conditions Test steps 
Test 
data 

Expected result 
Execution 

date 
Actual result 

Status 
(Pass/Fail) 

SecVal-
TS.02 

Security 
Validatio
n in FDD 
for sub-

THz 

SecVal-
TS.02-
TC.01 

Randomne
ss Test 

1) Pipeline 
operational in 
FDD 
2) Bitstreams 
exported from 
main link 

1) Generate a 
set of PKG 
Keys in FDD 
2) Run NIST 
Test 
3) Collect 
results and 
observations 

Receiv
ed PKG 

key 
bitstre
ams in 
FDD. 

The generated 
PKG FDD key 

bitstreams 
show 

statistical 
properties 

consistent with 
a truly random 

sequence 

23/05/202
5 

The 
Frequency 
test of NIST 
Test Suite 

has been run 
and passed 

with a 
sequence 

length equal 
to 256 and 

over 100000 
binary 

sequences. 

Pass 

SecVal-
TS.02 

Security 
Validatio
n in FDD 
for sub-

THz 

SecVal-
TS.02-
TC.02 

Eavesdrop
ping Test 

1) 
Operational 
main link 
between Alice 
and Bob in 
FDD 
2) 
Operational 
attacker 
capable of 
eavesdroppin
g passively. 
3) Bitstreams 
exported from 
all the 
components 

1) Generate a 
set of PKG 
Keys from 
Alice-Bob and 
Eve in FDD 
2) Compare 
both 
bitstreams and 
evaluate the 
level of 
disagreement 

Receiv
ed 

Alice-
Bob 
and 
Eve 

keys in 
FDD 

Eve cannot 
reconstruct or 
correlate with 
the main key 
for FDD link. 

23/05/202
5 

Eve Key 
Disagreemen
t Ratio is over 

45% for 
OFDM-FDD 
94/95 GHz 
scenario. 

Pass 
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A.33 AI -Based Anomaly Detection Explainer 

Project Name:  NATWORK 
Component Name: Anomaly Detection Explainer Component  
Created by: UZH 
Date of creation: 23.09.2025 
Filename: UZH-Anomaly Detection Explainer.xlsx 

 

Test 
scenario ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result Execution 
date 

Actual 
result 

Status 
(Pass/Fail) 

XAI-UZH-
TS01 

Verify 
compilation 
and 
deployment 

XAI-UZH-
TS01-TC01 

Build container, 
deploy service, 
verify health and 
endpoints 

Docker/Pod 
runtime 
available; ML-
IDS and MMT 
running; 
network 
reachability 
between 
services. 

1) Build image 2) 
Deploy container 
3) Check 
liveness/readine
ss 4) Curl 
REST/gRPC 
endpoints 5) Tail 
logs for errors 

Contai
ner 
image 
& 
config 
(env 
vars, 
model 
registry 
URL). 

Service 
healthy; 
endpoints 
registered; 
no startup 
errors. 

 Reporti
ng 
Period 2 

  Deploy 
ok; no 
errors   

XAI-UZH-
TS02 

Verify alert 
ingestion 
and 
schema 
validation 

XAI-UZH-
TS02-TC01 

Accept valid IDS 
alert payloads 
and validate 
JSON schema 

MMT generates 
features; ML-
IDS emits 
alerts; schema 
registry 
available. 

POST valid alert 
to /explain; 
observe 200 OK 
and explanation 
doc ID 

Sample 
alert 
JSON 
(valid 
schem
a). 

Accepted, 
200 OK; 
payload 
stored; no 
drops. 

   Report
ing 
Period 2 

  schem
a valid; 
payload 
stored; 
no 
drops.   

XAI-UZH-
TS02 

Verify alert 
ingestion 
and 
schema 
validation 

XAI-UZH-
TS02-TC02 

Handle 
malformed 
payloads 
gracefully 

Same as TC01. 

POST malformed 
payload; observe 
400/422; WARN 
logged; service 
remains healthy 

Sample 
alert 
JSON 
with 
missin
g/invali
d 
fields. 

Returns 4xx; 
no crash; 
pipeline 
unaffected. 

  Reporti
ng 
Period 2 

  warnin
gs 
logged; 
pipeline 
stable   
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Test 
scenario ID 

Test scenario Test case ID Test case Pre-conditions Test steps Test data Expected result 
Execution 

date 
Actual 
result 

Status 
(Pass/Fail) 

XAI-UZH-
TS03 

Verify 
explanation 
generation 
for 
malicious 
traffic and 
silence for 
benign 

XAI-UZH-
TS03-TC01 

Produce 
explanation for 
DDoS burst alert 

UE registered; 
traffic generator 
available; IDS 
model loaded. 

Trigger short 
DDoS burst; wait 
for IDS alert; 
fetch explanation 
JSON and 
dashboard card 

Replay
able 
pcap: 
DDoS 
burst. 

Top-k 
features, 
confidence, 
and operator 
summary 
rendered; 
mitigation 
hint 
available. 

  Reporti
ng 
Period 2 

  DDoS 
explana
tion 
shown; 
top-k 
features   

XAI-UZH-
TS03 

Verify 
explanation 
generation 
for 
malicious 
traffic and 
silence for 
benign 

XAI-UZH-
TS03-TC02 

Produce 
explanation for 
port scan alert 

As above. 

Trigger port scan; 
collect 
explanation 
outputs 

Replay
able 
pcap: 
TCP/U
DP 
scan. 

Explanation 
generated; 
correct 
factors (e.g., 
unique dst 
ports, 
bursts) 
highlighted. 

  Reporti
ng 
Period 2 

  Port-
scan 
explana
tion 
correct; 
key 
factors 
highlight
ed.   

XAI-UZH-
TS03 

Verify 
explanation 
generation 
for 
malicious 
traffic and 
silence for 
benign 

XAI-UZH-
TS03-TC03 

Ensure no 
explanations for 
benign-only 
traffic 

As above. 

Run benign 
HTTP/MQTT/ICM
P flows for 5 
mins 

Benign 
traffic 
set. 

No alerts → 
no 
explanations
. 

  Reporti
ng 
Period 2 

  no 
alerts   

XAI-UZH-
TS05 

Measure 
fidelity and 
stability of 
explanation
s 

XAI-UZH-
TS05-TC01 

Fidelity via 
perturbation/ins
ertion-deletion 
test 

Access to 
model scoring 
API; background 
dataset 
available. 

Mask top-k 
features 
progressively; 
measure score 
delta (AUC) 

Backgr
ound 
dataset
; 
captur
ed 
alerts. 

Fidelity ≥ 
0.90 (target). 

  Reporti
ng 
Period 2 

  Fidelity 
AUC 
0.93   
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A.34 Wirespeed traffic analysis in the 5G transport network 

Project Name:  NATWORK 
Component 
Name: Wirespeed traffic analysis in the 5G transport network 
Created by: CERTH 
Date of creation: 01.09.2025 
Filename: CERTH-Wirespeed-traffic-analysis.xlsx 

 

Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 

Wirespeed-
Traffic-
analysis-
TS01 

Verify 
compilatio
n and 
deploymen
t 

Wirespeed
-Traffic-
analysis-
TS01-
TC01 

Compile 
P4 
program 
for Agilio 
SmartNIC 

P4 
pipeline 
running 

1. Compile P4 
program                          
2. Deploy to 
Agilio SmartNIC 

P4 
program 

Compilatio
n 
successful, 
binary 
loads to 
Agilio 
SmartNIC 07/2024 

Compilatio
n 
successful
, binary 
loads to 
Agilio 
SmartNIC Pass 

Wirespeed-
Traffic-
analysis-
TS01 

Verify 
compilatio
n and 
deploymen
t 

Wirespeed
-Traffic-
analysis-
TS01-
TC02 

Interconne
ction of 
CERTH IDS 
with the P4 
Runtime 

P4 
pipeline 
running 

1. Deploy 5G 
network                              
2. Deploy P4 
program                              
3. Deploy CERTH 
IDS  

Default 
traffic 
generato
r 

CERTH IDS 
successfull
y parse and 
handle the 
ingress 
traffic from 
Agilio P4 
SmartNIC 11/2024 

CERTH IDS 
successful
ly parse 
and handle 
the ingress 
traffic from 
Agilio P4 
SmartNIC Pass 

Wirespeed-
Traffic-
analysis-
TS02 

Verify 
packet 
classificati
on 

Wirespeed
-Traffic-
analysis-
TS02-
TC01 

Validate 
benign 
traffic 
classificati
on 

Compone
nt running 

1. Send benign 
traffic flows                              
2. Collect 
classification 
metadata 

Default 
traffic 
generato
r 

All packets 
classified 
as benign 02/2025 

All packets 
classified 
as benign Pass 

Wirespeed-
Traffic-
analysis-
TS02 

Verify 
packet 
classificati
on 

Wirespeed
-Traffic-
analysis-
TS02-
TC02 

Validate 
malicious 
traffic 
classificati
on 

Compone
nt running 

1. Send traffic 
flows from the 
dataset                             
2. Collect 

CICIDS2
017 
dataset 

Packets 
correctly 
tagged as 
malicious 04/2025 

Packets 
correctly 
tagged as 
malicious Pass 
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Test scenario 
ID 

Test scenario Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
classification 
metadata 

Wirespeed-
Traffic-
analysis-
TS03 

Verify 
control-
plane 
integration 

Wirespeed
-Traffic-
analysis-
TS03-
TC01 

Verify rules 
from 
control 
plane 
reflect 
classificati
on results 

Compone
nt running 

1. CERTH IDS 
inference on the 
traffic flows                                                                
2. Push control 
rules (e.g. drop 
on malicious, 
forward on 
benign)            3. 
Verify on the P4 
controller that 
the rules were 
applied 

Benign + 
maliciou
s traffic 

Benign 
forwarded, 
malicious 
dropped 09/2025 

Benign 
forwarded, 
malicious 
dropped Pass 

 

A.35 Detection and mitigation against jamming attacks 

Project Name:  NATWORK 
Component Name: Jamming detection and mitigation 
Created by: HES-SO 
Date of creation: 01/04/2025 
Filename: HES-SO_Jamming.xlsx 

 

Test scenario 
ID 

Test 
scenario 

Test case ID Test case Pre-
conditions 

Test steps Test data Expected 
result 

Execution 
date 

Actual result Status 
(Pass/Fail) 

Jamming Validatin
g testbed 

hesso-jamming-TS01-
TC01 

Single UE 
connecte
d to 
testbed 
to 
validate 
correct 
behaviou

The 
addition of 
the SIM 
card into 
the WebUI 
to allow 
access to 

Step 1: 
gNodeB 
and 
srsRAN 
container
s running.  

N/A 
Connectio
n 
succesful 

15/04/202
5 

Pass Pass 
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Test scenario 
ID 

Test 
scenario 

Test case ID Test case 
Pre-

conditions 
Test steps Test data 

Expected 
result 

Execution 
date 

Actual result 
Status 

(Pass/Fail) 
r of 
testbed. 

internet to 
that user. 

Jamming 
Validatin
g jammer 

hesso-jamming-TS01-
TC02 

Single UE 
connecte
d and 
USRP 
B210 
radiating 

Idem than 
TS01-
TC01. 
Jammer 
correctly 
installed. 
Sometime
s USRP 
B210 gives 
problem 
as gNodeB 
and 
GNURadio 
fights for 
the same 
USRP.  

Step 1: 
Run the 
gNodeB 
and the 
5G CN.  
Step 2: 
Wait for 
the UE to 
be 
connecte
d. 
Step 3: 
Run the 
jammer 
container 

Logs 
availabl
e inside 
the 
contain
er 
gNodeB 
(srsRAN
) 

SINR & CQI 
dropping 
heavily and 
immediatel
y after the 
jammer 
starts. 

28/05/202
5 

Precisely we 
can report 
SINR 
dropping and 
other metrics 
stopped to 
report due to 
the 
communicati
on fail. 

Pass 

Jamming 
Validatin
g jammer 

hesso-jamming-TS01-
TC03 

Two UE 
connecte
d and 
USRP 
B210 
radiating 

Idem than 
TS01-
TC02. 
Adding the 
second 
SIM card. 

Identical 
steps 
apart  

Logs 
availabl
e inside 
the 
contain
er 
gNodeB 
(srsRAN
) 

SINR & CQI 
dropping 
heavily and 
immediatel
y after the 
jammer 
starts. 

Not yet. 
Add actual 
result 

- 

 

 


