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Executive summary 
As 6G networks evolve to support highly dynamic, complex environments and diverse services, 

ensuring robust and adaptive security becomes essential. This deliverable presents recent 

advancements within the NATWORK project as part of Task 3.3 (T3.3), focusing on the integration 

of AI-driven techniques for intent-based security and smart Moving Target Defense (MTD). 

Moreover, these innovations enable adaptive orchestration optimized for sustainability and 

support the development of dynamic defense mechanisms tailored for secure microservices. 

Collectively, these efforts contribute to NATWORK’s overarching objective: delivering resource-

efficient, intelligent, and adaptive security solutions for the 6G continuum. 
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1. Introduction 
Adaptive and intent-based security is crucial for envisaged 6G networks since they will operate 

in a very dynamic and complex environment while providing a multitude of services, leading to a 

large and dynamic attack surface [1]. To address these challenges, one of the technical pillars of 

the NATWORK project is to contribute to the dynamic, footprint-ideal orchestration and 

management of secure, complex 6G services over the continuum. In that regard, this deliverable 

reports on the recent advances in the framework of NATWORK T3.3 to integrate AI-driven 

techniques for ensuring smart MTD and intent-based security management, to enable adaptive 

orchestration with optimisation for sustainability, and to develop dynamic defence techniques 

for secure microservices. Overall, these efforts are serving the NATWORK goal of resource-

optimised, adaptive, and smart security functions for 6G continuum. 

1.1. Purpose and structure of the document  

The purpose of this document is to provide a concise yet encompassing description of the 

NATWORK contributions in T3.3 towards dynamic, smart and sustainable security for 6G 

networks and edge-to-cloud continuum. It describes the work regarding Intent-based service 

security and adaptive security techniques. 

Following the Introduction, which sets the stage for the document's purpose, audience, and its 

interconnections within the project's framework, the structure continues as follows: 

Sections: 

1. Section 2 Resource-Optimised MTD: Describes the NATWORK T3.3 efforts on optimized 

Moving Target Defence (MTD) and presents the Live Migration Optimizer and MTD 

strategy optimization work for adaptive and policy-based MTD. 

2. Section 3 XAI-Driven Intent-Based Security Monitoring and Enforcement: presents the 

XAI driven monitoring and enforcement framework for intent-based security operation. 

3. Section 4 Adaptive orchestration optimisation for sustainability: Presents the project's 

work on adaptive orchestration and its optimisation for sustainability and cybersecurity, 

and elaborates on two main contributions, namely, CTI-driven selective sharing and 

workload prediction for scheduling, in that domain. 

4. Section 5 Secure Data Aggregation: elaborates on secure aggregation techniques which 

are relevant for Federated Learning (FL) based smart security schemes in 6G networks. 

5. Section 6 Microservice profiling and anomaly detection, and microservice behavioural 

analysis: Presents profiling and anomaly detection schemes being developed for adaptive 

defence in the NATWORK B5G architecture. They also allow microservice behavioural 

analysis for cybersecurity purposes. 
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6. Conclusions: Wraps up the document, reflecting on the project's strategic orientation and 

establishing expectations for future milestones. 

1.2. Intended Audience 

The NATWORK Deliverable D3.3 Intent-based service security and adaptive security techniques is 

for Public Dissemination. It is there devised for the internal and external use of the NATWORK 

consortium, comprising members, project partners, affiliated stakeholders and the public. This 

document mainly focuses on the Intent-based service security and adaptive security aspects of 

the project, thereby serving as a referential tool throughout the project's lifespan.  

1.3. Interrelations 

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and 

resources from academia, industry, and research sectors, focusing on user-centric service 

development, robust economic and business models, cutting-edge cybersecurity, seamless 

interoperability, and comprehensive on-demand services. The project integrates a collaboration 

of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a 

broad representation for addressing security requirements of emerging 6G Smart Networks and 

Services in Europe and beyond. 

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically 

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple 

activities across various WPs, the structure ensures clarity in responsibilities and optimizes 

communication amongst the consortium's partners, boards, and committees. The interrelation 

framework within NATWORK offers smooth operation and collaborative innovation across the 

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e., 

Research Institutes, Universities, SMEs, and Large industries) enabling scientific, technological, 

and security advancements in the realm of 6G. The D3.3 Intent-based service security and 

adaptive security techniques addresses activities of the NATWORK project related to the design, 

development, and validation of intent-based service security and adaptive security techniques 

and mechanisms. As a core technical WP, it relies on the architectural work carried out in WP2, 

linked with the other security and advancements from WP3, and AI-driven management 

solutions from WP4. It will feed the integration and validation efforts within WP6, for evaluating 

and improving the assets presented in this deliverable. That coherent structure entailing the work 

in other project activities and the adaptive and intent-based service security work described in 

this deliverable ensures consistency and alignment across the project's technical pillars. 
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2. Resource-optimized MTD 
As defined in the previous deliverable of this work package (i.e., D3.1), the MTD framework 

designed and implemented in this project enhances the security of network functions across the 

edge-to-cloud continuum via proactive and reactive MTD operations such as live migration and 

re-instantiation of VNFs and CNFs. Deliverable D3.1 described the operations of the MTD 

controller component and its function of live migrating CNFs running as pods in Kubernetes 

environments (c.f., Section 4.1 and 5.7 of D3.1), while this deliverable focuses on the MTD 

Strategy Optimizer, the second component of the MTD framework, determining how to live 

migrate a container and which CNF/VNF to be migrated. Both decisions are made using AI-

powered decision agents implemented to enhance the efficiency and efficacy of MTD operations. 

In the following sections, we describe the two main tasks of the MTD strategy Optimizer 

component, namely, a live migration optimizer (c.f., Section 2.1) and a broader MTD strategy 

optimization (c.f., Section 2.2). 

2.1. Live Migration Optimizer 

The MTD framework performs parallel live migration (LiMi) of containers and microservices and 

uses the following elements depicted in Figure 1:  

• LiMi client, which is the application on the source side of the migration, performing the 

checkpoint and delta-updates of the containers to be migrated.   

• LiMi server, which receives the checkpoints from the LiMi client and restores them to 

running containers.   

• L2 networking bridge, which is used to keep the same allocation of IP address to the 

containers, even when they migrate to a different node or cluster. This enables the 

continuation of existing end-to-end sessions even after migration.   

During migration, both the LiMi server and client establish a secure SSH tunnel to ensure end-to-

end encryption of the container's checkpoint during transfer. The transfer process utilizes rsync, 

which is optimized to transmit only the incremental differences between the new checkpoint and 

other possibly existing images of the container at the destination.  

The LiMi controller supports four live migration methods: 1) basic or cold migration, 2) pre-copy 

migration, 3) post-copy migration, and 4) hybrid migration [12]. LiMis are performed via the LiMi 

client, which directly interfaces with runC, a low-level container orchestrator, and its CRIU 

integration, used to initiate container checkpointing and restoring for live migrations. The LiMi 

server also operates through the runC interface to receive the eventual pre-dumps, dumps, and 

post-copy memory pages from the LiMi client and to restore the container at the destination 
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node. For stateful migrations, CRIU is configured to preserve TCP-established sockets, allowing 

existing connections between the container and its clients to remain intact.   

Since TCP sessions are defined by IP address and port pairs, the L2 bridge module ensures the 

migration of the container's IP address at the Address Resolution Protocol (ARP) level. This is 

critical for maintaining session continuity and minimizing availability disruptions for services that 

rely on persistent connections, such as databases, SSH sessions, and voice-over-IP (VoIP) 

applications. Finally, the LiMi client reduces the LiMi downtime by transferring in parallel both 

the dump/checkpoint delta and the volume delta for container applications with writable root 

filesystems.  

 

Figure 1: Container live migration setup 

In this setup, The MTD Strategy Optimizer uses a ML-based classifier and a ML-based regressor 

to optimize containers LiMis. Both ML models are trained by using a constructed dataset 

collecting over 6000 live migrations of containers of three load levels (low, medium, and high) on 

four types of resources (CPU, RAM, storage, and networking), to characterize the dependency 

between resource load type and LiMi performance. As networking has an additional type of load 

(i.e., zero), the container categorization space spans to 108 for this configuration (i.e., the 

combination of load levels for all resource types). However, some combinations are impossible 

to obtain in practice (e.g., high RAM and storage read/write operations require medium to high 

CPU load), reducing the possible combinations to 34 for this configuration. All combinations of 

containers are empirically tested using a dynamic containerized application to cover the different 

loads using the Linux cgroups kernel function set at the container runtime level. 

The dataset is formed by performing LiMis on the dynamic containerized application with the 34 

resource combinations, using for each combination the different migration algorithms (basic, 

pre-copy, post-copy, and hybrid). The distribution of the four migration methods per container 

category is kept uniformly distributed, extracting the following features from each migration: 

total migration time, pre-dump time and pre-dump size, pre-dump transfer time, dump time and 
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dump size, dump transfer time, volume size and volume transfer time (the size considers delta 

optimization of sync transfer), dump and volume deltas parallel transfer time (which also includes 

the layer 2 level IP transfer), restore time, approximate container downtime (calculated by 

summing dump time, dump transfer time and restore times), and a precise downtime measured 

by the locust traffic generator (including the additional downtime from packets queuing). This 

data is used to train the ML classifier and migration time regressor used in the ContMTD workflow 

described below. 

The ML classifier selects the best LiMi method per container to minimize the migration time and 

service downtime of the container, while the ML-based regressor is used to estimate the 

migration time of each container. This estimation is used to schedule the parallel migration of 

interdependent CNFs running in a broader network service (NS), where migrating a NS requires 

the parallel migration of its microservices. This scheduling is made to have the interdependent 

migrating CNFs reach their destination at the same time, minimizing the disruption of the NS 

migrated. 

2.2.  Broader MTD Strategy Optimization 

When performing MTD actions proactively, no concrete attack is occurring, and actions are 

performed to statistically reduce the probability that a threat occurs. Thus, there is an inherent 

optimization problem of finding the right trade-off between three objectives: 1) increasing 

security, 2) decreasing operational costs of MTD, and 3) decreasing the QoS overhead of 

protected CNFs/VNFs [13]. On the other hand, applying too many migrations will result in 

extensive computational overhead and may cause longer service disruption for the users. To 

conform to service level agreements (SLA) of the service provided, e.g. an agreed minimal service 

availability of 99.95%, a budget (i.e. quota) of MTD operations for each CNF is calculated and 

defined. The problem in this case is to optimize the periods of MTD actions in such a way that the 

security is maximized while the quota is not exceeded.  

To quantify the reach of the MTD strategy to each of these three objectives, the MTD Strategy 

Optimizer is composed of the following modules: the risk assessment (RI.AS.) module, the 

modelling module using multi-objective Markov Decision Process (MOMDP), and the deep-RL 

agent [14] optimizing and deciding on the MTD policy. Finally, the MTD Strategy Optimizer is 

interfaced with the MTD controller, requesting some of the near-real-time data gathered by the 

latter, and then sending to it the decisions of MTD actions to be enforced. 
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Figure 2: Data collected and used in the workflow of the MTD Strategy Optimizer. 

Figure 2 details the workflow and data gathered for the MTD strategy optimization. For the 

security objective, a risk assessment is performed to collect metrics for proactive estimation of 

the Attack Success Probability (ASP). Daily threat analysis on all running VNFs/CNFs is performed 

using a vulnerability scanner, OpenVAS, to identify running services, using the Common Platform 

Enumeration (CPE), and perform active and passive vulnerability scans, detecting Common 

Vulnerability Enumerations (CVE), i.e., identified vulnerabilities registered in the National 

Vulnerability Database (NVD) [22]. The ASP is then estimated using the CVSS base score and 

exploitability score of the vulnerabilities found with the risk assessment [23]. 

For the operational cost objective, an empirical study of the cost of virtual resources is done to 

find the coefficients between CPU cost, RAM cost, and storage cost, based on the definition of: 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑠𝑡 = 𝛽 + 𝛼1 × 𝑐𝑝𝑢 + 𝛼2 × 𝑟𝑎𝑚𝑔𝑏 + 𝛼3 × 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑔𝑏   

measured in USD per hour ($/ℎ𝑜𝑢𝑟), reference to cloud providers’ convention as a measurement 

unit for virtual resources used in their cloud. The prices of over 70 VM offers are collected from 

four major cloud providers: AWS, Azure, Google Cloud, and OVH. A cloud provider provides VMs 

with different prices for the same resource depending on the hardware used (e.g., Intel vs. AMD 

cores). Thus, the coefficients are not found with perfect equations but calculated using linear 

regression, which gives the following statistically significant (i.e., p<0.01) results: 𝛽 = -0.082, 𝛼1-= 

0.031, 𝛼2= 0.004, 𝛼3= 0.00006. 
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For the QoS objective, the MTD Strategy Optimizer collects network metrics for every protected 

VNF such as the number of user equipment (UE) connected, connection latency, connection 

throughput, and packet loss-rate, and the number of packets flowing in and out. From these 

monitored values, we derive the mean packet loss rate increase and the mean latency increase 

caused by the MTD actions. 

Finally, collected data is used to model the network state observation with an MOMDP. The 

MOMDP comes with three main variations used to adjust the distribution of MTD actions across 

a certain time window (e.g. a day, a week, or a month) in an optimized manner. To solve MOMDP 

optimization, the MTD strategy Optimizer uses both single-objective and multi-objective RL 

(MORL) algorithms [24].  

To conclude, the solution provides recommendations on when to perform which MTD actions 

and also presents what kind of underlying techniques (e.g. container migration method such as 

pre-copy or post-copy) should be utilized for shorter downtime values.
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3. XAI-Driven Intent-Based Security Monitoring and 

Enforcement 
The increasing complexity of B5G/6G networks, combined with the widespread adoption of 

cloud-native and microservice-based architectures, calls for new paradigms in security 

management that go beyond traditional rule-based approaches. XAI-Driven Intent-Based 

Security Monitoring and Enforcement addresses this need by bridging high-level human-defined 

security intents with enforceable, adaptive policies. This approach leverages intent-based 

networking to translate user requirements into actionable controls, integrates explainable AI 

(XAI) to ensure transparency and trust in policy verification and enforcement, and applies 

adaptive mechanisms to secure dynamic, multi-cloud environments. Together, these capabilities 

provide a foundation for resilient, trustworthy, and human-understandable security 

management tailored to the challenges of next-generation networks. 

3.1. Intent-Based Networking 

Intent-based networking (IBN) [6] is a network architecture that leverages automation and 

machine learning to help organizations better align their network behaviour with their business 

objectives. When it comes to security, IBN can play a crucial role in enhancing network security 

by translating security policies and objectives into automated network configurations and 

responses. Here's an example of how IBN can be applied to security: 

Scenario: Enhanced Security for IoT Devices via Network Slicing 

Imagine a smart city deployment where various Internet of Things (IoT) devices, such as 

surveillance cameras, environmental sensors, and smart traffic lights, are connected through a 

B5G/6G network. Security and data privacy are top concerns in this scenario. Network slicing can 

be employed to address these issues. By leveraging network slicing in this smart city scenario, 

the authorities can achieve both enhanced security and tailored network performance for their 

diverse IoT deployments. Each network slice operates independently with its own security 

parameters, reducing the attack surface and mitigating the risk of unauthorized access or data 

breaches. The following concepts are involved in this scenario: 

• Intent Definition: The smart city authorities define the security intent: "Ensure the 

security and privacy of data from IoT devices while providing low-latency, high-bandwidth 

connectivity. Isolate different types of IoT traffic for enhanced security." 

• Network Slice Creation: Using network slicing capabilities, the B5G/6G network operator 

creates distinct slices for different types of IoT devices. For example, one slice is dedicated 
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to surveillance cameras, another for environmental sensors, and a third for traffic 

management devices. 

• Security Policies: For each network slice, specific security policies are defined based on 

the unique requirements of the IoT devices within that slice. These policies might include 

traffic isolation, encryption, and access controls. 

• Traffic Isolation: Network slicing ensures strict traffic isolation between slices. Data from 

surveillance cameras is kept separate from environmental sensor data, reducing the risk 

of data leakage or unauthorized access. 

• Encryption: All data transmitted between IoT devices, and the central server is encrypted 

within each network slice to protect data confidentiality. 

• Access Controls: Role-based access controls are implemented within each network slice. 

Only authorized personnel or systems are granted access to the data generated by IoT 

devices. 

• Real-time Monitoring: Security teams employ real-time monitoring and anomaly 

detection tools to detect any unusual activity or potential security threats within each 

network slice. 

• Incident Response: In case of a security incident or anomaly, the security teams can 

respond promptly within the affected network slice while leaving other slices unaffected. 

• Data Privacy: Network slicing ensures that data generated by IoT devices is processed and 

stored within the respective slice, maintaining data privacy and compliance with data 

protection regulations. 

• Customized Security Services: The B5G/6G operator can offer customized security 

services to the smart city authorities, such as threat detection, vulnerability assessments, 

and security updates specific to each network slice. 

To assess and enforce the specified intents, they first need to be translated to more formal SSLAs 

that can then be converted to the rules and algorithms that allow analysing the network events 

in real-time. This monitoring function can be called Security SLA Assessment Function. It is an AI-

driven, autonomous component within the 6G core that continuously monitors and enforces 

SSLAs. It operates by capturing a continuous stream of metrics, such as data availability, 

geolocation compliance, patch application delays, and isolation integrity between network slices, 

and correlates this data using advanced analytics to verify that the SSLAs are expected. If any 

deviation is detected, such as a latency in applying critical patches or a violation of access 

isolation rules, it will trigger an alarm that can be used to by a security orchestrator to execute 

the remediation actions, such as reconfiguring resources or revoking access, thus ensuring that 

security guarantees are dynamically maintained with or without human intervention depending 

on the type of remediation and the risks involved. 

To summarise, the SSLA Assessment Function has as objectives: 
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• Real-time capture of metrics 

• Correlate data 

• Verify the defined SSLAs 

• Notify and react to any failure 

The SSLA metrics that are used include, for instance: 

• Data and service availability 

• Geo localization of data/services 

• Frequency of security analysis 

• Number of GTP tunnels per subscriber 

• Isolation access from other slices 

The security enforcement techniques include, for instance: 

• Time to deploy new technique 

• Delay in applying patches 

• Delay in reconfiguring 

• Delay in revoking users/operators 

• Delay in replicating services and switching instances 
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Figure 3: An example of a slice isolation SSLA 

 

To illustrate how an intent can be verified and enforced, we consider in the following the intent 

“Network slices should be strictly isolated from other slices”. Figure 3 presents an example of a 

slice isolation SSLA. Note that this is just one way of defining the isolation of slices. 

Where KQI=Key Quality Indicator and KPI=Key Performance Indicator 

This is translated to the rule presented in Figure 4 that will be used by the Security SLA 

Assessment Function that monitors the network traffic in a slice and acts as a firewall. Note that 

this is just one way of implementing the isolation rule. 



D3.3 Intent-based service security and adaptive security techniques.r1  

 

Page 21 of 48 
 

 

Figure 4: A rule sample to monitor the network traffic in a slice and to act as a firewall. 

Where we use the following embedded functions:  

• "block_packet_from" that blocks the packet  

• "get_sliceID" that provide the id of the slice where the probe is running  

• "whitelist" that returns 1 if the slice's whitelist does not contain the IP address. 

3.2. XAI for Intent Verification and Policy Enforcement 

One of the key challenges in intent-based security monitoring is ensuring that high-level security 

intents are accurately translated into enforceable policies, and that these policies remain 

effective in dynamic environments such as B5G/6G networks and multi-cloud microservice 

deployments. Montimage AI Platform (MAIP) 1  addresses this challenge by introducing 

explainable AI (XAI)-driven intent verification, enabling stakeholders to not only enforce policies 

but also understand how and why enforcement decisions are made. This transparency helps 

bridge the gap between human-defined objectives and machine-level enforcement, making 

security management both reliable and trustworthy. 

The first step in this process is policy translation and mapping. Natural-language security 

intents—such as “all IoT camera traffic must be encrypted and isolated from public internet 

traffic”—need to be transformed into concrete, machine-enforceable rules. MAIP uses semantic 

analysis and rule-matching techniques to verify the consistency between user-defined intents 

and the actual deployed policies. This guarantees that the enforcement layer faithfully reflects 

the operator’s original intentions, while minimizing the risks of misconfigurations that could lead 

to vulnerabilities. 

Once policies are deployed, explainable anomaly detection ensures that violations and 

misconfigurations are immediately identified and contextualized. When anomalous traffic 

patterns or deviations from the intended policy are detected, MAIP provides explanations by 

pinpointing which intent or policy has been violated, clarifying the reasoning behind detection, 

and identifying the root cause. For instance, it can reveal that a firewall rule was misconfigured, 

 
1 Montimage AI Platform (MAIP): https://github.com/Montimage/maip  

https://github.com/Montimage/maip
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allowing traffic to bypass encryption, or that a rogue IoT device attempted to communicate 

outside its designated secure zone. This capability significantly reduces the time needed for 

incident triage and strengthens operator trust in automated systems. 

 

Figure 5: XAI-driven Intent Verification and Policy Enforcement 

Figure 5 illustrates how the MAIP integrates multiple data sources—including 4G/5G and IoT 

testbeds as well as cyber threat intelligence—to enable explainable AI (XAI) for resilient intent-

based security enforcement. Network traffic is continuously acquired and analysed, feeding into 

AI models that support adversarial attack detection, accountability and resilience metrics, and 

explainable AI outputs. This ensures that security intents are not only enforced but also verified 

and explained in human-understandable terms. 

Incorporating XAI provides transparency and accountability in intent-driven security 

management. High-level intents are translated into enforceable policies, continuously monitored 

through anomaly detection, and validated against actual system behaviour. When violations 

occur, the system offers explanations that clarify which policies were breached and why, reducing 

the risks of opaque, black-box enforcement. Moreover, the integration of accountability metrics 

with adaptive orchestration enables closed-loop remediation actions—such as rerouting, 

workload migration, or policy adjustments—while maintaining service availability. By linking data 

acquisition, threat intelligence, and explainable AI reasoning, MAIP builds trust in automated 

enforcement and strengthens resilience across complex multi-cloud and B5G/6G environments. 

The XAI component aims to enhance the robustness of AI models built within the Network Traffic 

Analysis module, making them more resilient against various types of adversarial machine 

learning attacks. The Adversarial Attacks module focuses on injecting various evasion and 

poisoning adversarial attacks, such as random label flipping, label flipping attacks and Generative 

Adversarial Networks (GANs) attacks or integrating existing AI-based attack libraries for the 
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robustness analysis of AI models. The Explainable AI module aims to produce post-hoc global and 

local explanations of predictions generated by our model. Specifically, we employ popular model-

agnostic post-hoc XAI techniques, such as SHAP (SHapley Additive exPlanations) [1][3] and LIME 

(Local Interpretable Model-Agnostic Explanations) [4][5], to explain predictions of our models. 

This module plays a crucial role in improving the transparency of the decision-making process of 

our models, enhancing interpretability, and, most importantly, ensuring the reliability of the 

predictions. Furthermore, we incorporate defence mechanisms, such as adversarial training and 

leveraging XAI techniques, to prevent attacks against the AI models. 

To further enhance resilience, MAIP supports closed-loop orchestration. When a policy violation 

occurs, the system does not simply raise an alert but can also automatically trigger adaptive 

remediation actions. These may include rerouting traffic through secure gateways, tightening 

access control rules, or even migrating workloads to more trusted infrastructure. Importantly, 

each action is accompanied by a clear, human-readable explanation, allowing operators to 

validate and trust the AI’s response rather than viewing it as an opaque “black-box” decision. 

Finally, MAIP ensures auditability and transparency by logging all verification and enforcement 

actions along with their corresponding explanations. This creates an auditable trail of decisions 

and responses, supporting regulatory compliance, post-incident investigations, and long-term 

accountability. Such transparency is particularly critical in highly regulated environments, where 

operators must not only ensure strong security but also demonstrate compliance to external 

authorities. 

By combining intent verification, explainable anomaly detection, adaptive orchestration, and 

comprehensive auditability, MAIP ensures that operators can enforce intent-driven security 

policies with full visibility into the AI’s decision-making process. This reduces the risks associated 

with black-box automation and fosters trust in intelligent security management for complex 6G 

and IoT ecosystems. 

3.3. Adaptive Security in Multi-Cloud and Dynamic Environments 

In multi-cloud and dynamic B5G/6G environments, organizations face the challenge of enforcing 

uniform security policies across highly heterogeneous infrastructures. Applications and services 

are often deployed across multiple providers, each with its own security mechanisms, controls, 

and interfaces. This fragmentation complicates the task of maintaining consistent protection for 

sensitive assets, particularly customer data that may traverse multiple domains. To address this, 

we introduce adaptive enforcement mechanisms that integrate with moving target defence 

(MTD), ensuring both resilience against threats and transparency in enforcement. 

The security intent in such environments is clear: protect customer data through strong 

encryption, prevent unauthorized cross-cloud transfers, detect anomalies in real time, and 
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maintain service availability even under attack or system reconfiguration. We translate these 

high-level security intents into actionable policies that harmonize encryption standards and 

access controls across different cloud providers. Doing so reduces the risk of configuration drift 

and prevents attackers from exploiting inconsistencies between platforms. 

 

Figure 6: Adaptive Security Framework in Multi-Cloud and Dynamic Environments 

Figure 6 illustrates how we enforce high-level security intents across heterogeneous multi-cloud 

infrastructures by combining adaptive policy enforcement, cross-domain anomaly detection, and 

moving target defence (MTD). Intent definitions, such as ensuring data confidentiality, 

preventing unauthorized transfers, detecting anomalies in real time, and maintaining availability, 

are translated into concrete security actions. Adaptive enforcement harmonizes encryption and 

access controls across diverse cloud providers, while anomaly detection identifies and explains 

policy violations. Simultaneously, MTD dynamically reconfigures workloads, routes, or network 

topologies to minimize attacker predictability. Finally, intent validation ensures that these 
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adaptive measures remain consistent with the overarching security objectives, preserving both 

resilience and transparency. 

Beyond static policy enforcement, we leverage cross-domain anomaly detection to monitor data 

flows and application behaviour continuously. This enables the system to identify violations such 

as unauthorized transfers or suspicious activity that spans multiple clouds. Importantly, we do 

not simply block such events—it also provides transparent explanations of the root cause, 

allowing security teams to understand why an action was taken and how it relates to the 

organization’s intent.  

A critical feature of our solution is its integration with moving target defence provided by ZHAW. 

Rather than presenting a static attack surface, the system dynamically reconfigures workloads, 

routes, or even network topologies, making it more difficult for adversaries to predict and exploit 

system behaviour. These changes are orchestrated in a way that preserves service continuity and 

availability, ensuring that legitimate users remain unaffected while attackers face increasing 

uncertainty. 

The adaptive enforcement builds upon recent advances in resource-optimized MTD strategies, 

such as those developed at ZHAW in the scope of the “Resource-optimised MTD” framework. As 

defined in the previous deliverable D3.1 [24], the MTD architecture enhances the security of 

network functions across the edge-to-cloud continuum through proactive and reactive 

operations such as live migration and re-instantiation of virtualized and containerized network 

functions. While earlier work focused on the MTD controller and its ability to orchestrate live 

migrations of containers in Kubernetes clusters, the current focus lies on the MTD Strategy 

Optimizer. This component leverages AI-based decision-making agents to determine how and 

when migrations should occur, balancing resilience with performance overhead. Integrating such 

approaches allows security policies to be enforced adaptively without compromising availability 

or transparency, ensuring that high-level security intents remain aligned with underlying 

reconfiguration actions. 

By aligning adaptive policy enforcement with advanced MTD strategies, we harmonize 

encryption and access control policies across cloud providers while dynamically reducing attack 

predictability through live migration and workload reallocation. The use of AI-powered 

optimizers ensures that these migrations are not only secure but also efficient, minimizing 

downtime through techniques such as pre-copy, post-copy, or hybrid live migrations. This results 

in a security fabric that is both resilient against persistent threats and sensitive to service-level 

objectives. 
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4. Adaptive orchestration optimisation for sustainability  
The optimisation strategy plugged into the orchestration level combines cybersecurity and 

sustainability objectives. As introduced in deliverable D3.1 [24], the Secure-by-Design 

Orchestration framework applies two optimisation strategies that guide orchestration decisions 

while strengthening network function security. These optimisation strategies are CTI-driven 

selective sharing of vulnerability data and hygiene scores, and an AI-based workload prediction 

service. Both of which has the objective of minimizing the energy overhead of 6G services on the 

underlying edge-cloud infrastructure while maximizing the cybersecurity posture of said services.  

4.1. CTI-Driven Selective Sharing 

The CTI framework provides hygiene scores from vulnerability data, supporting orchestrator to 

place CNFs only in domains with an acceptable security posture. From our work on CTI exchange, 

we developed a sensitivity–necessity mapping mechanism that scores vulnerability metadata to 

decide what information should be shared between domains. Orchestration decisions are guided 

by trustworthiness (hygiene scores), avoiding unnecessary exposure of sensitive data. This 

selective CTI sharing becomes a feedback input to the orchestrator, helping to prevent insecure 

payload placement and enabling security-per-construction orchestration.  

 

Figure 7: High-level functional view of the CTI selective sharing process 

The overall workflow of the CTI selective sharing framework is illustrated in Figure 7. Hygiene 

scores, derived from vulnerability data, act as a filter for placing functions only in domains with 

an acceptable security posture. To support this, we developed a sensitivity–necessity mapping 

mechanism that scores metadata and decides what information to share across domains.  

Vulnerability scanners in each cluster send raw reports to the CTI Agent. Each vulnerability is 

analysed and given a risk score that reflects its threat level. The CTI Agent then applies a decision-

making algorithm that combines this risk score with two maps: sensitivity and necessity. Based 

on these three values, the algorithm decides whether each field should be shared or anonymised. 

The filtered data is then serialised in STIX format and exchanged with peer clusters. Cluster 

hygiene scores are calculated from the shared CTI data together with severity scores. These 
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scores are sent to the orchestrator, which uses them to guide CNF placement, scaling, and 

migration. 

The algorithm works on metadata fields extracted from vulnerability reports. Each field is 

evaluated against the sensitivity map (defined by the CTI publisher) and the necessity map 

(defined by the CTI subscriber). The sensitivity map shows which fields are too confidential to 

share, while the necessity map highlights the fields the subscriber needs to see. This dual 

mapping balances the priorities of both sides, making the exchange more controlled and useful. 

The risk score adds another dimension. It combines parameters such as the severity and age of a 

vulnerability to estimate its exploitability. This score acts as a weighted factor in the decision 

process, giving more importance to high-risk vulnerabilities. 

The algorithm evaluates every vulnerability key-value pair with two possible outcomes: “include” 

or “anonymise.” The resulting CTI data, together with severity values, feeds into the calculation 

of a cluster-wide hygiene score. This score reflects how trustworthy a cluster is and is directly 

used by the orchestrator when making deployment decisions. This approach allows orchestration 

to be guided by trustworthiness, while avoiding disclosure of sensitive details. In T3.4, selective 

CTI sharing is used as feedback to the orchestrator, preventing insecure placements and enabling 

security-per-construction orchestration. 

4.2. Workload Prediction for Scheduling 

The workload prediction service runs as a lightweight AI microservice integrated with the 

orchestration layer. It interacts with Prometheus [26] monitoring system which collects 

telemetry from both services (containers/pods) and cluster nodes. At the service level, 

Prometheus monitors CPU usage, memory consumption, network traffic (Tx/Rx), and disk I/O 

over time. At the node level, including both control plane and worker nodes, it tracks aggregate 

resource utilisation and workload distribution. Using this historical data, the AI model generates 

short-term forecasts that capture both expected usage trends and unusual anomalies. These 

predictions allow the orchestrator to anticipate demand rather than simply reacting to it. 

Each workload indicator is analysed against two maps: typical fluctuation patterns and anomaly 

signatures. The prediction model distinguishes between normal growth (e.g., daily traffic peaks) 

and abnormal behaviours (e.g., DoST-like attacks). Forecast outputs include expected load ranges 

and anomaly likelihood scores. Based on these, the orchestration engine decides whether to 

scale, migrate, or throttle workloads in advance. 

The prediction service exposes its results through a standard API, enabling seamless integration 

with scheduling logic. Forecasts are packaged as structured metadata and consumed by the 

orchestrator to guide placement and migration strategies. When anomaly likelihood is high, the 
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system prioritises resilience; when predictions show stable trends, the system can favour energy-

efficient scheduling. 

In T3.4, these AI-driven forecasts act as proactive signals that align payload mobility with both 

security posture and sustainability goals, ensuring that orchestration decisions are not only 

reactive but also predictive. 

This capability directly addresses the challenge highlighted in D3.1 [24]: without prediction, 

schedulers risk either over-allocating resources (wasting energy) or under-allocating (causing SLA 

loss). By providing foresight into both normal and anomalous workloads, the AI service enables 

the orchestrator to act proactively, improving efficiency, resilience, and sustainability. 
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5. Secure Data Aggregation 
In B5G/6G networks, the number of connected devices and the amount of data they produce will 

be massive. To develop AI-based service orchestration in such environments, enabling 

technologies are essential to ensure that large-scale model training can occur without 

compromising privacy. Secure data aggregation (SDA) is one such enabler: while not a direct 

orchestration or training technique itself, it supports frameworks like federated learning (FL) by 

ensuring that model updates from distributed entities can be combined securely and efficiently. 

Federated learning as a decentralized training framework aims to enhance data privacy by 

enabling model training directly on local datasets, without requiring raw data to be shared [15]. 

Participants retain control over their data and perform local training, transmitting only updated 

model parameters to a central server or several distributed nodes for aggregation into a global 

model. This framework not only safeguards privacy but also addresses data silo challenges, 

promoting efficient data utilization between organizations while ensuring compliance with 

regulations [16] such as the General Data Protection Regulation (GDPR). 

However, the transmission of model parameters in FL may lead to the risk of information leakage, 

as gradients can carry sensitive participant data. This vulnerability, called the gradient leakage 

attack, arises when the server is either malicious or honest-but-curious, potentially exploiting 

gradients to infer private information. To address this issue and improve the practical viability of 

FL, the Secure Aggregation protocol needs to be utilized [17]. This protocol safeguards the 

aggregation process by employing techniques such as encryption, randomization, and 

scrambling, ensuring that sensitive information remains confidential during both transmission 

and aggregation of model updates. Additionally, intent-based service security can define 

requirements such as “aggregate updates in a way that hides every device’s data.” The system 

then selects Multi Party Computation (MPC) protocols that satisfy this intent, such as additive 

secret sharing or homomorphic encryption. 

5.1. Secure Data Aggregation Protocol 

This protocol supports two interchangeable approaches: centralized data aggregation and MPC-

based secure aggregation. Both are designed to provide strong privacy guarantees, robustness 

against malicious participants, and reliable aggregation even when clients drop out or experience 

delays. 
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Figure 8: Secure Data Aggregation Process 

In the centralized data aggregation protocol, as shown in Figure 8 a central server computes the 

sum of client inputs while keeping each individual input confidential. This version of the protocol 

assumes that either the server or clients could act maliciously and actively prevent data leakage 

or manipulation. Each client first generates a private and public key in round 0 and establishes 

shared secrets with every other client in round 1. These shared secrets are used to create masking 

values in round 2 that hide the true input. The client then sends the masked input to the server. 

The server collects all masked inputs in round 3 and combines them to compute the correct 

aggregated sum in round 4. If some clients drop out, the server can reconstruct the missing 

masking values using a cryptographic secret sharing mechanism. The protocol also ensures that 

delayed client submissions cannot be reconstructed prematurely, preserving privacy. This design 

guarantees that the aggregation remains both robust and private, even under adversarial 

conditions. 

MPC-based aggregation depicted in Figure 9 removes reliance on a single trusted server by 

distributing computation across multiple parties. This comes at the cost of slightly more 

computation overhead. Clients first generate keys and establish shared secrets, then mask their 

inputs using the same cryptographic primitives as in the centralized protocol. Each client splits its 

masked input into encrypted shares and distributes them among several computation parties. 
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The computation parties jointly perform the aggregation without accessing the full input from 

any single client. After the aggregation is completed, the result is reconstructed and shared with 

all clients. This approach ensures that no individual party, including a central server, can access 

complete client data. Similar to centralized aggregation, missing inputs due to client dropouts 

can be reconstructed securely, and delayed inputs remain protected. The distributed nature of 

computation increases resilience against malicious participants, as collusion between multiple 

parties would be required to compromise the aggregation. 

 

 

Figure 9: MPC-based aggregation 

Centralized aggregation is efficient and well-suited when a trusted server is available, providing 

privacy and robustness through masking and secret sharing. MPC-based aggregation [18] offers 

stronger privacy and security, as it eliminates single points of trust and distributes computation, 

making it ideal for untrusted or adversarial environments. Although MPC introduces additional 

computational and communication overhead, it ensures that even in high-risk scenarios, client 

data remains confidential. By supporting both methods, a federated learning system can flexibly 

choose the aggregation approach that best meets its current operational and security 

requirements. This dual capability allows the system to balance efficiency, privacy, and 

robustness, ensuring secure and reliable model training across diverse environments. 
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5.2. Attack Resilience 

The secure aggregation protocol demonstrates strong resilience against several types of 

adversarial attacks commonly encountered in federated learning, particularly in dynamic B5G/6G 

environments. In this section, some major security attack [19] against the described protocol 

have been slightly highlighted. Impersonation attacks, where malicious clients attempt to 

masquerade as legitimate participants, are mitigated by the protocol’s robust key exchange and 

authentication mechanisms. Each client generates unique private and public keys and establishes 

shared secrets with other participants, making it extremely difficult for an attacker to inject fake 

updates without being detected. Combined with the masking process, this ensures that even if 

an adversary joins the network, they cannot meaningfully influence the aggregated result or 

recover other clients’ private data. 

Label-flipping attacks where malicious clients intentionally mislabel their local data to degrade 

the global model, represents a significant threat against model accuracy. Experiments have 

shown that while label-flipping attacks can drastically reduce accuracy in non-secure 

configurations, integrating secure aggregation with MPC mitigates this impact [20]. By 

distributing the aggregation process across multiple computation nodes, the protocol reduces 

the influence of any single malicious participant. Even when a substantial fraction of clients 

behaves maliciously, the MPC framework preserves a higher level of model accuracy compared 

to non-MPC setups, particularly over longer training iterations. Although some degradation still 

occurs, the secure aggregation process provides a buffer against extreme manipulation of the 

model. 

Other sophisticated adversarial behaviours, such as min-max attacks or general poisoning 

attempts, can also be addressed through a combination of masking, secret sharing, and 

distributed computation. While min-max attacks tend to have a more gradual impact on model 

performance, the protocol’s adaptive security capabilities further enhance resilience. By 

continuously monitoring updates for anomalies, dynamically adjusting privacy mechanisms, and 

re-weighting or excluding suspicious contributions, the system can respond in real time to 

emerging threats. This adaptive approach ensures that defences evolve alongside the 

environment, making it much harder for attackers to succeed in dynamic, high-mobility networks 

typical of B5G/6G scenarios. 

The integration of adaptive security techniques is particularly valuable in highly dynamic 

federated learning settings. By combining policy-driven intent with automated anomaly 

detection, cryptographic protections, and trust management, the system forms a closed 

feedback loop: user-defined security goals guide adaptive measures, which continuously enforce 

and adjust protections in response to observed threats. This loop not only enhances resilience 

against known attacks like impersonation and label-flipping but also strengthens the system’s 
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ability to defend against emerging or unforeseen attack vectors. The combined effect of MPC-

based aggregation, cryptographic masking, and adaptive security ensures that the federated 

learning framework remains both privacy-preserving and robust, even under significant 

adversarial pressure.  

5.3. Aggregation Integration  

The secure aggregation protocols can play a key role in enhancing other NATWORK components 

such as MTD strategies [21] and performing behavioural analysis. Since both mentioned areas 

require the collection and processing of sensitive data from multiple network components 

without exposing individual data sources, privacy-preserving aggregation is an essential 

requirement.  

In MTD, network configurations and system parameters are continuously shifted to make attacks 

harder to execute and predict. Monitoring and analysing these dynamic changes across multiple 

nodes require aggregating information such as traffic patterns, node status, or potential 

anomalies. By using centralized secure aggregation, network controllers can collect masked 

telemetry data from multiple devices to calculate global metrics, detect potential attack surfaces, 

and guide configuration changes, all without exposing the details of any single device. When the 

trust in the central controller is limited or higher security is needed, MPC-based aggregation can 

distribute the computation among multiple monitoring agents. This ensures that no single entity 

can access complete network data, resulting in a significantly harder surface for attackers to 

exploit the defence system or infer sensitive behaviours. 

For data plane behavioural analysis where the goal is to detect anomalous traffic patterns, each 

switch or device generates local statistics, such as packet counts, flow records, or latency 

measurements. Secure aggregation allows these measurements to be combined into global 

models without exposing the raw data from any single device. Using the protocols, either the 

central controller (centralized aggregation) or multiple computation parties (MPC-based 

aggregation) can compute network-wide metrics, identify suspicious behaviour, and trigger 

automated responses. This approach not only preserves privacy but also enhances robustness 

against compromised devices that might attempt to inject false data into the analysis. 

By integrating the secure aggregation protocols into MTD and behavioural monitoring, networks 

gain several benefits: they can adapt dynamically to threats, maintain privacy of individual nodes, 

and ensure that the analysis remains resilient even in adversarial conditions. This makes 

federated, privacy-preserving aggregation a powerful tool for next generation networks, where 

both adaptability and confidentiality are critical. 
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6. Microservice profiling and anomaly detection - 

Microservice behavioural analysis 
The NATWORK B5G architecture follows a microservice-based approach. Microservices 

architecture is a fundamental enabler of flexible and scalable 6G network services. Unlike 

monolithic applications, in microservice-based applications, network functions are decomposed 

into smaller, independent components that operate autonomously, allowing for scalable 

deployment, real-time adaptability, and efficient resource management, making them well-

suited for dynamic network environments. In the following section, a module that monitors the 

performance of microservices in a continual manner to ensure the efficient operation of the 

system is presented. The proposed module assesses the impact of microservice on compute and 

network resources to quickly detect anomalies in resource consumption and solve them before 

the systems’ performance is affected. The outputs of the mechanism will be used in microservices 

orchestration platforms to enable resource-efficient and reliable placement of microservices in 

6G environments. 

6.1. Technical Description 

The Microservice behavioural analysis module performs continuous microservice performance 

monitoring to ensure efficient operation of the system. In NATWORK, this involves leveraging 

runtime metric collectors and packet sniffers to continuously track key performance indicators, 

such as CPU and memory usage, ingress/egress traffic, etc. The module analyses real-time 

monitoring data, to determine whether microservices meet predefined performance 

requirements and if abnormal traffic flows occur in the network. If deviations are detected by an 

AI-based Detection Mechanism, automated scaling decisions and elasticity actions will be 

triggered to maintain optimal resource utilization and prevent service degradation. Figure 10 

shows the position of the microservice behavioural analysis module and its interconnection to 

other modules. This module is comprised of microservice profiling techniques and AI-driven 

anomaly detection mechanisms for enhanced microservice profiling and threat detection, shown 

in Figure 10 as Microservice Behavioral Analysis. It interacts with the monitoring engine, to collect 

real-time data on microservices resource usage and traffic metrics, the microservice orchestrator 

to trigger scaling decisions dynamically based on detected anomalies and the SDN controller to 

enforce mitigation actions. The monitoring engine has been presented in deliverable D4.1 [8]. 
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Figure 10: Position of the microservice behavioural analysis module and interconnection to other modules 

6.1.1. Algorithms utilized for proposed solution 

While microservices offer significant advantages, their distributed nature makes them inherently 

more vulnerable to threats such as denial-of-service (DoS) attacks, privilege escalation, and 

unauthorized access. Given these risks, security is another critical aspect, making behavioural 

analysis essential in microservice-based architectures to detect anomalies and provide protection 

against potential breaches.  

To effectively analyse microservice behaviour, it is necessary to monitor their performance both 

on a temporal and a periodic basis, aiming to identify any deviations from normal operation [9]. 

On the one hand, tracking how network traffic patterns change over time allows for capturing 

anomalies that may evolve gradually or threats that are identifiable only by analysing a certain 

period. On the other hand, sudden changes in microservice behaviour, such as unexpected spikes 

in ingress traffic or unusual increases in resource consumption, may indicate malicious activity 

and should be contained immediately.  

To address these challenges, microservice profiling techniques and AI-based anomaly detection 

mechanisms are employed to analyse system behaviour in real-time and identify anomalous 

behaviours. The microservice profiling technique can identify anomalous resource usage for the 

microservices deployed at any moment. For microservices with anomalies detected or some 

critical microservices, the AI-powered detection mechanisms start to continuously analyse 

telemetry monitoring data to establish behavioural models of a) normal microservice resource 

consumption and b) traffic and flow related data offered by the Monitoring engine that was 

presented in [8]. 
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A two-stage anomaly detection approach is followed. First, a lightweight 1D- Convolutional 

Neural Network (CNN) discerns anomalous resource usage. By profiling CPU, memory, and 

network usage under typical conditions, the system can classify microservice behaviour as normal 

or irregular, identify deviations that indicate potential ongoing attacks or unexpected system 

behaviour that aims at exhausting the network resources.  Then, in the case of anomalous data 

occurrence a more robust 1D-CNN discerns the type of the anomaly, with three different types 

of output:  

 

• The Anomaly type when the pattern of the resource use corresponds to a known anomaly 

type,  

• False Positive Occurrence when the pattern of resource consumption corresponds to 

normal behaviours i.e., in the case the first CNN produced a false positive. 

•  Uknown, when the pattern of metrics examined does not correspond to any of the 

previous cases, which warrants more inspection by the system operator. 

 

A regression-based forecasting mechanism was designed to model CPU and memory 

consumption for containerized microservices, enabling proactive resource management in cloud-

native environments [10]. The proposed approach leverages a lightweight Long Short-Term 

Memory (LSTM) deep neural network, chosen for its ability to capture temporal dependencies 

and nonlinear patterns in time-series resource metrics. By continuously monitoring historical CPU 

and memory usage, the LSTM model learns workload dynamics and generates regression 

predictions that estimate near-future consumption levels. The lightweight design ensures 

minimal overhead, making it suitable for deployment within resource-constrained microservice 

ecosystems. Such predictive modeling supports autoscaling, anomaly detection, and 

performance optimization, ultimately improving service reliability while reducing infrastructure 

costs. Figure 11 presents the envisioned high level architecture of the proposed solution. 

Appendix I contains detailed information on the architecture of the Neural networks utilized. 
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Figure 11 High level architecture of the proposed solution 

6.2. Microservice Profiling Evaluation Results 

Concerning microservice resource use, a Microservice Profiling tool was developed that monitors 

twelve different metrics, which cover both the infrastructure level, i.e., the consumption of 

system resources, e.g., CPU and memory utilization, and application-related metrics related to 

latency, throughput, and errors concerning the applications. Then based on this data it detects 

anomalous resource consumption patterns. These metrics are listed in Table 1. This approach is 

in line with the practice proposed in [7]. 

Table 1 Evaluation results 

Category Metric Description 
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)  

Disk Read Throughput Data read from disk per unit time; indicates I/O 
demand. 

Disk Write Throughput Data written to disk per unit time; reflects storage 
usage. 

Memory Usage (RSS) Actual physical memory (RAM) used by the 
container’s processes. 

Memory Usage (VSize) Total virtual memory reserved (address space); 
may highlight leaks. 

CPU Utilization Percentage of CPU time consumed; shows 
processing demand. 

Network RX (bytes/ns) Rate of incoming network traffic (data received). 

Network TX (bytes/ns) Rate of outgoing network traffic (data sent). 
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Category Metric Description 
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Latency p50 Median response time; typical user experience. 

Latency p90 Response time below which 90% of requests fall; 
shows tail performance. 

Latency p99 Response time below which 99% of requests fall; 
highlights worst-case scenarios. 

Request Throughput Number of successful requests processed per unit 
time. 

Error Rate Rate of failed requests; critical for reliability 
monitoring. 

 
To present a proof of concept for the underlying algorithms of the modules, related to 
microservice profiling, we utilized the open dataset presented in [7]. This dataset contains five 
different types of microservice related anomalies: High CPU utilization, High Memory 
consumption, Sudden spike in user traffic, Gradual step increase in user load, High Network 
latency. 
 
Table 2 presents the results of the lightweight CNN that performs binary classification of the 

microservices resource usage (Normal/Anomalous), along with the performance of other AI/ML 

algorithms commonly used for the same task, a Multi-Layer Perceptron DNN, a Random Forest 

and an SVM. The proposed method outperforms all other methods in terms of metrics commonly 

utilized to evaluate classification tasks. 

Table 2 Results of the lightweight CNN that performs binary classification of the microservices resource usage 
(Normal/Anomalous) 

Algorithm Accuracy Precision Recall F1-Score 
Lightweight 1-D 
CNN 

0.9712 0.94655 0.8567 0.8967 

MLP 0.9631 0.9171 0.8541 0.8844 

Random Forest 0.9658 0.9618 0.8157 0.8827 

SVM 0.9601 0.9529 0.8013 0.8789 

 

Table 3 presents the results of the 1-D CNN that performs multiclass classification of the 

microservices resource usage (5 anomalies, normal, unknown), along with the performance of 

other AI/ML algorithms commonly used for the same task, a Multi-Layer Perceptron DNN, a 

Random Forest and an SVM. In this case the proposed algorithm outperforms all other 
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approaches in terms of Accuracy, Recall and F1 Score, however it is slightly outperformed by the 

Random Forest implementation for the Precision metric.  

Table 3 Results of the CNN that performs multiclass classification of the microservices resource usage (7 classes: Normal/Five 
Anomalies/Unknown) 

Algorithm Accuracy Precision Recall F1-Score 
1-D CNN 0.9077 0.8956  0.9048 0.8964 

MLP 0.8718 0.8605 0.8718 0.8584 

Random Forest 0.8956 0.8961 0.8956 0.9034 

SVM 0.8410 0.8062 0.8410 0.8192 

 

Once a specific anomaly is detected, an automated mitigation action can be triggered to 

counter it. Two example mitigation actions per anomaly are presented in Table 4.  

Table 4 Common actions used to mitigate the microservice anomalies examined. 

Anomaly Example Mitigation Actions  

High CPU Utilization • Horizontal Pod Autoscaler Automatically increase/decrease 
pod replicas based on CPU usage. 

•  Vertical Pod Autoscaler : Automatically adjust CPU 
requests/limits to optimize pod performance. 

High Memory 

Consumption 

• Pod Memory Limits + Auto-restart: Kubernetes 
evicts/restarts pods exceeding memory limits. 

• Vertical Pod Autoscaler : Adjust memory requests 
automatically based on usage trends. 

Sudden Spike in User 

Traffic 

• Horizontal Pod Autoscaler: Scale pods dynamically based on 
traffic metrics.  

• Cluster Autoscaler: Automatically add nodes when pods 
can’t be scheduled due to resource constraints. 

Gradual Step Increase 

in User Load 

• HPA with Custom Metrics: Scale based on app-specific 
metrics (e.g., requests per second).  

• Predictive Autoscaling: Automatically adjust resources 
based on historical traffic patterns. 

High Network Latency • Service Mesh Retry & Load Balancing: Automatically reroute 
or retry requests on slow connections. 

•  Pod Affinity / Topology-Aware Scheduling: Automatically 
schedule pods close to dependencies to reduce latency. 

6.3. ΑΙ driven  detection mechanism  

This section presents evaluation results for an AI based regression mechanism, based on a LSTM 

type RNN which was developed to forecast the consumption of memory (RSS) and CPU by the 
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user. The experiments presented utilized an open dataset [11], which measured multiple 

resource related features for two web app microservices, explained in Table 5. The 

measurements were taken every 1 second, both in normal conditions and under various attacks 

(two DDoS attack variants, A brute Force attack and SQL injection).  

Table 5 Features contained in [13] and utilized for forecasting resource prediction 

Feature Description 

container_cpu_cfs_periods_rate 
Number of CPU scheduling periods (under Linux 
CFS) per second allocated to the container. 

container_cpu_cfs_throttled_periods_rate 
Number of CPU periods per second in which the 
container’s CPU usage was throttled (limited). 

container_cpu_cfs_throttled_seconds_rate 
Total time per second (in seconds) that the 
container was throttled by CPU limits. 

container_cpu_system_seconds_rate 
Rate of CPU time consumed by system (kernel) 
processes on behalf of the container. 

container_cpu_usage_seconds_rate 
(target) 

Total CPU usage rate (in seconds per second) 
consumed by the container. 

container_cpu_user_seconds_rate  
Rate of CPU time spent by user-level processes 
inside the container. 

container_file_descriptors 
Current number of open file descriptors (files, 
sockets, etc.) held by processes in the 
container. 

container_memory_failures_rate 
Rate of memory allocation failures (e.g., due to 
hitting limits) inside the container. 

container_memory_rss (target) 
Resident Set Size: amount of non-swappable 
physical memory (RAM) used by the container. 

container_memory_usage_bytes 
Current total memory usage of the container 
(includes cache + buffers). 

container_memory_working_set_bytes 
Actively used memory that cannot be reclaimed 
easily (excludes cache). 

container_network_receive_bytes_rate 
Rate of incoming network traffic in bytes per 
second received by the container. 

container_network_receive_packets_rate 
Rate of incoming network packets per second 
received by the container. 

container_network_transmit_bytes_rate 
Rate of outgoing network traffic in bytes per 
second sent by the container. 

container_network_transmit_packets_rate 
Rate of outgoing network packets per second 
sent by the container. 

container_sockets 
Number of active network sockets opened by 
the container. 
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Feature Description 

container_threads 
Number of active threads running inside the 
container. 

 

We trained two different LSTMs to predict Total CPU usage rate per second consumed by the 

container and Resident Set Size memory i.e. the amount of non-swappable physical memory 

(RAM) used by the container. The networks were trained for 30 epochs, and we experimented 

with the steps in the future the algorithms predict. Here, we present results for the last period 

where the prediction of the algorithm has an R2>0.9. R2, called coefficient of determination, 

measures the proportion of variance in a dependent variable that is explained by the 

independent variables in a regression model. It is expressed as a value between 0 and 1, where 

a higher R2 value indicates that the model provides a better fit to the data and explains more of 

the variability. 

For Container CPU usage Rate, the forecast step was 10 seconds into the feature, and the related 

metrics were Mean absolute Error (MAE: 0.0028), Root Mean Squared Error (RMSE: 0.0117) and 

R²: 0.9769. A plot for the forecast values is shown in Figure 12. 

 
Figure 12: CPU consumption forecast example for one of the containers contained in the dataset (step t=10) 

  
For RSS, the forecast step was 3 seconds into the feature and the related metrics were Mean 

absolute Error (MAE: 23815.3061), Root Mean Squared Error (RMSE: 16443.2474) and R²: 0.9056. 

A plot for the forecast values is shown in Figure 13. 
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Figure 13: Memory Consumption (RSS) forecast example for one of the containers contained in the dataset (step t=3) 

The output of these neural networks will be integrated to that of the CNN to further enhance its’ 

performance and add temporal capabilities to the tool. It will also be integrated with the 

Monitoring Engine to try to correlate Flow Related data with resource anomalies and produce 

microservice flow-related anomaly alerts that will be fed to the SDN controller. 

The following steps will be carried out during the upcoming months:   

• Advance the capabilities of Microservice Profiling by expanding it to cover interactions 

between microservices and their impact on computational and network resources via the 

utilization of prediction algorithms. 

• Develop the interfaces for automated mitigation action enforcement. 

• Finalize the integration of Microservice profiling with the AI-driven detection 

mechanisms, including AI-enabled IDS developed by CERTH in WP4. 

• Perform Scalability and Deployment Testing, i.e., a) Test the framework’s scalability with 

increasing numbers of microservices and varying workloads in simulated 6G 

environments, and b) Transition from simulated tests to pilot deployments in real-world 

setups to validate framework reliability and efficiency. 

• Continuously integrate with relevant tasks and UC4.4, i.e., the AI-enabled IDS (T4.3) and 

the Optimized resource allocation for microservices (T4.2). 
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7. Conclusion 
To meet the security and NetZero challenges of future 6G networks, a key technical focus of the 

NATWORK project is to enable dynamic and footprint-efficient orchestration and management 

of secure, distributed, and resilient services across the 6G continuum. This deliverable outlines 

recent outcomes within the NATWORK T3.3, including the integration of AI-based approaches for 

intelligent MTD and intent-aware security management, the facilitation of adaptive orchestration 

with sustainability optimization, and the development of agile defense mechanisms for secure 

microservices towards this overarching goal. Collectively, these efforts advance NATWORK’s 

objective to deliver resource-efficient, adaptive, and intelligent security capabilities for the 6G 

continuum. In the following period, we will build on these assets and develop them further with 

evaluation and experimental results, which will be reported in D3.4 to be published in 2026 and 

future deliverables about integration, testing and evaluation. 
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Annex A Details on the architectures of the   DNN   used for 

Microservice profiling 

The following subsection presents details on the architectures of the Neural networks utilized for 

the microservice profiling tool discussed in Section 6.1.1. 

Architecture for Lightweight 2-class 1D-CNN (binary classification) 

Input (T x C) 

     │ 

Conv1D (16 filters, kernel=5, ReLU) 

     │ 

BatchNorm 

     │ 

SeparableConv1D (32 filters, kernel=3, ReLU) 

     │ 

MaxPooling1D (pool=2) 

     │ 

Conv1D (64 filters, kernel=3, ReLU) 

     │ 

GlobalAveragePooling1D 

     │ 

Dropout (0.25) 

     │ 

Dense (32, ReLU) 

     │ 

Dense (2, Softmax) 
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1D-CNN multiclass classification 

Input (T x C) 

     │ 

Conv1D (32 filters, kernel=5, ReLU) 

     │ 

BatchNorm 

     │ 

Conv1D (64 filters, kernel=3, ReLU) 

     │ 

MaxPooling1D (pool=2) 

     │ 

Conv1D (128 filters, kernel=3, ReLU) 

     │ 

GlobalAveragePooling1D 

     │ 

Dropout (0.3) 

     │ 

Dense (64, ReLU) 

     │ 

Dense (7, Softmax) 
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Lightweight LSTM Regression Model (forecasting CPU/Memory) 

Input (T x C) 

     │ 

Conv1D (32 filters, kernel=3, causal, ReLU) 

     │ 

BatchNorm 

     │ 

Dropout (0.1) 

     │ 

LSTM (64 units, return_sequences=True) 

     │ 

Dropout (0.2) 

     │ 

LSTM (32 units, return_sequences=False) 

     │ 

Dense (32, ReLU) 

     │ 

Dense (16, ReLU) 

     │ 

Dense (h*C, Linear Output) 


