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Executive summary

As 6G networks evolve to support highly dynamic, complex environments and diverse services,
ensuring robust and adaptive security becomes essential. This deliverable presents recent
advancements within the NATWORK project as part of Task 3.3 (T3.3), focusing on the integration
of Al-driven techniques for intent-based security and smart Moving Target Defense (MTD).
Moreover, these innovations enable adaptive orchestration optimized for sustainability and
support the development of dynamic defense mechanisms tailored for secure microservices.
Collectively, these efforts contribute to NATWORK'’s overarching objective: delivering resource-
efficient, intelligent, and adaptive security solutions for the 6G continuum.
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1. Introduction

Adaptive and intent-based security is crucial for envisaged 6G networks since they will operate
in a very dynamic and complex environment while providing a multitude of services, leading to a
large and dynamic attack surface [1]. To address these challenges, one of the technical pillars of
the NATWORK project is to contribute to the dynamic, footprint-ideal orchestration and
management of secure, complex 6G services over the continuum. In that regard, this deliverable
reports on the recent advances in the framework of NATWORK T3.3 to integrate Al-driven
techniques for ensuring smart MTD and intent-based security management, to enable adaptive
orchestration with optimisation for sustainability, and to develop dynamic defence techniques
for secure microservices. Overall, these efforts are serving the NATWORK goal of resource-
optimised, adaptive, and smart security functions for 6G continuum.

1.1. Purpose and structure of the document

The purpose of this document is to provide a concise yet encompassing description of the
NATWORK contributions in T3.3 towards dynamic, smart and sustainable security for 6G
networks and edge-to-cloud continuum. It describes the work regarding Intent-based service
security and adaptive security techniques.

Following the Introduction, which sets the stage for the document's purpose, audience, and its
interconnections within the project's framework, the structure continues as follows:

Sections:

1. Section 2 Resource-Optimised MTD: Describes the NATWORK T3.3 efforts on optimized
Moving Target Defence (MTD) and presents the Live Migration Optimizer and MTD
strategy optimization work for adaptive and policy-based MTD.

2. Section 3 XAl-Driven Intent-Based Security Monitoring and Enforcement: presents the
XAl driven monitoring and enforcement framework for intent-based security operation.

3. Section 4 Adaptive orchestration optimisation for sustainability: Presents the project's
work on adaptive orchestration and its optimisation for sustainability and cybersecurity,
and elaborates on two main contributions, namely, CTI-driven selective sharing and
workload prediction for scheduling, in that domain.

4. Section 5 Secure Data Aggregation: elaborates on secure aggregation techniques which
are relevant for Federated Learning (FL) based smart security schemes in 6G networks.

5. Section 6 Microservice profiling and anomaly detection, and microservice behavioural
analysis: Presents profiling and anomaly detection schemes being developed for adaptive
defence in the NATWORK B5G architecture. They also allow microservice behavioural
analysis for cybersecurity purposes.
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6. Conclusions: Wraps up the document, reflecting on the project's strategic orientation and
establishing expectations for future milestones.

1.2. Intended Audience

The NATWORK Deliverable D3.3 Intent-based service security and adaptive security techniques is
for Public Dissemination. It is there devised for the internal and external use of the NATWORK
consortium, comprising members, project partners, affiliated stakeholders and the public. This
document mainly focuses on the Intent-based service security and adaptive security aspects of
the project, thereby serving as a referential tool throughout the project's lifespan.

1.3. Interrelations

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and
resources from academia, industry, and research sectors, focusing on user-centric service
development, robust economic and business models, cutting-edge cybersecurity, seamless
interoperability, and comprehensive on-demand services. The project integrates a collaboration
of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a
broad representation for addressing security requirements of emerging 6G Smart Networks and
Services in Europe and beyond.

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically
segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple
activities across various WPs, the structure ensures clarity in responsibilities and optimizes
communication amongst the consortium's partners, boards, and committees. The interrelation
framework within NATWORK offers smooth operation and collaborative innovation across the
consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e.,
Research Institutes, Universities, SMEs, and Large industries) enabling scientific, technological,
and security advancements in the realm of 6G. The D3.3 Intent-based service security and
adaptive security techniques addresses activities of the NATWORK project related to-the design,
development, and validation of intent-based service security and adaptive security techniques
and mechanisms. As a core technical WP, it relies on the architectural work carried out in WP2,
linked with the other security and advancements from WP3, and Al-driven management
solutions from WP4. It will feed the integration and validation efforts within WP6, for evaluating
and improving the assets presented in this deliverable. That coherent structure entailing the work
in other project activities and the adaptive and intent-based service security work described in
this deliverable ensures consistency and alignment across the project's technical pillars.
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2. Resource-optimized MTD

As defined in the previous deliverable of this work package (i.e., D3.1), the MTD framework
designed and implemented in this project enhances the security of network functions across the
edge-to-cloud continuum via proactive and reactive MTD operations such as live migration and
re-instantiation of VNFs and CNFs. Deliverable D3.1 described the operations of the MTD
controller component and its function of live migrating CNFs running as pods in Kubernetes
environments (c.f., Section 4.1 and 5.7 of D3.1), while this deliverable focuses on the MTD
Strategy Optimizer, the second component of the MTD framework, determining how to live
migrate a container and which CNF/VNF to be migrated. Both decisions are made using Al-
powered decision agents implemented to enhance the efficiency and efficacy of MTD operations.
In the following sections, we describe the two main tasks of the MTD strategy Optimizer
component, namely, a live migration optimizer (c.f., Section 2.1) and a broader MTD strategy
optimization (c.f., Section 2.2).

2.1. Live Migration Optimizer

The MTD framework performs parallel live migration (LiMi) of containers and microservices and
uses the following elements depicted in Figure 1:

e LiMi client, which is the application on the source side of the migration, performing the
checkpoint and delta-updates of the containers to be migrated.

e LiMi server, which receives the checkpoints from the LiMi client and restores them to
running containers.

e L2 networking bridge, which is used to keep the same allocation of IP address to the
containers, even when they migrate to a different node or cluster. This enables the
continuation of existing end-to-end sessions even after migration.

During migration, both the LiMi server and client establish a secure SSH tunnel to ensure end-to-
end encryption of the container's checkpoint during transfer. The transfer process utilizes rsync,
which is optimized to transmit only the incremental differences between the new checkpoint and
other possibly existing images of the container at the destination.

The LiMi controller supports four live migration methods: 1) basic or cold migration, 2) pre-copy
migration, 3) post-copy migration, and 4) hybrid migration [12]. LiMis are performed via the LiMi
client, which directly interfaces with runC, a low-level container orchestrator, and its CRIU
integration, used to initiate container checkpointing and restoring for live migrations. The LiMi
server also operates through the runC interface to receive the eventual pre-dumps, dumps, and
post-copy memory pages from the LiMi client and to restore the container at the destination

Project unded by
Co-funded by 0 e e (8@ UK Research Page 12 of 48
the European Union s ——— =4 N and Innovation




NRT:..

w / "R K D3.3 Intent-based service security and adaptive security techniques.rl
o\ A l*

node. For stateful migrations, CRIU is configured to preserve TCP-established sockets, allowing
existing connections between the container and its clients to remain intact.

Since TCP sessions are defined by IP address and port pairs, the L2 bridge module ensures the
migration of the container's IP address at the Address Resolution Protocol (ARP) level. This is
critical for maintaining session continuity and minimizing availability disruptions for services that
rely on persistent connections, such as databases, SSH sessions, and voice-over-IP (VolP)
applications. Finally, the LiMi client reduces the LiMi downtime by transferring in parallel both
the dump/checkpoint delta and the volume delta for container applications with writable root
filesystems.

u Openstack node 1 u Openstack node 2
openstack {bare-metal) openstack (bare-meial)

&) source node (VM)
runC i)

-»{ container 1

destination node (VM) @

\

ssh_tunnel —
rsync

Ei runC
—

container 1

e -

: pidstat
i 1 Locust ContMTD
container 3 | ,;?,‘ S container 3
e ~_____|-;/controller node (VM)@

container 2

. |.»| container 2

Y

Figure 1: Container live migration setup

In this setup, The MTD Strategy Optimizer uses a ML-based classifier and a ML-based regressor
to optimize containers LiMis. Both ML models are trained by using a constructed dataset
collecting over 6000 live migrations of containers of three load levels (low, medium, and high) on
four types of resources (CPU, RAM, storage, and networking), to characterize the dependency
between resource load type and LiMi performance. As networking has an additional type of load
(i.e., zero), the container categorization space spans to 108 for this configuration (i.e., the
combination of load levels for all resource types). However, some combinations are impossible
to obtain in practice (e.g., high RAM and storage read/write operations require medium to high
CPU load), reducing the possible combinations to 34 for this configuration. All combinations of
containers are empirically tested using a dynamic containerized application to cover the different
loads using the Linux cgroups kernel function set at the container runtime level.

The dataset is formed by performing LiMis on the dynamic containerized application with the 34
resource combinations, using for each combination the different migration algorithms (basic,
pre-copy, post-copy, and hybrid). The distribution of the four migration methods per container
category is kept uniformly distributed, extracting the following features from each migration:
total migration time, pre-dump time and pre-dump size, pre-dump transfer time, dump time and
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dump size, dump transfer time, volume size and volume transfer time (the size considers delta
optimization of sync transfer), dump and volume deltas parallel transfer time (which also includes
the layer 2 level IP transfer), restore time, approximate container downtime (calculated by
summing dump time, dump transfer time and restore times), and a precise downtime measured
by the locust traffic generator (including the additional downtime from packets queuing). This
datais used to train the ML classifier and migration time regressor used in the ContMTD workflow
described below.

The ML classifier selects the best LiMi method per container to minimize the migration time and
service downtime of the container, while the ML-based regressor is used to estimate the
migration time of each container. This estimation is used to schedule the parallel migration of
interdependent CNFs running in a broader network service (NS), where migrating a NS requires
the parallel migration of its microservices. This scheduling is made to have the interdependent
migrating CNFs reach their destination at the same time, minimizing the disruption of the NS
migrated.

2.2. Broader MTD Strategy Optimization

When performing MTD actions proactively, no concrete attack is occurring, and actions are
performed to statistically reduce the probability that a threat occurs. Thus, there is an inherent
optimization problem of finding the right trade-off between three objectives: 1) increasing
security, 2) decreasing operational costs of MTD, and 3) decreasing the QoS overhead of
protected CNFs/VNFs [13]. On the other hand, applying too many migrations will result in
extensive computational overhead and may cause longer service disruption for the users. To
conform to service level agreements (SLA) of the service provided, e.g. an agreed minimal service
availability of 99.95%, a budget (i.e. quota) of MTD operations for each CNF is calculated and
defined. The problem in this case is to optimize the periods of MTD actions in such a way that the
security is maximized while the quota is not exceeded.

To quantify the reach of the MTD strategy to each of these three objectives, the MTD Strategy
Optimizer is composed of the following modules: the risk assessment (RI.AS.) module, the
modelling module using multi-objective Markov Decision Process (MOMDP), and the deep-RL
agent [14] optimizing and deciding on the MTD policy. Finally, the MTD Strategy Optimizer is
interfaced with the MTD controller, requesting some of the near-real-time data gathered by the
latter, and then sending to it the decisions of MTD actions to be enforced.
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Figure 2: Data collected and used in the workflow of the MITD Strategy Optimizer.

Figure 2 details the workflow and data gathered for the MTD strategy optimization. For the
security objective, a risk assessment is performed to collect metrics for proactive estimation of
the Attack Success Probability (ASP). Daily threat analysis on all running VNFs/CNFs is performed
using a vulnerability scanner, OpenVAS, to identify running services, using the Common Platform
Enumeration (CPE), and perform active and passive vulnerability scans, detecting Common
Vulnerability Enumerations (CVE), i.e., identified vulnerabilities registered in the National
Vulnerability Database (NVD) [22]. The ASP is then estimated using the CVSS base score and
exploitability score of the vulnerabilities found with the risk assessment [23].

For the operational cost objective, an empirical study of the cost of virtual resources is done to
find the coefficients between CPU cost, RAM cost, and storage cost, based on the definition of:

Tresourcecost = + a1 X cpu + a2 x ramgy + as * storagegp

measured in USD per hour (S/hour), reference to cloud providers’ convention as a measurement
unit for virtual resources used in their cloud. The prices of over 70 VM offers are collected from
four major cloud providers: AWS, Azure, Google Cloud, and OVH. A cloud provider provides VMs
with different prices for the same resource depending on the hardware used (e.g., Intel vs. AMD
cores). Thus, the coefficients are not found with perfect equations but calculated using linear
regression, which gives the following statistically significant (i.e., p<0.01) results: § =-0.082, a1.=
0.031, a»=0.004, a3= 0.00006.
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For the QoS objective, the MTD Strategy Optimizer collects network metrics for every protected
VNF such as the number of user equipment (UE) connected, connection latency, connection
throughput, and packet loss-rate, and the number of packets flowing in and out. From these
monitored values, we derive the mean packet loss rate increase and the mean latency increase
caused by the MTD actions.

Finally, collected data is used to model the network state observation with an MOMDP. The
MOMDP comes with three main variations used to adjust the distribution of MTD actions across
a certain time window (e.g. a day, a week, or a month) in an optimized manner. To solve MOMDP
optimization, the MTD strategy Optimizer uses both single-objective and multi-objective RL
(MORL) algorithms [24].

To conclude, the solution provides recommendations on when to perform which MTD actions
and also presents what kind of underlying techniques (e.g. container migration method such as
pre-copy or post-copy) should be utilized for shorter downtime values.
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3.XAl-Driven Intent-Based Security Monitoring and
Enforcement

The increasing complexity of B5G/6G networks, combined with the widespread adoption of
cloud-native and microservice-based architectures, calls for new paradigms in security
management that go beyond traditional rule-based approaches. XAl-Driven Intent-Based
Security Monitoring and Enforcement addresses this need by bridging high-level human-defined
security intents with enforceable, adaptive policies. This approach leverages intent-based
networking to translate user requirements into actionable controls, integrates explainable Al
(XAI) to ensure transparency and trust in policy verification and enforcement, and applies
adaptive mechanisms to secure dynamic, multi-cloud environments. Together, these capabilities
provide a foundation for resilient, trustworthy, and human-understandable security
management tailored to the challenges of next-generation networks.

3.1. Intent-Based Networking

Intent-based networking (IBN) [6] is a network architecture that leverages automation and
machine learning to help organizations better align their network behaviour with their business
objectives. When it comes to security, IBN can play a crucial role in enhancing network security
by translating security policies and objectives into automated network configurations and
responses. Here's an example of how IBN can be applied to security:

Scenario: Enhanced Security for loT Devices via Network Slicing

Imagine a smart city deployment where various Internet of Things (loT) devices, such as
surveillance cameras, environmental sensors, and smart traffic lights, are connected through a
B5G/6G network. Security and data privacy are top concerns in this scenario. Network slicing can
be employed to address these issues. By leveraging network slicing in this smart city scenario,
the authorities can achieve both enhanced security and tailored network performance for their
diverse loT deployments. Each network slice operates independently with its own security
parameters, reducing the attack surface and mitigating the risk of unauthorized access or data
breaches. The following concepts are involved in this scenario:

e Intent Definition: The smart city authorities define the security intent: "Ensure the
security and privacy of data from loT devices while providing low-latency, high-bandwidth
connectivity. Isolate different types of loT traffic for enhanced security."

e Network Slice Creation: Using network slicing capabilities, the B5G/6G network operator
creates distinct slices for different types of loT devices. For example, one slice is dedicated
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to surveillance cameras, another for environmental sensors, and a third for traffic
management devices.

e Security Policies: For each network slice, specific security policies are defined based on
the unique requirements of the loT devices within that slice. These policies might include
traffic isolation, encryption, and access controls.

e Traffic Isolation: Network slicing ensures strict traffic isolation between slices. Data from
surveillance cameras is kept separate from environmental sensor data, reducing the risk
of data leakage or unauthorized access.

e Encryption: All data transmitted between loT devices, and the central server is encrypted
within each network slice to protect data confidentiality.

e Access Controls: Role-based access controls are implemented within each network slice.
Only authorized personnel or systems are granted access to the data generated by loT
devices.

e Real-time Monitoring: Security teams employ real-time monitoring and anomaly
detection tools to detect any unusual activity or potential security threats within each
network slice.

e Incident Response: In case of a security incident or anomaly, the security teams can
respond promptly within the affected network slice while leaving other slices unaffected.

e Data Privacy: Network slicing ensures that data generated by loT devices is processed and
stored within the respective slice, maintaining data privacy and compliance with data
protection regulations.

e Customized Security Services: The B5G/6G operator can offer customized security
services to the smart city authorities, such as threat detection, vulnerability assessments,
and security updates specific to each network slice.

To assess and enforce the specified intents, they first need to be translated to more formal SSLAs
that can then be converted to the rules and algorithms that allow analysing the network events
in real-time. This monitoring function can be called Security SLA Assessment Function. It is an Al-
driven, autonomous component within the 6G core that continuously monitors and enforces
SSLAs. It operates by capturing a continuous stream of metrics, such as data availability,
geolocation compliance, patch application delays, and isolation integrity between network slices,
and correlates this data using advanced analytics to verify that the SSLAs are expected. If any
deviation is detected, such as a latency in applying critical patches or a violation of access
isolation rules, it will trigger an alarm that can be used to by a security orchestrator to execute
the remediation actions, such as reconfiguring resources or revoking access, thus ensuring that
security guarantees are dynamically maintained with or without human intervention depending
on the type of remediation and the risks involved.

To summarise, the SSLA Assessment Function has as objectives:
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e Real-time capture of metrics
e Correlate data

e Verify the defined SSLAs

e Notify and react to any failure

The SSLA metrics that are used include, for instance:

e Data and service availability

e Geo localization of data/services

e Frequency of security analysis

e Number of GTP tunnels per subscriber
e Isolation access from other slices

The security enforcement techniques include, for instance:

e Time to deploy new technique

e Delay in applying patches

e Delay in reconfiguring

e Delay in revoking users/operators

e Delayin replicating services and switching instances
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<ServicelevelAgreement xmlns="urn:ngsi-1d:SLA:1.0" id="SLA-Slice-Isolation">
<name>Isolation Guarantee for Slice</name>
<description>This SLA guarantees that the Slice is isolated from all other network slices,
bgﬁmitting only whitelisted IP addresses as the source of incoming packets.</description>

<!-- The specific guarantee term for isolation -->
<guaranteeTerm>

<name>NetworkSliceIsolationAndiWhitelisting</name>
<servicelevelObjective>
<!-- This KQI defines the the objective -->
<kpiName>PacketSourceCompliance</kpiName>
<kpiTarget>
<!-- The objective is that 100% of packets must be from permitted sources -->
<value>100</value>
<unit>percent</unit>
</kpiTarget>
</servicelevelObjective>
<servicelevelIndicator>
<!-- This KPI defines the how to measure it -->
<kpiName>InvalidSourcePacketCount</kpiName>
<kpiFormula>
<!-- The metric to capture: count of packets with source IP NOT in the whitelist -->
COUNT (ingress_packets WHERE source_ip NOT IN whitelist)
</kpiFormula>
<measurementSource>Distributed_Security Monitoring Function</measurementSource>
</servicelevelIndicator>
<breachCondition>
<!-- A breach is triggered if even a single non-whitelisted packet is detected -->
<formula>InvalidSourcePacketCount > ©</formula>
</breachCondition>
<remediationAction>
<!-- Automated action upon breach -->
<action>NOTIFY</action>
<target>SecurityOrchestrator</target>
<action>L0OG</action>
<action>REJECT_PACKET</action> <!-- Immediate enforcement action -->
</remediationAction>
</guaranteeTerm>
</ServicelevelAgreement>

Figure 3: An example of a slice isolation SSLA

To illustrate how an intent can be verified and enforced, we consider in the following the intent
“Network slices should be strictly isolated from other slices”. Figure 3 presents an example of a
slice isolation SSLA. Note that this is just one way of defining the isolation of slices.

Where KQl=Key Quality Indicator and KPI=Key Performance Indicator

This is translated to the rule presented in Figure 4 that will be used by the Security SLA
Assessment Function that monitors the network traffic in a slice and acts as a firewall. Note that
this is just one way of implementing the isolation rule.
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<beginning>

<!-- Isolate Access to a given Slice from other Slices--»

<event event_id="1" value="COMPUTE"
description="IP packet detected"
boolean_expression="(ip.src > @)"/>
<event event id="2" value="COMPUTE"
description="Detect that source IP is not in the Slice's whitelist"
boolean_expression="(#whitelist(#get_sliceID(), ip.src) != 1)"/>
</property>
</beginning>

Figure 4: A rule sample to monitor the network traffic in a slice and to act as a firewall.

Where we use the following embedded functions:

e ‘"block_packet from" that blocks the packet
e ‘"get slicelD" that provide the id of the slice where the probe is running
e '"whitelist" that returns 1 if the slice's whitelist does not contain the IP address.

3.2. XAl for Intent Verification and Policy Enforcement

One of the key challenges in intent-based security monitoring is ensuring that high-level security
intents are accurately translated into enforceable policies, and that these policies remain
effective in dynamic environments such as B5G/6G networks and multi-cloud microservice
deployments. Montimage Al Platform (MAIP) ! addresses this challenge by introducing
explainable Al (XAl)-driven intent verification, enabling stakeholders to not only enforce policies
but also understand how and why enforcement decisions are made. This transparency helps
bridge the gap between human-defined objectives and machine-level enforcement, making
security management both reliable and trustworthy.

The first step in this process is policy translation and mapping. Natural-language security
intents—such as “all 1oT camera traffic must be encrypted and isolated from public internet
traffic”—need to be transformed into concrete, machine-enforceable rules. MAIP uses semantic
analysis and rule-matching techniques to verify the consistency between user-defined intents
and the actual deployed policies. This guarantees that the enforcement layer faithfully reflects
the operator’s original intentions, while minimizing the risks of misconfigurations that could lead
to vulnerabilities.

Once policies are deployed, explainable anomaly detection ensures that violations and
misconfigurations are immediately identified and contextualized. When anomalous traffic
patterns or deviations from the intended policy are detected, MAIP provides explanations by
pinpointing which intent or policy has been violated, clarifying the reasoning behind detection,
and identifying the root cause. For instance, it can reveal that a firewall rule was misconfigured,

1 Montimage Al Platform (MAIP): https://github.com/Montimage/maip
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allowing traffic to bypass encryption, or that a rogue loT device attempted to communicate
outside its designated secure zone. This capability significantly reduces the time needed for
incident triage and strengthens operator trust in automated systems.

Network Traffic Analysis

Data Source
. Data Analysis &
—
? (?(?:E') >Data Acquisition Processing
o —il-
Networks } # |

4G/5G Testbed

API
Al Models <
loT Testbed I::> Gateway

Cyber Threat
Intelligence Adversarial Accountability & Explainable
Attack Resilience Al
Y acke Metrics
_
E XAl-driven Intent Verification and Policy Enforcement

Figure 5: XAl-driven Intent Verification and Policy Enforcement

Figure 5 illustrates how the MAIP integrates multiple data sources—including 4G/5G and loT
testbeds as well as cyber threat intelligence—to enable explainable Al (XAl) for resilient intent-
based security enforcement. Network traffic is continuously acquired and analysed, feeding into
Al models that support adversarial attack detection, accountability and resilience metrics, and
explainable Al outputs. This ensures that security intents are not only enforced but also verified
and explained in human-understandable terms.

Incorporating XAl provides transparency and accountability in intent-driven security
management. High-level intents are translated into enforceable policies, continuously monitored
through anomaly detection, and validated against actual system behaviour. When violations
occur, the system offers explanations that clarify which policies were breached and why, reducing
the risks of opaque, black-box enforcement. Moreover, the integration of accountability metrics
with adaptive orchestration enables closed-loop remediation actions—such as rerouting,
workload migration, or policy adjustments—while maintaining service availability. By linking data
acquisition, threat intelligence, and explainable Al reasoning, MAIP builds trust in automated
enforcement and strengthens resilience across complex multi-cloud and B5G/6G environments.

The XAl component aims to enhance the robustness of Al models built within the Network Traffic
Analysis module, making them more resilient against various types of adversarial machine
learning attacks. The Adversarial Attacks module focuses on injecting various evasion and
poisoning adversarial attacks, such as random label flipping, label flipping attacks and Generative
Adversarial Networks (GANs) attacks or integrating existing Al-based attack libraries for the
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robustness analysis of Al models. The Explainable Al module aims to produce post-hoc global and
local explanations of predictions generated by our model. Specifically, we employ popular model-
agnostic post-hoc XAl techniques, such as SHAP (SHapley Additive exPlanations) [1][3] and LIME
(Local Interpretable Model-Agnostic Explanations) [4][5], to explain predictions of our models.
This module plays a crucial role in improving the transparency of the decision-making process of
our models, enhancing interpretability, and, most importantly, ensuring the reliability of the
predictions. Furthermore, we incorporate defence mechanisms, such as adversarial training and
leveraging XAl techniques, to prevent attacks against the Al models.

To further enhance resilience, MAIP supports closed-loop orchestration. When a policy violation
occurs, the system does not simply raise an alert but can also automatically trigger adaptive
remediation actions. These may include rerouting traffic through secure gateways, tightening
access control rules, or even migrating workloads to more trusted infrastructure. Importantly,
each action is accompanied by a clear, human-readable explanation, allowing operators to
validate and trust the Al’s response rather than viewing it as an opaque “black-box” decision.

Finally, MAIP ensures auditability and transparency by logging all verification and enforcement
actions along with their corresponding explanations. This creates an auditable trail of decisions
and responses, supporting regulatory compliance, post-incident investigations, and long-term
accountability. Such transparency is particularly critical in highly regulated environments, where
operators must not only ensure strong security but also demonstrate compliance to external
authorities.

By combining intent verification, explainable anomaly detection, adaptive orchestration, and
comprehensive auditability, MAIP ensures that operators can enforce intent-driven security
policies with full visibility into the Al’s decision-making process. This reduces the risks associated
with black-box automation and fosters trust in intelligent security management for complex 6G
and loT ecosystems.

3.3. Adaptive Security in Multi-Cloud and Dynamic Environments

In multi-cloud and dynamic B5G/6G environments, organizations face the challenge of enforcing
uniform security policies across highly heterogeneous infrastructures. Applications and services
are often deployed across multiple providers, each with its own security mechanisms, controls,
and interfaces. This fragmentation complicates the task of maintaining consistent protection for
sensitive assets, particularly customer data that may traverse multiple domains. To address this,
we introduce adaptive enforcement mechanisms that integrate with moving target defence
(MTD), ensuring both resilience against threats and transparency in enforcement.

The security intent in such environments is clear: protect customer data through strong
encryption, prevent unauthorized cross-cloud transfers, detect anomalies in real time, and
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maintain service availability even under attack or system reconfiguration. We translate these
high-level security intents into actionable policies that harmonize encryption standards and
access controls across different cloud providers. Doing so reduces the risk of configuration drift
and prevents attackers from exploiting inconsistencies between platforms.

ADAPTIVE SECURITY IN MULTI-CLOUD AND DYNAMIC ENVIRONMENTS

e ™
Intent Definition
* Ensure customer data is encrypted
* Prevent unauthorized cross-cloud transfers

* Detect anomalies in real time
+ Maintain service availability

A 4

Adaptive Policy Enforcement

« Harmonizes encryption and access controls across diverse cloud providers

A\ J
Cross-Domain Anomaly Detection Moving Target Defense
* Detects and blocks policy violations + Dynamically reconfigures workloads, routes,
* (e.g., unauthorized transfers) + or network topologies to reduce
= Explains root causes = predictability for attackers

Intent
Validation

Figure 6: Adaptive Security Framework in Multi-Cloud and Dynamic Environments

Figure 6 illustrates how we enforce high-level security intents across heterogeneous multi-cloud
infrastructures by combining adaptive policy enforcement, cross-domain anomaly detection, and
moving target defence (MTD). Intent definitions, such as ensuring data confidentiality,
preventing unauthorized transfers, detecting anomalies in real time, and maintaining availability,
are translated into concrete security actions. Adaptive enforcement harmonizes encryption and
access controls across diverse cloud providers, while anomaly detection identifies and explains
policy violations. Simultaneously, MTD dynamically reconfigures workloads, routes, or network
topologies to minimize attacker predictability. Finally, intent validation ensures that these
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adaptive measures remain consistent with the overarching security objectives, preserving both
resilience and transparency.

Beyond static policy enforcement, we leverage cross-domain anomaly detection to monitor data
flows and application behaviour continuously. This enables the system to identify violations such
as unauthorized transfers or suspicious activity that spans multiple clouds. Importantly, we do
not simply block such events—it also provides transparent explanations of the root cause,
allowing security teams to understand why an action was taken and how it relates to the
organization’s intent.

A critical feature of our solution is its integration with moving target defence provided by ZHAW.
Rather than presenting a static attack surface, the system dynamically reconfigures workloads,
routes, or even network topologies, making it more difficult for adversaries to predict and exploit
system behaviour. These changes are orchestrated in a way that preserves service continuity and
availability, ensuring that legitimate users remain unaffected while attackers face increasing
uncertainty.

The adaptive enforcement builds upon recent advances in resource-optimized MTD strategies,
such as those developed at ZHAW in the scope of the “Resource-optimised MTD” framework. As
defined in the previous deliverable D3.1 [24], the MTD architecture enhances the security of
network functions across the edge-to-cloud continuum through proactive and reactive
operations such as live migration and re-instantiation of virtualized and containerized network
functions. While earlier work focused on the MTD controller and its ability to orchestrate live
migrations of containers in Kubernetes clusters, the current focus lies on the MTD Strategy
Optimizer. This component leverages Al-based decision-making agents to determine how and
when migrations should occur, balancing resilience with performance overhead. Integrating such
approaches allows security policies to be enforced adaptively without compromising availability
or transparency, ensuring that high-level security intents remain aligned with underlying
reconfiguration actions.

By aligning adaptive policy enforcement with advanced MTD strategies, we harmonize
encryption and access control policies across cloud providers while dynamically reducing attack
predictability through live migration and workload reallocation. The use of Al-powered
optimizers ensures that these migrations are not only secure but also efficient, minimizing
downtime through techniques such as pre-copy, post-copy, or hybrid live migrations. This results
in a security fabric that is both resilient against persistent threats and sensitive to service-level
objectives.
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4. Adaptive orchestration optimisation for sustainability

The optimisation strategy plugged into the orchestration level combines cybersecurity and
sustainability objectives. As introduced in deliverable D3.1 [24], the Secure-by-Design
Orchestration framework applies two optimisation strategies that guide orchestration decisions
while strengthening network function security. These optimisation strategies are CTI-driven
selective sharing of vulnerability data and hygiene scores, and an Al-based workload prediction
service. Both of which has the objective of minimizing the energy overhead of 6G services on the
underlying edge-cloud infrastructure while maximizing the cybersecurity posture of said services.

4.1. CTI-Driven Selective Sharing

The CTI framework provides hygiene scores from vulnerability data, supporting orchestrator to
place CNFs only in domains with an acceptable security posture. From our work on CTl exchange,
we developed a sensitivity—necessity mapping mechanism that scores vulnerability metadata to
decide what information should be shared between domains. Orchestration decisions are guided
by trustworthiness (hygiene scores), avoiding unnecessary exposure of sensitive data. This
selective CTl sharing becomes a feedback input to the orchestrator, helping to prevent insecure
payload placement and enabling security-per-construction orchestration.

CTI Agent

Decision-making algorithm

Risk Scoring
Vulnerability Vulnerability Filtered CTI Data (STIX)
Scanner reports —>» —> 4 Cluster Hygiene Score | ] Orchestratar(sFORK)

Sensitivity

Map Adaptive Orchestration
Anonymise Decisions (Placement,
Necessity Scaling, Migration)

Map

Figure 7: High-level functional view of the CTl selective sharing process

The overall workflow of the CTI selective sharing framework is illustrated in Figure 7. Hygiene
scores, derived from vulnerability data, act as a filter for placing functions only in domains with
an acceptable security posture. To support this, we developed a sensitivity—necessity mapping
mechanism that scores metadata and decides what information to share across domains.

Vulnerability scanners in each cluster send raw reports to the CTlI Agent. Each vulnerability is
analysed and given a risk score that reflects its threat level. The CTI Agent then applies a decision-
making algorithm that combines this risk score with two maps: sensitivity and necessity. Based
on these three values, the algorithm decides whether each field should be shared or anonymised.
The filtered data is then serialised in STIX format and exchanged with peer clusters. Cluster
hygiene scores are calculated from the shared CTI data together with severity scores. These
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scores are sent to the orchestrator, which uses them to guide CNF placement, scaling, and
migration.

The algorithm works on metadata fields extracted from vulnerability reports. Each field is
evaluated against the sensitivity map (defined by the CTI publisher) and the necessity map
(defined by the CTI subscriber). The sensitivity map shows which fields are too confidential to
share, while the necessity map highlights the fields the subscriber needs to see. This dual
mapping balances the priorities of both sides, making the exchange more controlled and useful.
The risk score adds another dimension. It combines parameters such as the severity and age of a
vulnerability to estimate its exploitability. This score acts as a weighted factor in the decision
process, giving more importance to high-risk vulnerabilities.

The algorithm evaluates every vulnerability key-value pair with two possible outcomes: “include”
or “anonymise.” The resulting CTl data, together with severity values, feeds into the calculation
of a cluster-wide hygiene score. This score reflects how trustworthy a cluster is and is directly
used by the orchestrator when making deployment decisions. This approach allows orchestration
to be guided by trustworthiness, while avoiding disclosure of sensitive details. In T3.4, selective
CTl sharing is used as feedback to the orchestrator, preventing insecure placements and enabling
security-per-construction orchestration.

4.2. Workload Prediction for Scheduling

The workload prediction service runs as a lightweight Al microservice integrated with the
orchestration layer. It interacts with Prometheus [26] monitoring system which collects
telemetry from both services (containers/pods) and cluster nodes. At the service level,
Prometheus monitors CPU usage, memory consumption, network traffic (Tx/Rx), and disk 1/0
over time. At the node level, including both control plane and worker nodes, it tracks aggregate
resource utilisation and workload distribution. Using this historical data, the Al model generates
short-term forecasts that capture both expected usage trends and unusual anomalies. These
predictions allow the orchestrator to anticipate demand rather than simply reacting to it.

Each workload indicator is analysed against two maps: typical fluctuation patterns and anomaly
signatures. The prediction model distinguishes between normal growth (e.g., daily traffic peaks)
and abnormal behaviours (e.g., DoST-like attacks). Forecast outputs include expected load ranges
and anomaly likelihood scores. Based on these, the orchestration engine decides whether to
scale, migrate, or throttle workloads in advance.

The prediction service exposes its results through a standard API, enabling seamless integration
with scheduling logic. Forecasts are packaged as structured metadata and consumed by the
orchestrator to guide placement and migration strategies. When anomaly likelihood is high, the

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 27 of 48
the European Union et ety =4 N and Innovation




NRT:..

w / "R K D3.3 Intent-based service security and adaptive security techniques.rl
o\ A l*

system prioritises resilience; when predictions show stable trends, the system can favour energy-
efficient scheduling.

In T3.4, these Al-driven forecasts act as proactive signals that align payload mobility with both
security posture and sustainability goals, ensuring that orchestration decisions are not only
reactive but also predictive.

This capability directly addresses the challenge highlighted in D3.1 [24]: without prediction,
schedulers risk either over-allocating resources (wasting energy) or under-allocating (causing SLA
loss). By providing foresight into both normal and anomalous workloads, the Al service enables
the orchestrator to act proactively, improving efficiency, resilience, and sustainability.

roject funded by
Co-funded by d s e, L@ (@ UK Research Page 28 of 48
the European Union i fralrutry =4 B and Innovation




NRT:..

w / "R K D3.3 Intent-based service security and adaptive security techniques.rl
o\ A I*

5.Secure Data Aggregation

In B5G/6G networks, the number of connected devices and the amount of data they produce will
be massive. To develop Al-based service orchestration in such environments, enabling
technologies are essential to ensure that large-scale model training can occur without
compromising privacy. Secure data aggregation (SDA) is one such enabler: while not a direct
orchestration or training technique itself, it supports frameworks like federated learning (FL) by
ensuring that model updates from distributed entities can be combined securely and efficiently.
Federated learning as a decentralized training framework aims to enhance data privacy by
enabling model training directly on local datasets, without requiring raw data to be shared [15].
Participants retain control over their data and perform local training, transmitting only updated
model parameters to a central server or several distributed nodes for aggregation into a global
model. This framework not only safeguards privacy but also addresses data silo challenges,
promoting efficient data utilization between organizations while ensuring compliance with
regulations [16] such as the General Data Protection Regulation (GDPR).

However, the transmission of model parameters in FL may lead to the risk of information leakage,
as gradients can carry sensitive participant data. This vulnerability, called the gradient leakage
attack, arises when the server is either malicious or honest-but-curious, potentially exploiting
gradients to infer private information. To address this issue and improve the practical viability of
FL, the Secure Aggregation protocol needs to be utilized [17]. This protocol safeguards the
aggregation process by employing techniques such as encryption, randomization, and
scrambling, ensuring that sensitive information remains confidential during both transmission
and aggregation of model updates. Additionally, intent-based service security can define
requirements such as “aggregate updates in a way that hides every device’s data.” The system
then selects Multi Party Computation (MPC) protocols that satisfy this intent, such as additive
secret sharing or homomorphic encryption.

5.1. Secure Data Aggregation Protocol

This protocol supports two interchangeable approaches: centralized data aggregation and MPC-
based secure aggregation. Both are designed to provide strong privacy guarantees, robustness
against malicious participants, and reliable aggregation even when clients drop out or experience
delays.
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Figure 8: Secure Data Aggregation Process

In the centralized data aggregation protocol, as shown in Figure 8 a central server computes the
sum of client inputs while keeping each individual input confidential. This version of the protocol
assumes that either the server or clients could act maliciously and actively prevent data leakage
or manipulation. Each client first generates a private and public key in round 0 and establishes
shared secrets with every other client in round 1. These shared secrets are used to create masking
values in round 2 that hide the true input. The client then sends the masked input to the server.
The server collects all masked inputs in round 3 and combines them to compute the correct
aggregated sum in round 4. If some clients drop out, the server can reconstruct the missing
masking values using a cryptographic secret sharing mechanism. The protocol also ensures that
delayed client submissions cannot be reconstructed prematurely, preserving privacy. This design
guarantees that the aggregation remains both robust and private, even under adversarial
conditions.

MPC-based aggregation depicted in Figure 9 removes reliance on a single trusted server by
distributing computation across multiple parties. This comes at the cost of slightly more
computation overhead. Clients first generate keys and establish shared secrets, then mask their
inputs using the same cryptographic primitives as in the centralized protocol. Each client splits its
masked input into encrypted shares and distributes them among several computation parties.

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 30 of 48
the European Union i fralrutry =4 B and Innovation

P




NRT:..

w / "R K D3.3 Intent-based service security and adaptive security techniques.rl
-\ A l*

The computation parties jointly perform the aggregation without accessing the full input from
any single client. After the aggregation is completed, the result is reconstructed and shared with
all clients. This approach ensures that no individual party, including a central server, can access
complete client data. Similar to centralized aggregation, missing inputs due to client dropouts
can be reconstructed securely, and delayed inputs remain protected. The distributed nature of
computation increases resilience against malicious participants, as collusion between multiple
parties would be required to compromise the aggregation.

perturbed weights

Y1 =x1+pi12 + P12 Ys = T3 + P31 T P32
Yo = Ty + P21+ D23

Uq U2 Uus
Ty o T3
T pairwise perturbations
P12 = S12 — S21 P21 = 821 — 81,2 P32 = 832 — 823
P13 = 81,3 — 831 P23 = 82,3 — 832 P31 = 831 — 813

Figure 9: MPC-based aggregation

Centralized aggregation is efficient and well-suited when a trusted server is available, providing
privacy and robustness through masking and secret sharing. MPC-based aggregation [18] offers
stronger privacy and security, as it eliminates single points of trust and distributes computation,
making it ideal for untrusted or adversarial environments. Although MPC introduces additional
computational and communication overhead, it ensures that even in high-risk scenarios, client
data remains confidential. By supporting both methods, a federated learning system can flexibly
choose the aggregation approach that best meets its current operational and security
requirements. This dual capability allows the system to balance efficiency, privacy, and
robustness, ensuring secure and reliable model training across diverse environments.
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5.2. Attack Resilience

The secure aggregation protocol demonstrates strong resilience against several types of
adversarial attacks commonly encountered in federated learning, particularly in dynamic B5G/6G
environments. In this section, some major security attack [19] against the described protocol
have been slightly highlighted. Impersonation attacks, where malicious clients attempt to
masquerade as legitimate participants, are mitigated by the protocol’s robust key exchange and
authentication mechanisms. Each client generates unique private and public keys and establishes
shared secrets with other participants, making it extremely difficult for an attacker to inject fake
updates without being detected. Combined with the masking process, this ensures that even if
an adversary joins the network, they cannot meaningfully influence the aggregated result or
recover other clients’ private data.

Label-flipping attacks where malicious clients intentionally mislabel their local data to degrade
the global model, represents a significant threat against model accuracy. Experiments have
shown that while label-flipping attacks can drastically reduce accuracy in non-secure
configurations, integrating secure aggregation with MPC mitigates this impact [20]. By
distributing the aggregation process across multiple computation nodes, the protocol reduces
the influence of any single malicious participant. Even when a substantial fraction of clients
behaves maliciously, the MPC framework preserves a higher level of model accuracy compared
to non-MPC setups, particularly over longer training iterations. Although some degradation still
occurs, the secure aggregation process provides a buffer against extreme manipulation of the
model.

Other sophisticated adversarial behaviours, such as min-max attacks or general poisoning
attempts, can also be addressed through a combination of masking, secret sharing, and
distributed computation. While min-max attacks tend to have a more gradual impact on model
performance, the protocol’s adaptive security capabilities further enhance resilience. By
continuously monitoring updates for anomalies, dynamically adjusting privacy mechanisms, and
re-weighting or excluding suspicious contributions, the system can respond in real time to
emerging threats. This adaptive approach ensures that defences evolve alongside the
environment, making it much harder for attackers to succeed in dynamic, high-mobility networks
typical of B5G/6G scenarios.

The integration of adaptive security techniques is particularly valuable in highly dynamic
federated learning settings. By combining policy-driven intent with automated anomaly
detection, cryptographic protections, and trust management, the system forms a closed
feedback loop: user-defined security goals guide adaptive measures, which continuously enforce
and adjust protections in response to observed threats. This loop not only enhances resilience
against known attacks like impersonation and label-flipping but also strengthens the system’s
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ability to defend against emerging or unforeseen attack vectors. The combined effect of MPC-
based aggregation, cryptographic masking, and adaptive security ensures that the federated
learning framework remains both privacy-preserving and robust, even under significant
adversarial pressure.

5.3. Aggregation Integration

The secure aggregation protocols can play a key role in enhancing other NATWORK components
such as MTD strategies [21] and performing behavioural analysis. Since both mentioned areas
require the collection and processing of sensitive data from multiple network components
without exposing individual data sources, privacy-preserving aggregation is an essential
requirement.

In MTD, network configurations and system parameters are continuously shifted to make attacks
harder to execute and predict. Monitoring and analysing these dynamic changes across multiple
nodes require aggregating information such as traffic patterns, node status, or potential
anomalies. By using centralized secure aggregation, network controllers can collect masked
telemetry data from multiple devices to calculate global metrics, detect potential attack surfaces,
and guide configuration changes, all without exposing the details of any single device. When the
trust in the central controller is limited or higher security is needed, MPC-based aggregation can
distribute the computation among multiple monitoring agents. This ensures that no single entity
can access complete network data, resulting in a significantly harder surface for attackers to
exploit the defence system or infer sensitive behaviours.

For data plane behavioural analysis where the goal is to detect anomalous traffic patterns, each
switch or device generates local statistics, such as packet counts, flow records, or latency
measurements. Secure aggregation allows these measurements to be combined into global
models without exposing the raw data from any single device. Using the protocols, either the
central controller (centralized aggregation) or multiple computation parties (MPC-based
aggregation) can compute network-wide metrics, identify suspicious behaviour, and trigger
automated responses. This approach not only preserves privacy but also enhances robustness
against compromised devices that might attempt to inject false data into the analysis.

By integrating the secure aggregation protocols into MTD and behavioural monitoring, networks
gain several benefits: they can adapt dynamically to threats, maintain privacy of individual nodes,
and ensure that the analysis remains resilient even in adversarial conditions. This makes
federated, privacy-preserving aggregation a powerful tool for next generation networks, where
both adaptability and confidentiality are critical.
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6. Microservice profiing and anomaly detection -
Microservice behavioural analysis

The NATWORK B5G architecture follows a microservice-based approach. Microservices
architecture is a fundamental enabler of flexible and scalable 6G network services. Unlike
monolithic applications, in microservice-based applications, network functions are decomposed
into smaller, independent components that operate autonomously, allowing for scalable
deployment, real-time adaptability, and efficient resource management, making them well-
suited for dynamic network environments. In the following section, a module that monitors the
performance of microservices in a continual manner to ensure the efficient operation of the
system is presented. The proposed module assesses the impact of microservice on compute and
network resources to quickly detect anomalies in resource consumption and solve them before
the systems’ performance is affected. The outputs of the mechanism will be used in microservices
orchestration platforms to enable resource-efficient and reliable placement of microservices in
6G environments.

6.1. Technical Description

The Microservice behavioural analysis module performs continuous microservice performance
monitoring to ensure efficient operation of the system. In NATWORK, this involves leveraging
runtime metric collectors and packet sniffers to continuously track key performance indicators,
such as CPU and memory usage, ingress/egress traffic, etc. The module analyses real-time
monitoring data, to determine whether microservices meet predefined performance
requirements and if abnormal traffic flows occur in the network. If deviations are detected by an
Al-based Detection Mechanism, automated scaling decisions and elasticity actions will be
triggered to maintain optimal resource utilization and prevent service degradation. Figure 10
shows the position of the microservice behavioural analysis module and its interconnection to
other modules. This module is comprised of microservice profiling techniques and Al-driven
anomaly detection mechanisms for enhanced microservice profiling and threat detection, shown
in Figure 10 as Microservice Behavioral Analysis. It interacts with the monitoring engine, to collect
real-time data on microservices resource usage and traffic metrics, the microservice orchestrator
to trigger scaling decisions dynamically based on detected anomalies and the SDN controller to
enforce mitigation actions. The monitoring engine has been presented in deliverable D4.1 [8].
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Figure 10: Position of the microservice behavioural analysis module and interconnection to other modules

6.1.1. Algorithms utilized for proposed solution

While microservices offer significant advantages, their distributed nature makes them inherently
more vulnerable to threats such as denial-of-service (DoS) attacks, privilege escalation, and
unauthorized access. Given these risks, security is another critical aspect, making behavioural
analysis essential in microservice-based architectures to detect anomalies and provide protection
against potential breaches.

To effectively analyse microservice behaviour, it is necessary to monitor their performance both
on a temporal and a periodic basis, aiming to identify any deviations from normal operation [9].
On the one hand, tracking how network traffic patterns change over time allows for capturing
anomalies that may evolve gradually or threats that are identifiable only by analysing a certain
period. On the other hand, sudden changes in microservice behaviour, such as unexpected spikes
in ingress traffic or unusual increases in resource consumption, may indicate malicious activity
and should be contained immediately.

To address these challenges, microservice profiling techniques and Al-based anomaly detection
mechanisms are employed to analyse system behaviour in real-time and identify anomalous
behaviours. The microservice profiling technique can identify anomalous resource usage for the
microservices deployed at any moment. For microservices with anomalies detected or some
critical microservices, the Al-powered detection mechanisms start to continuously analyse
telemetry monitoring data to establish behavioural models of a) normal microservice resource
consumption and b) traffic and flow related data offered by the Monitoring engine that was
presented in [8].
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A two-stage anomaly detection approach is followed. First, a lightweight 1D- Convolutional
Neural Network (CNN) discerns anomalous resource usage. By profiling CPU, memory, and
network usage under typical conditions, the system can classify microservice behaviour as normal
or irregular, identify deviations that indicate potential ongoing attacks or unexpected system
behaviour that aims at exhausting the network resources. Then, in the case of anomalous data
occurrence a more robust 1D-CNN discerns the type of the anomaly, with three different types
of output:

e The Anomaly type when the pattern of the resource use corresponds to a known anomaly
type,

e False Positive Occurrence when the pattern of resource consumption corresponds to
normal behaviours i.e., in the case the first CNN produced a false positive.

e Uknown, when the pattern of metrics examined does not correspond to any of the
previous cases, which warrants more inspection by the system operator.

A regression-based forecasting mechanism was designed to model CPU and memory
consumption for containerized microservices, enabling proactive resource management in cloud-
native environments [10]. The proposed approach leverages a lightweight Long Short-Term
Memory (LSTM) deep neural network, chosen for its ability to capture temporal dependencies
and nonlinear patterns in time-series resource metrics. By continuously monitoring historical CPU
and memory usage, the LSTM model learns workload dynamics and generates regression
predictions that estimate near-future consumption levels. The lightweight design ensures
minimal overhead, making it suitable for deployment within resource-constrained microservice
ecosystems. Such predictive modeling supports autoscaling, anomaly detection, and
performance optimization, ultimately improving service reliability while reducing infrastructure
costs. Figure 11 presents the envisioned high level architecture of the proposed solution.

Appendix | contains detailed information on the architecture of the Neural networks utilized.
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Figure 11 High level architecture of the proposed solution

6.2. Microservice Profiling Evaluation Results

Concerning microservice resource use, a Microservice Profiling tool was developed that monitors
twelve different metrics, which cover both the infrastructure level, i.e., the consumption of
system resources, e.g., CPU and memory utilization, and application-related metrics related to
latency, throughput, and errors concerning the applications. Then based on this data it detects
anomalous resource consumption patterns. These metrics are listed in Table 1. This approach is
in line with the practice proposed in [7].

Table 1 Evaluation results

Category Metric \ Description
Disk Read Throughput Data read from disk per unit time; indicates I/O

= demand.

g Disk Write Throughput Data written to disk per unit time; reflects storage
g usage.

QEC Memory Usage (RSS) Actual physical memory (RAM) used by the

o container’s processes.

é Memory Usage (VSize) Total virtual memory reserved (address space);
E may highlight leaks.

%3 CPU Utilization Percentage of CPU time consumed; shows

5 processing demand.

§ Network RX (bytes/ns) Rate of incoming network traffic (data received).
8

£ Network TX (bytes/ns) Rate of outgoing network traffic (data sent).
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Category Metric Description
Latency p50 Median response time; typical user experience.

o3

[J]

e

g Latency p90 Response time below which 90% of requests fall;
5 shows tail performance.

Y=~

Sz

32 Latency p99 Response time below which 99% of requests fall;
i>J E highlights worst-case scenarios.

=

)

E Request Throughput Number of successful requests processed per unit
o time.

Q.

< Error Rate Rate of failed requests; critical for reliability

monitoring.

To present a proof of concept for the underlying algorithms of the modules, related to
microservice profiling, we utilized the open dataset presented in [7]. This dataset contains five
different types of microservice related anomalies: High CPU utilization, High Memory
consumption, Sudden spike in user traffic, Gradual step increase in user load, High Network
latency.

Table 2 presents the results of the lightweight CNN that performs binary classification of the
microservices resource usage (Normal/Anomalous), along with the performance of other Al/ML
algorithms commonly used for the same task, a Multi-Layer Perceptron DNN, a Random Forest
and an SVM. The proposed method outperforms all other methods in terms of metrics commonly
utilized to evaluate classification tasks.

Table 2 Results of the lightweight CNN that performs binary classification of the microservices resource usage

(Normal/Anomalous)
Algorithm Accuracy \ Precision Recall F1-Score
Lightweight 1-D | 0.9712 0.94655 0.8567 0.8967
CNN
MLP 0.9631 0.9171 0.8541 0.8844
Random Forest 0.9658 0.9618 0.8157 0.8827
SVM 0.9601 0.9529 0.8013 0.8789

Table 3 presents the results of the 1-D CNN that performs multiclass classification of the
microservices resource usage (5 anomalies, normal, unknown), along with the performance of
other Al/ML algorithms commonly used for the same task, a Multi-Layer Perceptron DNN, a
Random Forest and an SVM. In this case the proposed algorithm outperforms all other
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approaches in terms of Accuracy, Recall and F1 Score, however it is slightly outperformed by the
Random Forest implementation for the Precision metric.

Table 3 Results of the CNN that performs multiclass classification of the microservices resource usage (7 classes: Normal/Five
Anomalies/Unknown)

Algorithm Accuracy \ Precision Recall F1-Score
1-D CNN 0.9077 0.8956 0.9048 0.8964
MLP 0.8718 0.8605 0.8718 0.8584
Random Forest 0.8956 0.8961 0.8956 0.9034
SVM 0.8410 0.8062 0.8410 0.8192

Once a specific anomaly is detected, an automated mitigation action can be triggered to
counter it. Two example mitigation actions per anomaly are presented in Table 4.

Table 4 Common actions used to mitigate the microservice anomalies examined.

Anomaly

Example Mitigation Actions

High CPU Utilization e Horizontal Pod Autoscaler Automatically increase/decrease

pod replicas based on CPU usage.

o Vertical Pod Autoscaler : Automatically adjust CPU

requests/limits to optimize pod performance.

Pod Memory Limits + Auto-restart: Kubernetes

evicts/restarts pods exceeding memory limits.

e Vertical Pod Autoscaler : Adjust memory requests

automatically based on usage trends.

Horizontal Pod Autoscaler: Scale pods dynamically based on

traffic metrics.

o Cluster Autoscaler: Automatically add nodes when pods
can’t be scheduled due to resource constraints.

High Memory °
Consumption

Sudden Spike in User °
Traffic

Gradual Step Increase e HPA with Custom Metrics: Scale based on app-specific
in User Load metrics (e.g., requests per second).
e Predictive Autoscaling: Automatically adjust resources
based on historical traffic patterns.
High Network Latency e Service Mesh Retry & Load Balancing: Automatically reroute
or retry requests on slow connections.
e Pod Affinity / Topology-Aware Scheduling: Automatically
schedule pods close to dependencies to reduce latency.
6.3. Al driven detection mechanism

This section presents evaluation results for an Al based regression mechanism, based on a LSTM
type RNN which was developed to forecast the consumption of memory (RSS) and CPU by the
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user. The experiments presented utilized an open dataset [11], which measured multiple

resource related features for two web app microservices, explained in Table 5. The

measurements were taken every 1 second, both in normal conditions and under various attacks

(two DDoS attack variants, A brute Force attack and SQL injection).

Table 5 Features contained in [13] and utilized for forecasting resource prediction

Feature

container_cpu_cfs_periods_rate

Description

Number of CPU scheduling periods (under Linux
CFS) per second allocated to the container.

container_cpu_cfs_throttled_periods_rate

Number of CPU periods per second in which the
container’s CPU usage was throttled (limited).

container_cpu_cfs_throttled seconds_rate

Total time per second (in seconds) that the
container was throttled by CPU limits.

container_cpu_system_seconds_rate

Rate of CPU time consumed by system (kernel)
processes on behalf of the container.

container_cpu_usage_seconds_rate
(target)

Total CPU usage rate (in seconds per second)
consumed by the container.

container_cpu_user_seconds_rate

Rate of CPU time spent by user-level processes
inside the container.

container_file_descriptors

Current number of open file descriptors (files,
sockets, etc.) held by processes in the
container.

container_memory_failures_rate

Rate of memory allocation failures (e.g., due to
hitting limits) inside the container.

container_memory_rss (target)

Resident Set Size: amount of non-swappable
physical memory (RAM) used by the container.

container_memory_usage_bytes

Current total memory usage of the container
(includes cache + buffers).

container_memory_working_set_bytes

Actively used memory that cannot be reclaimed
easily (excludes cache).

container_network_receive_bytes_rate

Rate of incoming network traffic in bytes per
second received by the container.

container_network_receive_packets_rate

Rate of incoming network packets per second
received by the container.

container_network_transmit_bytes_rate

Rate of outgoing network traffic in bytes per
second sent by the container.

container_network_transmit_packets_rate

Rate of outgoing network packets per second
sent by the container.

container_sockets

Number of active network sockets opened by
the container.
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Feature Description

Number of active threads running inside the

container_threads .
- container.

We trained two different LSTMs to predict Total CPU usage rate per second consumed by the
container and Resident Set Size memory i.e. the amount of non-swappable physical memory
(RAM) used by the container. The networks were trained for 30 epochs, and we experimented
with the steps in the future the algorithms predict. Here, we present results for the last period
where the prediction of the algorithm has an R?>0.9. R?, called coefficient of determination,
measures the proportion of variance in a dependent variable that is explained by the
independent variables in a regression model. It is expressed as a value between 0 and 1, where
a higher R? value indicates that the model provides a better fit to the data and explains more of
the variability.

For Container CPU usage Rate, the forecast step was 10 seconds into the feature, and the related
metrics were Mean absolute Error (MAE: 0.0028), Root Mean Squared Error (RMSE: 0.0117) and
R2:0.9769. A plot for the forecast values is shown in Figure 12.

Container CPU usage: Forecast (t+10)

—8— Actual
: ; #— Predicted

025

020 4

015 4

010 4

0.05 4

0.00 4

0 250 500 750 1000 1250 1500 1750 2000

Figure 12: CPU consumption forecast example for one of the containers contained in the dataset (step t=10)

For RSS, the forecast step was 3 seconds into the feature and the related metrics were Mean
absolute Error (MAE: 23815.3061), Root Mean Squared Error (RMSE: 16443.2474) and R%: 0.9056.
A plot for the forecast values is shown in Figure 13.

Prcjec funded by
Co-funded by gl;;, o s e RO (@ UK Research Page 41 of 48
the European Union Pt s =4 B and Innovation



NRT:..

w / "R K D3.3 Intent-based service security and adaptive security techniques.rl
o\ A l*

1e7 RSS: Forecast (t+3)

74 [ | ]

'IF

—a— Actual
14 Predicted 'Y

0 250 500 750 1000 1250 1500 1750 2000

Figure 13: Memory Consumption (RSS) forecast example for one of the containers contained in the dataset (step t=3)

The output of these neural networks will be integrated to that of the CNN to further enhance its’
performance and add temporal capabilities to the tool. It will also be integrated with the
Monitoring Engine to try to correlate Flow Related data with resource anomalies and produce
microservice flow-related anomaly alerts that will be fed to the SDN controller.

The following steps will be carried out during the upcoming months:

Co-funded by © mmpaeemen
the European Union Cotebmin e r

Advance the capabilities of Microservice Profiling by expanding it to cover interactions
between microservices and their impact on computational and network resources via the
utilization of prediction algorithms.

Develop the interfaces for automated mitigation action enforcement.

Finalize the integration of Microservice profiling with the Al-driven detection
mechanisms, including Al-enabled IDS developed by CERTH in WP4.,

Perform Scalability and Deployment Testing, i.e., a) Test the framework’s scalability with
increasing numbers of microservices and varying workloads in simulated 6G
environments, and b) Transition from simulated tests to pilot deployments in real-world
setups to validate framework reliability and efficiency.

Continuously integrate with relevant tasks and UC4.4, i.e., the Al-enabled IDS (T4.3) and
the Optimized resource allocation for microservices (T4.2).
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7.Conclusion

To meet the security and NetZero challenges of future 6G networks, a key technical focus of the
NATWORK project is to enable dynamic and footprint-efficient orchestration and management
of secure, distributed, and resilient services across the 6G continuum. This deliverable outlines
recent outcomes within the NATWORK T3.3, including the integration of Al-based approaches for
intelligent MTD and intent-aware security management, the facilitation of adaptive orchestration
with sustainability optimization, and the development of agile defense mechanisms for secure
microservices towards this overarching goal. Collectively, these efforts advance NATWORK’s
objective to deliver resource-efficient, adaptive, and intelligent security capabilities for the 6G
continuum. In the following period, we will build on these assets and develop them further with
evaluation and experimental results, which will be reported in D3.4 to be published in 2026 and
future deliverables about integration, testing and evaluation.
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Annex A Details on the architectures of the DNN used for
Microservice profiling

The following subsection presents details on the architectures of the Neural networks utilized for
the microservice profiling tool discussed in Section 6.1.1.

Architecture for Lightweight 2-class 1D-CNN (binary classification)

Input (T x C)
|

Convi1D (16 filters, kernel=5, ReLU)

BatchNorm

|
SeparableConv1D (32 filters, kernel=3, ReLU)
|

MaxPooling1D (pool=2)

|
ConvlD (64 filters, kernel=3, ReLU)

GlobalAveragePoolinglD

Dropout (0.25)

Dense (32, ReLU)

Dense (2, Softmax)
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1D-CNN multiclass classification

Input (T x C)
|
Convi1D (32 filters, kernel=5, ReLU)

BatchNorm

|
Convi1D (64 filters, kernel=3, RelLU)

MaxPooling1D (pool=2)

Conv1D (128 filters, kernel=3, RelLU)

GlobalAveragePoolinglD

Dropout (0.3)

Dense (64, RelLU)

Dense (7, Softmax)
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Lightweight LSTM Regression Model (forecasting CPU/Memory)
Input (T x C)

|
Convi1D (32 filters, kernel=3, causal, ReLU)

BatchNorm

|
Dropout (0.1)

LSTM (64 units, return_sequences=True)

|
Dropout (0.2)

LSTM (32 units, return_sequences=False)

|
Dense (32, ReLU)

|
Dense (16, ReLU)

Dense (h*C, Linear Output)
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