BB Ref. Ares(2025)8635076 - 10/10/2025

NIQT .

///

W-‘R*RK

Net-Zero self-adaptive activation

of distributed self-resilient
augmented services

D3.5 Pre-Deployment Security per Construction Measures.rl

Lead beneficiary JES Lead author \ Vincent Lefebvre
Reviewers Md Munjure Mowla, Robert Gdowski (ISRD), Glirkan Gir (ZHAW)

Type R Dissemination PU
Document version RN Due date \ 30/09/2025
RN Co-funded by
LA the European Union

Project funded by

Schweizerische Eidgenossenschaft Federal Department of Ecanomic Affairs, U K R h

) Cricienon ik Fovcaion ond Revtrth A esearc
Confederaziane Svizzera State Secretariat for Education, -
Confederaziun svizra Research and Innovation SERI an d I n novatlon

Swiss Confederation

NNT * 5k

w / "R K D3.5 - Pre-Deployment Security per Construction Measures.rl
-\ A l*

Project information

Project title Net-Zero self-adaptive activation of distributed self-resilient
augmented services

Project acronym NATWORK

Grant Agreement No 101139285

Type of action HORIZON JU Research and Innovation Actions
HORIZON-JU-SNS-2023

HORIZON-JU-SNS-2023-STREAM-B-01-04

Reliable Services and Smart Security

Start date 01/01/2024

Duration 36months

Document information

Associated WP WP3

Associated task(s) T3.4

Main Author(s) Vincent Lefebvre (TSS)

Author(s) Mark Angoustures (TSS), Antonios Lalas, Virgilios Passas, Eleni
Chamou, Stelios Mpatziakas, Vangelis V. Kopsacheilis, Alexandros
Papadopoulos, Aristeidis Papadopoulos, Konstantinos Nikiforidis,
Athanasios Korakis, Anastasios Drosou (CERTH), Vinh La, Edgardo
Montes de Oca, Manh Nguyen (MONT), Sumeyya Birtane, Mays Al-
Naday (UESSEX), Maria Safianowska (ISRD), Wissem Soussi (ZHAW)
Reviewers Md Munjure Mowla, Robert Gdowski (ISRD), Glirkan Gir (ZHAW)
Type R - Document, Report

Dissemination level PU - Public

Due date M21 (30/09/2025) — Extended to M22 (10/10/2025)

Submission date 10/10/2025

Prcjec funded by
Co-funded by 6: e po RO\ UK Research Page 20f71
the European Union : : E =4 B and Innovation

NRT:..

W.R:RK

D3.5 - Pre-Deployment Security per Construction Measures.rl

Document version history

Version |

Date

Contributor (s)

the European Union

EGESNS o

WS
o

v0.1 16/06/2025 | Initial table of Vincent Lefebvre (TSS)
contents
v0.2 11/07/2025 | Initial contributions | Vincent Lefebvre, Mark Angoustures (TSS),
in various sections | Antonios Lalas, Virgilios Passas, Alexandros
Papadopoulos, Aristeidis Papadopoulos,
Konstantinos Nikiforidis, Athanasios Korakis,
Anastasios Drosou (CERTH), Vinh La, Edgardo
Montes de Oca, Manh Nguyen (MONT),
Sumeyya Birtane, Mays Al-Naday (UESSEX),
Maria Safianowska (ISRD)
v0.3 24/07/2025 | Updated content in | Vincent Lefebvre, Mark Angoustures (TSS)
sections 4 and 5
v0.4 25/08/2025 | Revised content for | Vincent Lefebvre, Mark Angoustures (TSS),
sections 2 and 3 Antonios Lalas, Virgilios Passas, Eleni Chamou,
Stelios Mpatziakas, Athanasios Korakis,
Anastasios Drosou (CERTH), Vinh La, Edgardo
Montes de Oca, Manh Nguyen (MONT),
Sumeyya Birtane, Mays Al-Naday (UESSEX),
Maria Safianowska (ISRD)
v0.5 10/09/2025 | Pre-final version Vincent Lefebvre (TSS)
for late inclusions
v0.6 16/09/2025 | Last refinements in | Vincent Lefebvre, Mark Angoustures (TSS),
various sections Antonios Lalas, Virgilios Passas, Eleni Chamou,
Stelios Mpatziakas, Vangelis V. Kopsacheilis
(CERTH), Vinh La, Edgardo Montes de Oca,
Manh Nguyen (MONT), Sumeyya Birtane,
Mays Al-Naday (UESSEX), Maria Safianowska
(ISRD), Wissem Soussi (ZHAW)
v0.7 19/09/2025 | Draft ready for Vincent Lefebvre (TSS)
peer review
v0.7.5 23/09/2025 | Reviewed version Md Munjure Mowla, Robert Gdowski (ISRD),
Girkan Gir (ZHAW)
v0.8 26/09/2025 | Version after Vincent Lefebvre (TSS), Virgilios Passas
addressing peer (CERTH)
reviewers’
recommendations
v0.8.5 29/09/2025 | Quality review Joachim Schmidt (HES-SO)
v0.9 08/10/2025 | Final review and Vangelis V. Kopsacheilis, Antonios Lalas
refinements (CERTH)
Co-funded by o UK Research Page 3 of 71

and Innovation

NNT * 5k

w / "R K D3.5 - Pre-Deployment Security per Construction Measures.rl
.\ A l*

Version ‘ Date Changes Contributor (s)
v1.0 10/10/2025 | Final version ready | Antonios Lalas (CERTH)
for submission

- R4 UKResearch Page 4 of 71
=4 B and Innovation

i
Co-funded by 4]
the European Union

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or 6G-SNS. Neither the European Union nor the granting
authority can be held responsible for them. The European Commission is not responsible for any use that may be
made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the NATWORK consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the NATWORK Consortium nor any of its members, their officers, employees, or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the NATWORK Consortium nor any of its
members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss or
damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© NATWORK Consortium. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation, or both. Reproduction is authorised provided the source is acknowledged.

Project funded by

Co-funded by © mmmmrenen
the European Union Cotebmin e :

L9, .4 UK Research Page 50f71
=4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl

W R:RK Py ve

Contents

(00T 1 (=] o) KPP PP UPPPPPPPOR P PPPPPPPPPPIRt 6
List of acronyms and abbreviationscuiiii i e 8
[o) i =V T PRSP 10
I e 8 =1 o] 1TSS 10
EXECUTIVE SUMMIAIY ..ottt sss s sssssssasnsssnsnsnsnne 11
R 1o} o ¥ ot f (o] o NP PR 12
1.1. Purpose and structure of the doCUMENTeeiiiiiiiii e 12
0 1) =Y o o [=To I YU T I T=T o T DO PRSP 13
00 T [0} (=Y 7= =Y Fo T L PR URP P 13
2. State of the art @NAlYSIS ..oouviiee e e e e e 14
D% N 101 4 o Yo [0 ot f T o HEU T URTTRP 14
2.1.1. Definition and Uusabilitycoooiiieieiiiee e 14
2.1.2. Interaction with service-level security sOIUtIONSccveeeivciiieiiiiiiee e, 16
2.1.3. Interaction with D 2.1 service level security ServiCes.......ccovvvervvieeeieiciveeeesinnenn. 16
2.1.4. Interaction With D 3.1 ..o e e e e e e e 18
2.1.5. SUMIMIAIY ctttttiiiieee e et ereetitieess e e e etetttera s s eeeeettastsaaseeeeeseesssanssseseeereessssnnnseseesseesssnnnns 18
2.2. PDSCMS fOr CONTAINEIS ...uviieeieiiieeeceiieee ettt e e e st e e e et e e e et e e e e s bbe e e e esasaeeesesraeasennsneeens 19
2.2.1. T oY oTe [V Tl 1 o] [P 19
2.2.2. Confidential containers frameworkscoccuveiiiiiiiie e 20
2.2.3. Pre-deployment Microservice Security by constructioncccccvvvveeeeiieinnnnee. 25
2.2.4. Kubernetes security analysSis......ccoeeeeiie e e 26
2.2.5. O-RAN XAPP SECUITY ceevitiieie i i e eeeeii i e ettt e e e e e e ettt ree e e s e e e e e eaeaae e e s e e eeeeeennnaas 29
2.3. Binary pre-deployment hardening teChNiqQUES........cceeeiieieciiiiiieee e 34
2.3.1. LCT=T =T | SRS PPSSRRRPPRR 34
2.3.2. Confidentiality preservation ... e 34
2.3.3. INTEEIITY PreSErVatioNueeeueeiiiiiiiiiiiii e arrreearrraerees 36
2.3.4. Availability preservation ... 37
2.4, Web ASSEMDBIY SECUTLYuuiiiiiiii ettt eeerr e e e e e s eebbrereeeeeeeesenssnraens 39
2.4.1. WASM technology history and key design attributescccceeieiieciiien i, 39
2.4.2. WASM SECUILY @NAIYSIS uvvrvrieieeeeiiiiiirieiieeeeeieiiiirreeeeeeeeesesinrrereeeeeeeessnsreseeeeessennans 40
2.4.3. WASM MOdUlE INEEGIILY. ..vveeeeeeeeeieeee e e e e e e e 40
2.4.4. SOLA TAKEAWAYS ceeeeiieeieiiiiie e ettt e e e e e et e e e e e e e e s e eaara e e e e e e e e sesnntreaeeeaaesenaans 44
3. NATWORK’s PDSCMs on containerized payloads......cccccceeeecurreeeeeeeeieiicinreeeeeeeeeeeeinrreeeeee e 46

rojctfundec by
Co-funded by O s eeen poo RO (@ UK Research Page 6 0f71
the European Union et ety =4 N and Innovation

NRT:..

w N, };R K D3.5 - Pre-Deployment Security per Construction Measures.rl
3.1. Kubernetes pre-deployment Progress. ..o cieeeeeee e cesccireee e e e e eecerrre e e e e e s 46
3.2, PDSCMS ON MICIOSEIVICES i e e e e e e e e e s e s e s e e e s e s e s e s e s e s e sesesesesesesesasasanns 48
3.3. O-RAN xAPP onboarding security analysis and progress.......ccccocvveeevecveeeesiinveeeesnveeenn 49
3.3.1. IS-RD Liquid XAPP threat model........coooviiiiiieee e 49
3.3.2. NATWORK WOrk on XAPP SECUNILY «.ouvvieiiiiiiei ettt 53
4. NATWORK’s PDSCMs on native Workloadsccoecueeeriieiiieiniieeniecsiee e 57
ot I CT=Y o V=T - | P STPPPRRRP 57
4.2, MMT S threat MOdelot aee e s s sraaeeeenas 57
4.3, PDSCM ON MIMT ..ottt ettt ettt sttt e s ettt e e e s eaba e e e s sabteeessasseeeessasrneeenans 59
4.3.1. MMT remote attestation and continuous integrity verificationcccceuueeee. 59
4.3.2. MMT iN-TEE ShEREIING ... eeeee e 60
5. NATWORK’S PDSCM 0n WASM WOTKIOAdSccuvviiiiiiiiiiiieiiieeniieesiie e esreeesreessivee e 61
5.1. NATWORK runtime integrity teChniqueccccveeiiiiiiiii e, 61
5.2. Integration in D-MUTRA blockchain based mutual remote attestation 63
5.3, Alignment With NATWORKcooiiiieiieiee et srre e e e e e e e rvvara e e e e e e e e s anneneees 64
5.3.1. Workload portability........cececuiieiiiiiie e 64
5.3.2. Performance iIMPACccueee i e 65
5.3.3. YU = 11T o 11 11 Y PSPPSR 65
5.4. Future work in the NATWORK project and beyond..........ccccvvveeeeeieicccciiiieeeee e, 66
5.4.1. (DY LU YN o} =T = o o IR 66
5.4.2. Towards 0-1ateNnCy at StArt....ccccvveeeeeic e e e 66
5.4.3. Lower bounding the performance impact in all situations with an on-demand
L === OO PSRRSR 66
5.4.4, WASM module confidentiality preservationcccccccevveciiveeeee e 66
5.4.5. During or beyond NATWORK. Mitigating JIT spraying.....ccccccceeeeeevveeeeeeeeeessccnnnnen 66
(T 6o T3 1ol [V 1] o 1o TR PP UPUPPPPRRRPPPPR 67
0t R N1 q] =] o 3 67
2] =T =Y o Lol T PP 69

rojctfundec by
Co-funded by O s eeen poo RO (@ UK Research Page 70f71
the European Union et ety =4 N and Innovation

NRT:.-.
W.R:RK

D3.5 - Pre-Deployment Security per Construction Measures.rl

List of acronyms and abbreviations

Abbreviation | Description
AD Anomaly Detection
Al Artificial Intelligence
Al/ML Artificial Intelligence / Machine Learning
API Application Programming Interface
cC Confidential Computing
CCA ARM’s TEE Confidential Compute Architecture technology
CIA Confidentiality Integrity and Availability
CPU Central Processing Unit
CNCF Cloud Native Computing Foundation
CNF Containerized Network Function
CTI Cyber Threat Intelligence
CVM Confidential VM
D-MUTRA DLT-backed MUtual Remote Attestation, a solidshield framework
DDoS Distributed Denial of Service
DEFM Decision eXplainablity for MTD
DFE Decentralized Feature Extraction
DLT Distributed Ledger Technology (aka blockchain)
DoS Denial of Service
DoSt Denial of Sustainability
DPSF Data Plane Security Function
ELF Executable and Linkable Format
E2E End to end
loT Internet of Things
ISD Intrusion Detection System
ITS Intelligent Transportation System
JT Just in Time (compilation)
K8s Kubernetes (i.e., a container-based framework)
KPI Key Performance Indicator
MANO Management and Orchestratoin
MGEC MTD Green Energy Consumption
ML/DL Machine Learning / Deep Learning
MMT MONT’s network Monitoring (i.e., commercial name)
MMTC Massive Machine Type Communication
MTD Moving Target Defense
MTID Mean Time to Implement Action
MTTD Mean Time to Detect
NCC Network and Computing Convergence
NIC Network Interface Component
O-RAN Open Radio Access Network

- Co-funded by

the European Union

Project unded by
) rmmpneeen e e RO 4 UK Research
e ety =4 N and Innovation

Page 8 of 71

P

NRT:..

w w*R K D3.5 - Pre-Deployment Security per Construction Measures.rl
Abbreviation Description
ONOS Open Network Operating System
PDSCM Pre-deployment Security per Construction measure
P4 Programming Protocol-Independent Packet Processors (P4)
QoE Quality of Experience
QoS Quality of Service
RBAC Role Based Access Control
SDN Software Defined Network
SECaas Security as a Service
SEV SNP AMD’s Secure Encrypted Virtualization-Secure Nested Paging TEE
technology
SGX Intel’s Secure Guard Extension TEE technology
SotA State of the Art
TCB Trusted Computed Basis
TDX Intel’s Trust Domain Extension TEE technology
TEE Trusted Execution Environment
TLS Transport Layer Security
PM Trusted Processing Module
uc Use Case
ubDP User Datagram Protocol
UE User Equipment
UE User Equipment
UPF User Plane Function
uRLLC Ultra Reliable Low Latency Communication
VM Virtual Machine
VNF Virtual Network Function
WASM Web Assembly (an interpreted language technology derived from
JavaScript)
WG11 O-RAN Working Group 11 (security WG)
x86 Intel processor architecture
XAl Explainable Al

P

roject funded by
Co-funded by) s reeon o RO (4 UK Research Page 90of71
the European Union i fralrutry =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

List of figures

Figure 1. General xAPP authentication in near RT-RIC.......cccceeiiiiiiiieiiniiiee e 31
Figure 2. O-RAN theoretical full stack remote attestation frameworkccccccoevivieeiiiineeennnnee. 32
Figure 3: WASM runtime-orchestrated module authenticationccccceevviiiieiniiiee i, 43
Figure 4: Theoretical WASM remote attestation framework..........cccoccvvveeiiciieeiccciee e, 44
Figure 5: Pod manifest with root privileges and no resource limits........ccccoevvveeiriiieeeiniiieeeennnne, 46
Figure 6: NetworkPolicy allowing unrestricted ingress traffiC........ccccoecuveeeiiciieicccee e 47
Figure 7: RBAC binding granting cluster-admin to a service account........ccccccceeevvviveeecsiieeee e, 47
Figure 8: Service of type LoadBalancer exposing an internal APl.........ccccceeeviiieeieciieee e, 47
Figure 9. TWo schemes for XAPP SECUIILY.cciciiiieieiieee ettt et 55
Figure 10. Memory map of WASM runtime (virtual machine) and module (application)........... 61
Figure 11. Flow diagram of NATWORK WASM module runtime integrity verification................. 62
Figure 12. Modified WASMTIME runtime generation.........cccceeieecueeeeesiiieeeceieeeseieee e eseeee e 63
Figure 13. WASM full-stack remote attestationcccceeeveiieeiciiiie e 63
Figure 14. WASM mutual remote attestation by D-MUTRAccceiiiiiiiieeccieee e 64

List of tables

Table 1. PDSCIM @NUMEIAtiONuiiiiiiiiiieiiiee ettt s s s e s 14
Table 2. Potential PDSCMs leverage in D2.1 SECUrity SErVICESccovveeeeeeeeiiciirireeeeeeeeeeeccirreeeeeeen. 16
Table 3. Security challenges by PDSCM leverage as per D2.1vvveeeeeiiicciiiieeee e eeeccvveeeeeen, 17
Table 4. Potential PDSCMs leverage in D 3.1 MANOueiiiiii et eeeanraeee e 18
Table 5 Confidential Containers COMPAriSONooivcviriiiiee et eeeecrrree e e e e e e eseeaarrereeeeees 25
Table 6. Strengths and weaknesses of WASM SECUTIItYcceciiiiecciiiiieiee e, 40
Table 7. WASM authentication and remote attestation techniquesccccccvvvvveeeiieiieiicinvreeennen. 42
Table 8. Liquid near-RT RIC XApp STRIDE @Nalysiscccuueiieeieiieiciiiiieeee et eeevrree e 50

P

roject funded by
Co-funded by d g coen RO (@ UK Research Page 10 of 71
the European Union i fralrutry =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

Executive summary

This deliverable presents the Pre-Deployment Security per Construction Measures (PDSCM)
developed in the NATWORK project. PDSCM refers to security mechanisms and actions applied
prior to payload deployment, aiming to strengthen software artefacts against security threats
from the outset. The work addresses three main types of software payloads executed across the
computing continuum: native binaries, containerized applications, and WebAssembly (WASM)
modules.

The deliverable first defines the PDSCM concept and presents a state-of-the-art (SotA) review of
existing measures and associated threat models. The SotA is then continued by addressing the
three-payload format separately for clarity.

The deliverable enumerates the actions carried out in NATWORK for each payload format.
Notably, they elevate significantly the security of xAPP during execution in the near RT-RIC,
WASM module during execution and exemplify how a security service (i.e., MMT anomaly
detection) can be secured by two alternative techniques, i.e. TEE (Trusted Execution
Environments) and D-MUTRA remote attestation.

Finally, the deliverable analyses the differences in PDSCM applicability across workload and
system levels and discusses their implications for usability and operational efficiency. The results
demonstrate how PDSCMs contribute to NATWORK’s overall vision of secure, performant, and
sustainable operations across the computing continuum.

Project unded by
Co-funded by 0 e s |8 () UK Research Page 11 of 71
the European Union s ——— =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

1. Introduction

NATWORK aims to regulate performance and security at sustainable resource consumption using
bio-inspired principles as do natural entities and immune systems. When projected to telecom
networks, these bio-inspired mechanisms can be set as means to reconcile security and
sustainability, security and performance, performance and sustainability.

PDSCMs are pre-deployment security measures applied on software payloads, reinforcing their
immunity against various threats. Three payload formats are discussed (i.e., native, containers
and WASM) with their specific facets.

When payloads are protected by construction before deployment, all attack vectors are less
efficient and the whole system healthier and more sustainable. However, on the other hand, an
important consideration is to assess the direct performance impact caused by the PDSCM, which
opposes NATWORK's concept of higher-performance and more cost-efficient cybersecurity. An
overreaction induced by security is potentially resource costly. Performance penalties must be
measured and when possible be adjustable, as discussed in this deliverable.

1.1. Purpose and structure of the document

The purpose of the document is to assess and position how PDSCMs are beneficial to the
NATWORK concept. This work includes a specific SotA and the description of specific PDSCM
applied over the three treated formats.

Following the Introduction, which sets the stage for the document's purpose, audience, and its
interconnections within the project's framework, the structure continues as follows:

Sections:

2. Section 2 SotA: Presents the PDSCM state of the art, including our definition of PDSCM

3. Section 3 NATWORK PDSCMs on containerized payloads: Describes the NATWORK
specific research actions towards container-oriented PDSCMs

4. Section 4 NATWORK PDSCMs on native payloads: Describes the NATWORK specific
research actions towards native-oriented PDSCMs

5. Section 5 NATWORK PDSCMs on WASM: Describes the NATWORK specific research
actions towards WASM-oriented PDSCMs

6. Section 6 Conclusions: Wraps up the document, reflecting on the project's strategic
orientation and establishing expectations for future milestones.

Prcjec funded by
Co-funded by e s | U (4 UK Research Page 12 of 71
the European Union P — =4 B and Innovation

NRT:..

w 0. R K D3.5 - Pre-Deployment Security per Construction Measures.rl
o\ A l*

1.2. Intended Audience

The NATWORK D3.5 Deliverable Pre-Deployment Security per Construction Measures.rl is for
Public Dissemination. It is there devised for the internal and external use of the NATWORK
consortium, comprising members, project partners, affiliated stakeholders and the public. This
document mainly focuses on the pre-deployment security per construction measures of the
project, thereby serving as a referential tool throughout the project's lifespan.

1.3. Interrelations

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and
resources from academia, industry, and research sectors, focusing on user-centric service
development, robust economic and business models, cutting-edge cybersecurity, seamless
interoperability, and comprehensive on-demand services. The project integrates a collaboration
of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a
broad representation for addressing security requirements of emerging 6G Smart Networks and
Services in Europe and beyond.

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically
segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple
activities across various WPs, the structure ensures clarity in responsibilities and optimizes
communication amongst the consortium's partners, boards, and committees. The interrelation
framework within NATWORK offers smooth operation and collaborative innovation across the
consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e.,
Research Institutes, Universities, SMEs, and large industries) enabling scientific, technological,
and security advancements in the realm of 6G.

The current D3.5 — “Pre-Deployment Security per Construction Measures” deliverable
addresses specific software payload hardening techniques, applied at deep and elementary level
(i.e., software payloads). However, high level security services, applied at the different layers and
technical domains of NATWORK (RAN, cloud, core, data plane, orchestration and management
layer), described in Deliverable D2.1 — “General State of the Art Security” and in Deliverable D3.1
— “Secure by design orchestration and Management” are all based on different and distributed
software payloads. By hardening these payloads, PDSCMs directly impact the security of security
services. These inter-deliverable relations are detailed in Section 2.

D3.5 is also related to D2.2 — “Use Case Scenarios and Requirements”, where use cases will
implement PDSCM (e.g., native PDSCM applied on MMT probe takes part of Use Case 4.5
Enabling optimized explainable MTD). Finally, D3.5 will feed the integration and validation efforts
within WP6, for evaluating and improving the assets presented in this deliverable.

e rojctfundec by
Co-funded by ee © smmaesen s « A9, .4 UK Research Page 13 of 71
the European Union {118 et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

2. State of the art analysis

2.1. Introduction

Our state-of-the-art analysis is focused on pre-deployment security per construction measures
(PDSCM), specific actions on the workloads, to be taken prior to their deployment, and covering
the workload formats of x86 executables, containers and WASM.

For clarity, this section starts with a definition of PDSCM, followed with exemplification of their
usage inside high-level service security solutions developed in priorly submitted deliverables (i.e.,
D 2.1, D3.1), clarifying how PDSCMs contribute to 6G services security. Through this, we intend
to clarify their usability and merits to cope with NATWORK security challenges, reconciliating
networking security, performance and sustainability.

2.1.1. Definition and usability
2.1.1.1. Definition

As a simple definition, PDSCMs embrace the following criteria:

e Act at the software payload level

e Enhance the security of workload against a specific security threat model

e Implemented prior deployment, by activation of tools or security methodologies

e Modify the workloads, security-related parameters and their execution environments

Table 1 enumerates PDSCMs, as commonly used in the SotA. It is worth noting that the first three
PDSCM dealing with CIA threats are cardinal on which all following PDSCMs depend. For instance,
user right enforcement solution must be protected and are defended against CIA attacks.

Table 1. PDSCM enumeration

PDSCM Threat Model Employed techniques
Confidentiality -Static (i.e., on executable | -Placement in trusted execution
preservation or module file) code environment

analysis -Code section encryption
-Dynamic (i.e., on -Code obfuscation
memory footprint) code
analysis
Integrity -Static file tampering -Placement in trusted execution
preservation -Memory footprint environment
tampering -Authentication (i.e., delivering execution
environment local assurance of code
integrity at onboarding)

rojctfundec by
Co-funded by 6 s e, R @ Q) UK Research Page 14 of 71
the European Union = ety =4 N and Innovation

NRT:..

W.R:RK

PDSCM

D3.5 - Pre-Deployment Security per Construction Measures.rl

Threat Model

Employed techniques

-Remote attestation (i.e., delivering
remotely the assurance that code is
integrated at on-boarding)
-Runtime integrity verification

Availability
preservation

Flood DoS, DDoS,
deprivation of resource

-Resource isolation

-Resource monitoring

-Workload performance monitoring
-System level network traffic limitation

Singularization

-IP theft
-Cloning
-Impersonation

-Placement in TEE + selective provisioning of
a key needed for execution

-Selective provisioning of a key needed for
execution

(against IPRs)

Locality -IP theft -Placement in TEE + selective provisioning of
enforcement -Illicit placement outside a | a key needed for execution

permitted perimeter
Interfaces -APIl abuse -Hardening APIs with RBAC
hardening
User right -Licence violation -Digital right management techniques such
enforcement as:

-Code-to-machine binding

-Software activation method delivering
activation tokens

- Tokenization

Vulnerability
curation

-Detect then exploit a
vulnerability

-Safe coding methodology
-Dependency vulnerability scanning
-Code confidentiality, preventing discovery

Access control

-Violation of access policy
to content or
functionalities, through
impersonation or privilege
escalation

-Role Based Access Control (RBAC)
enforcement

2.1.1.2.

Workload migratability

The usability of PDSCM varies with the level where it is setup as follows:

e Technology-level (e.g., TEE enforcement, VM isolation), restricted workload deployment

in duly equipped or specific platform)

Co-funded by
the European Union

Project unded by
O s avmon 5 e RO 4 UK Research
e = £ =4 N and Innovation

Page 15 of 71

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

e System-level parametrization (e.g., network flow limitation) requires the user possession
of system administrative right. Thereafter, at deployment, the workload should be
deployed in such tuned systems.

e Workload-level (e.g., binary rewriting, vulnerability safe programming) requires getting
access to the code (and right to change it). No restriction applies during workload
deployment.

Workload migratability over the continuum is a very interesting property, magnified by workload-
level PDSCM. The workload is protected by itself with no dependence on the platform.

2.1.2. Interaction with service-level security solutions

Already submitted D2.1 and D3.1 are service-level security focused, hence located at a higher
level than atomic software payloads as considered here. D2.1 produces a 360° service security
survey while D3.1 is more specifically addressing secure orchestration and data plane
computation offloading (i.e., which brings its own security considerations and needs). As a 6G
service security depends on many, composed and chained software payloads spread along the
traffic pathway either directly traversed (i.e., network functions) or indirectly (e.g., networking
management and orchestration, security functions), software security appears as a common
exigency to be fulfilled on each running software payloads, being security-related or not. Hence,
PDSCM is applied to each software workload deployed by service-level security solutions to
enhance the trust and security assigned to service-level security solutions.

2.1.3. Interaction with D 2.1 service level security services

D2.1 - “SotA Analysis & Benchmark Assessment” provides a detailed SotA analysis on prevalent
security solutions implemented at the different technical domains traversed by a 6G service. Key
attack vectors on the RAN, data plane, orchestration, and edge-core are detailed. It produces a
list of commonly found security services and associated technologies at different network layers.
For clarity, we define the interaction of PDSCM against each of these functions in Table 2.

Table 2. Potential PDSCMs leverage in D2.1 Security Services

D2.1 Service List of potentially activated PDSCM (at workload level)
level Security
Defence in Depth -RBAC perimetric security (parametrization)

-TEE enablement, for a secured migration of attacked workloads
Workload MTD -Remote attestation, easing workload secure migration

-Workload deep monitoring (early bird anomaly detection)
Workload isolation | -Runtime integrity (preventing tampering attack)

-Performance monitoring (preventing resource attrition by container
co-residents)

rojctfundec by
Co-funded by 6 s e, R @ Q) UK Research Page 16 of 71
the European Union = ety =4 N and Innovation

NRT:.-.
W.R:RK

D2.1 Service

level Security

D3.5 - Pre-Deployment Security per Construction Measures.rl

List of potentially activated PDSCM (at workload level)

Trust management

-Integrity of trust metrics collectors and aggregating scoring algorithms

-Confidentiality of trust metrics collectors and aggregating scoring
algorithms
-Singularisation of trust assessors

Attack detection
and protection

-On the anomalous traffic detection workload

-Integrity elevation techniques (e.g., TEE, remote attestation, runtime
integrity verification)

-Confidentiality elevation techniques (e.g., encryption, placement in
TEE)

-Locality enforcement, mitigating impersonation

Machine learning
Frameworks for
CTI analysis

Multi stakeholder collaborative CTI, with distributed CTI nodes
consuming and producing CTI feeds.

-CTl node remote attestation and continuous integrity verification
-TEE placement of each CTI node producing and consuming feeds
-CTl node singularization for multi factor identification

-Cloud security, VM introspection threat model:

-Continuous workload integrity verification

-TEE-bastioned VM (e.g., TDX, SEV-NP, CCA TEE)

-Workload singularization for identity checks.

Service accurate
monitoring and
traceability

-Monitoring metric producers integrity verification

-Monitoring metric producers confidentiality preservation by TEE
placement

-Monitoring metric producers singularization for MFA

2.1.3.1.

Matching D2.1 priority challenges

The list of priority challenges and how they are potentially addressed through PDSCM included

in deliverable D2.1 is presented in the following table.

D 2.1 prioritized

Table 3. Security challenges by PDSCM leverage as per D2.1

PDSCM match and high-level specification

challenge

Fostering software
migratability

- Payload self-contained hardening, platform-
agnosticism.
Not all PDSCMs are self-contained (e.g., TEE-dependent) but a

significant number are (e.g., modified payload for tampering resilience)

directly implies

Security and
Privacy

(e.g., platform
agnostic security,

- Devise novel, low-noise continuous integrity verification

Data governance Policies:

Co-funded by
the European Union

BGSNS o e

Project funded by

Page 17 of 71

L9, .4 UK Research
=4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

D 2.1 prioritized PDSCM match and high-level specification

challenge

continuous -Establish non-ambiguous identification and localization of data

security, data consumers and producers, based on novel PDSCM.

governance)

Energy efficiency On-demand security:

and sustainability | - Develop PDSCM which trigger security verification on-demand, hence
drastically reducing energy consumption and performance impact.

2.1.4. Interaction with D 3.1

Deliverable D3.1 — “Secure-by-design orchestration and management & Data plane computation
offloading” discusses two interrelated matters. The document details service and function
orchestration at various technical domains (i.e., far edge, CRAN, core, and, finally, the data plane).
In a general perspective, orchestration and function placement decisions shall derive from the
ingestion of trustworthy metrics reflecting the current load state at the targeted hosting platform
and of course be trustworthy and secure by itself. As stated in Table 4, PDSCM can contribute to
reach these security attributes. The deliverable highlights the relevance of MANQO API security,
the high heterogeneity of the different entities which take part in the management and
orchestration, as well as the core requirement for ultra-fast decision taking. When energy
efficiency is piled up on the list of high-level specifications, we reach a challenge or trade-off
between orchestration responsiveness, reliability/security and energy. Last, Al will be an
essential asset to make these multi-modal and complex decisions. Therefore, Al trustworthiness
and security are pivotal.

Table 4. Potential PDSCMs leverage in D 3.1 MANO

D3.1 Orchestration domains How PDSCM interfere

Orchestration at the Extreme All orchestration and management solutions and
Edge workloads are exposed to CIA threat models. PDSCMs
Orchestration at the CRAN shall be used to harden such deployed workloads.
Orchestration at the Core Typically, code tampering can have devastating influence
Data plane function off-loading on the network reliability or energy consumption.

2.1.5. Summary

As illustrated by this matching work, PDSCMs directly contribute to fulfil NATWORK's security
challenges as stressed in D 2.1 and D 3.1. In practice, their contribution can be essential and a
condition to meet specific identified challenge. Typically, magnifying payload migratability along
the continuum can only met if the payload security is self-contained, resulting from a PDSCM.

rojctfundec by
Co-funded by d s e, R @ Q) UK Research Page 18 of 71
the European Union = ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

In a general perspective, all NATWORK security services exemplified in D2.1 and MANO services
exemplified in D3.1 are built and dependent of several software payloads whose hardening by
PDSCMs makes them more reliable and at lower resource consumption.

2.2. PDSCMs for containers

2.2.1. Introduction

Containerized environments have become the de facto standard for deploying and scaling cloud-
native applications, but their flexibility and efficiency also introduce new security challenges. Pre-
deployment hardening is therefore a critical phase, as it establishes the foundation for ensuring
that workloads can be executed with strong guarantees of confidentiality, integrity, and
availability (CIA). By addressing security early in the lifecycle, it is possible to reduce the attack
surface, prevent misconfigurations, and ensure that orchestration frameworks operate on
trusted components.

This section surveys the key aspects of pre-deployment container and microservice security,
building upon novel Confidential Computing (CC) frameworks, DevSecOps practices, and
Kubernetes-native hardening approaches. First, we provide an overview of container security
concerns and their mapping to the CIA triad, highlighting how emerging Confidential Computing
frameworks and secure orchestration mechanisms extend traditional models of protection
(Section 2.2.2). We then examine pre-deployment container security by construction, analysing
frameworks such as CNCF’s CoCo. This survey evaluates their security merits, performance
implications, and migratability, identifying trade-offs relevant to practical adoption (Section
2.2.2).

Next, we focus on microservice-level hardening, building on the secure-by-design orchestrator
(sFORK) introduced in Deliverable D3.1. From a DevSecOps perspective, declarative modelling,
pre-established secure inter-cluster channels, and strict role-based access controls are discussed
as essential measures to ensure that orchestration begins from a secure baseline (Section 2.2.3).

We then turn to Kubernetes security analysis, since Kubernetes has emerged as the dominant
orchestration platform. We describe its main security features—such as Network Policies, Pod
Security Policies (and their successors, Pod Security Admission modes), RBAC, and security
contexts—while evaluating their strengths and weaknesses with respect to CIA, performance,
and usability (Section 2.2.4).

Finally, we extend the scope beyond conventional cloud-native environments by considering the
O-RAN ecosystem, where containerized xAPPs are onboarded in the near Real-Time RIC. This

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 19 0of 71
the European Union et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

context highlights specific pre-deployment verification and attestation challenges, as defined by
O-RAN WG11, and illustrates how container hardening principles must be adapted to telecom-
grade distributed systems (Section. 2.2.5).

Together, these subsections provide a comprehensive view of container and microservice pre-
deployment hardening techniques, emphasizing how different frameworks and orchestrators
converge toward the goal of delivering trustworthy and resilient cloud-native applications.

2.2.2. Confidential containers frameworks

With the growing traction to large TCB trusted execution environments, their adoption for
containers through confidential containerization is becoming a mature technology. We had
produced a technical survey of four emblematic frameworks (i.e., CoCo, MarbleRun, Parma,TCX)
with the lens of performance, sustainability and security.

2.2.2.1. Confidential Containers (CoCo)

Security

The Confidential Containers (CoCo) project is an open-source Cloud Native Computing
Foundation (CNCF) initiative that integrates Trusted Execution Environments (TEEs) with
Kubernetes to protect data in use at the pod level [1] CoCo builds on Kata Containers by running
each pod inside a Confidential VM (CVM) — a lightweight VM with memory encryption — so that
workloads are isolated not only from each other but even from the host and cloud administrator
[2]. CoCo introduces a “Trustee” component (including a Key Broker Service and Attestation
Service) to handle remote attestation and key management for these CVMs [3]. This means that
each container’s image and startup state can be measured and verified, and encryption keys for
secrets or images are only released if the pod is confirmed to be running in a genuine TEE-backed
VM. Overall, CoCo significantly strengthens confidentiality and integrity: even if the host OS or
hypervisor is compromised, the encrypted memory and attestation process protect the
container’s code and data.

Performance

CoCo’s use of hardware-backed VMs (like Intel TDX [4] or AMD SEV [5] adds some overhead
compared to standard containers, but this overhead is mostly attributable to the TEE mechanisms
themselves. In practice, CoCo can achieve near-native performance for many workloads. For
example, one study found that running a workload under CoCo on an SEV-enabled cluster
incurred only about an 8% throughput overhead relative to a native Kubernetes pod (versus ~5%
overhead using Kata alone without memory encryption [6]. Another evaluation noted that with
proper tuning, Confidential VMs perform comparably to non-confidential VMs — the difference

Project unded by
Co-funded by 0 e e (8@ UK Research Page 200f 71
the European Union s ——— =4 N and Innovation

NRT:..

w 0. R K D3.5 - Pre-Deployment Security per Construction Measures.rl
o\ A l*

was often within single-digit percentages for CPU and I/O-bound tasks. The “peer pods” mode
(where pods are launched as confidential VMs via cloud provider APIs) can introduce higher
startup latency and resource overhead (e.g. one vCPU reserved for TEE runtime) but yields strong
isolation [3]. In summary, CoCo’s performance overhead is low enough that most applications
see only modest slowdowns, making it feasible for production use.

Sustainability

CoCo leverages TEEs already available in cloud and on-premises hardware to securely extend
workloads across hybrid cloud [7]. It enables secure cloud bursting — confidentially offloading
overflow work from private datacenters to public cloud — without maintaining duplicate
infrastructure [8]. By scaling confidential workloads on demand using existing TEE-enabled
servers, CoCo maximizes hardware utilization and avoids idle, redundant machines. This efficient
use of resources translates into better energy efficiency for confidential computing deployments.

2.2.2.2. MarbleRun

Security

MarbleRun [9] is an open-source platform that acts as a “service mesh for confidential
computing”, particularly targeting Intel SGX enclaves. Instead of VMs, MarbleRun orchestrates
process-level TEEs (enclaves) across a distributed application. It provides a deployment manifest
that specifies the expected cryptographic identity and connections of each microservice enclave,
and it will only consider the overall application trusted if all components match this manifest.
This yields a powerful security guarantee: an entire pipeline of services can be remotely attested
and verified as a unit, rather than just individual enclaves. MarbleRun also handles secure key
management and inter-service encryption transparently. Upon startup, each enclave gets a
certificate issued by MarbleRun’s CA and uses it to establish mutually authenticated TLS
connections with other enclaves, ensuring data exchanged between services is encrypted and
only goes to attested endpoints. Secrets (like decryption keys or credentials) can be sealed to the
enclave identities and distributed via MarbleRun once the deployment is verified. In essence,
MarbleRun extends zero-trust principles: even if the underlying Kubernetes nodes or networks
are untrusted, the enclave network remains secure and verifiable at runtime.

Performance

Running containerized workloads inside SGX enclaves does introduce performance
considerations. Intel SGX enclaves have hardware memory protections that can cause overhead
on I/0 and memory-intensive operations (e.g., due to enclave context switches and limited
secure memory sizes). In general, SGX-based solutions tend to show higher overheads for heavy
workloads compared to VM-based TEEs — one study notes that AMD SEV (VM encryption) had
negligible performance impact, whereas Intel SGX could introduce significant slowdowns in

e rojctfundec by
Co-funded by ee 0 e s |8 () UK Research Page 21 of 71
the European Union {118 et ety =4 N and Innovation

NRT:..

w 0. R K D3.5 - Pre-Deployment Security per Construction Measures.rl
o\ A l*

certain scenarios. However, MarbleRun’s design allows enclaves to be selectively used for the
sensitive parts of an application, and its overhead can be modest for typical microservice
interactions. MarbleRun itself adds a small constant overhead for attestation and key exchange
during startup, but after that, services communicate directly over TLS with negligible additional
latency. Thus, while developers should expect some overhead from using SGX enclaves,
MarbleRun demonstrates that a distributed enclave architecture can still meet performance
requirements for many applications.

Sustainability

MarbleRun orchestrates Intel SGX enclaves as Kubernetes-managed microservices, allowing
confidential workloads to scale up or down flexibly without static overprovisioning. Secure
services are deployed at a fine-grained microservice level, so each enclave is lightweight and uses
only the necessary CPU and memory. By integrating enclave workflows into Kubernetes,
MarbleRun ensures resources are allocated on demand, supporting sustainability goals. The
result is a confidential microservice architecture that provides strong security while minimizing a
waste of computing and energy resources.

2.2.2.3. Parma

Security

Parma is the architecture underpinning Microsoft Azure’s confidential container groups,
designed to provide strong confidentiality without altering container images [10]. It leverages
AMD SEV-SNP (a VM-level TEE) to run an entire container group inside a hardware-encrypted VM
(also called a UVM — UltraViolet VM in Azure’s terms). Parma’s key innovation is the use of an
attested execution policy that defines exactly what actions the cloud’s container runtime is
allowed to perform within the guest VM. At launch, the policy (covering permitted system calls,
mount operations, network config, etc.) is cryptographically measured and included in the
hardware attestation report. This means the attestation not only vouches for the VM’s initial
software (kernel, guest agent) but also locks down how containers inside can behave. If anything
outside the policy is attempted (e.g., mounting an unexpected filesystem layer or executing a
disallowed command), the guest agent will block it, and the deviation would make the attestation
report invalid. In addition, Parma uses proven techniques to protect container data: container
image layers are stored on an integrity-protected file system (using dm-verity), and any writable
storage is encrypted so that plaintext data only ever appears inside the VM’s secure memory.
The result is a very strong security posture: the cloud provider’s host OS and hypervisor are
excluded from the trust boundary, and even a malicious or compromised infrastructure cannot
inject code or inspect data without detection. Only the combination of the tenant’s approved
container images and the Parma guest agent (running under SEV-SNP’s protection) are in the
Trusted Computing Base.

e Prcjec funded by
Co-funded by ee 0 e s |8 () UK Research Page 22 of 71
the European Union {118 P ey =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

Performance

Parma was built to impose nearly zero performance penalty beyond the cost of hardware
encryption. Empirical evaluations on prototype Azure Container Instances showed that
introducing Parma’s policy enforcement had a negligible effect on throughput and latency
compared to using SEV-SNP alone [10]. Parma doesn’t heavily modify the runtime execution path
— it primarily adds checks during container setup and relies on hardware to handle memory
protection. Networking and disk I/O operations are still hardware-accelerated inside the VM, so
throughput remains high. In summary, workloads under Parma run at virtually the same speed
as they would in a normal confidential VM. This low overhead means users of Azure confidential
containers can achieve strong security without sacrificing the performance or scalability of their
applications.

Sustainability

Parma isolates container groups inside individual VM-based TEEs, combining virtual machine
security with container agility. Its design introduces almost no performance overhead — around
1% additional overhead in tests — which means negligible extra energy consumption for
confidentiality [10]. With such low CPU and memory overhead, Parma’s confidential containers
run nearly as efficiently as ordinary containers. This balance of strong isolation and performance
ensures security is achieved with minimal impact on resource usage, promoting sustainable
computing.

2.2.2.4. Trusted Container Extensions (TCX)

Security

Trusted Container Extensions (TCX) is a research prototype architecture that combines the agility
of Docker containers with the protection of hardware TEEs [11]. In TCX, each container runs
inside a lightweight VM called a Secure Container VM (SC-VM), which is backed by AMD SEV
encryption to ensure the container’s memory is always encrypted and cannot be read or
tampered with by the host OS or hypervisor. A unique aspect of TCX is that it uses a single trusted
VM per host to coordinate security for all the SC-VMs on that machine. By centralizing services,
TCX can, for example, set up a secure channel between containers even if they are on different
hosts — to the container it looks like normal networking, but in reality, all traffic is transparently
encrypted and authenticated by the TCX layer. The container runtime (Docker/Kubernetes) is
extended so that when you launch a container, it is provisioned in an SC-VM with all these
protections enabled. Integrity and confidentiality are enforced at multiple levels: the VM’s disk
image and the container filesystem are measured and encrypted, and all interactions between
secure containers go through encrypted tunnels that the host cannot spoof. Essentially, TCX
ensures that even in a hostile cloud, containers can only run trusted code and their data stays

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 23 0of 71
the European Union et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

safe. The strong hardware-enforced isolation means the attack surface is much smaller than in
standard container setups. This architecture achieves protections similar to confidential VMs but
maintains a container-centric deployment model.

Performance

The TCX researchers demonstrated that this approach incurs minimal performance overhead.
Theirimplementation (built on Kata Containers with AMD SEV-SNP) showed an average overhead
of about 5.8% on CPU-intensive benchmarks (SPEC2017) compared to native execution [12].
Real-world server workloads were also tested: for instance, Nginx web server throughput under
TCX was only slightly reduced, and a Redis in-memory database saw modest slowdowns primarily
due to the underlying SEV memory encryption cost. The overhead introduced by the TCX layer
itself (beyond what SEV encryption alone causes) was very low. This is because TCX still leverages
hardware virtualization extensions for speed and optimizes its secure services. Networking
overhead in TCX's secure channels was also kept low by using efficient in-kernel encryption for
virtual network interfaces. The research concluded that TCX’s performance is practical for
production, as even high-throughput workloads and multi-container deployments scaled well
with TCX’s protections in place.

Sustainability

TCX combines the manageability and agility of standard containers with the strong protection
guarantees of TEEs, promoting efficient resource utilization. It provides significant performance
advantages, reducing the need for excessive computational resources and supports sustainable
deployment practices by enabling secure, high-performance computing within containerized
environments [12].

2.2.2.5. Conclusions

In summary and depicted in Table 5, each framework has its unique strengths, catering to
different workload requirements, infrastructure capabilities, and organizational priorities. CoCo
stands out for its hybrid cloud support, enabling secure cloud bursting and efficient resource
utilization across environments. Marblerun excels in Kubernetes-native orchestration, providing
minimal overhead and seamless integration for enclave-based workloads. Parma offers VM-
based isolation with minimal performance overhead, making it ideal for high-performance,
confidential computing tasks. TCX combines the agility of standard containers with robust
security guarantees, achieving a balance between performance and sustainability. The table
summarizing each framework’s security, performance and sustainability levels is provided below.

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 24 of 71
the European Union et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

Table 5 Confidential Containers Comparison

Framework Security Performance Sustainability
CoCo High Variable High
MarbleRun High Moderate High

Parma Very High High Moderate

TCX High High High

2.2.3. Pre-deployment Microservice Security by construction

In Deliverable D3.1, we described how the secure-by-design orchestrator (sFORK) manages
resources and security at runtime using dependency graphs, CTI-driven selective sharing, hygiene
scores and Al-based workload prediction service. The deployment side of the framework includes
the instantiation of microservices of a 6G service, which starts from a secure baseline that
complements the cybersecurity-based service placement and scheduling. From a DevSecOps
perspective, several actions should be applied before deployment to reduce the attack surface
and provide reliable security guarantees:

e Declarative modelling of microservice dependencies: Service dependencies must be
explicitly described (e.g., Kubernetes YAML or Helm charts). This avoids insecure
couplings between services and provides the orchestrator with a complete view of
allowed communications and resource bindings.

e Secure inter-cluster channel establishment: Secure communication channels between
clusters should be pre-defined at the configuration level. Using CLI-based tooling,
developers/operators can set up encrypted tunnels (e.g., via mTLS, IPsec, or Submariner,
etc.) that guarantee authentication and confidentiality before services are deployed. This
step prevents unprotected connections from being instantiated in production.

e Role-Based Access Control (RBAC) rules setting: Access rights need to be restricted from
the start. Role-Based Access Control (RBAC) policies should be defined before
deployment, giving each service and operator only the permissions they really need.

These measures establish a baseline of trust and security for microservice deployments that can
be embedded into the DevSecOps pipeline. The orchestration layer (sFORK) later operates on
already-hardened payloads, where dependencies, communications, and access rights are strictly
controlled.

Prcjec funded by
Co-funded by d s e RO (@ UK Research Page 25 0f 71
the European Union Pt = £ =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

2.2.4. Kubernetes security analysis

2.2.4.1. Main security features

Security in Kubernetes has emerged as a fundamental field of research, as this platform has been
established as the standard for container orchestration in cloud-native environments. The
Kubernetes architecture integrates multi-layered security mechanisms aimed at protecting both
applications and the underlying infrastructure. At the heart of these mechanisms are two key
tools: Network Policies and Pod Security Policies (PSPs).

Network Policies are a crucial tool for controlling the flow of data between Pods and services.
Through them, administrators can define detailed rules for allowing communication, achieving
isolation between applications, and limiting exposure to lateral movement attacks. Study [13]
highlights the dual nature of these policies, examining both their performance and security. The
results show that eBPF-based solutions, such as Calico and Cilium, offer robust security with
negligible performance impact, making Network Policies suitable for use even in resource-
constrained environments. Additionally, paper [14] emphasizes that the choice of network
infrastructure (overlay vs. underlay) in edge environments significantly affects both the
performance and effectiveness of policies, highlighting the need for a balance between security
and performance in constrained systems. This allows for a more realistic and comparative
evaluation of Network Policies depending on their application environment.

Although PSPs have been deprecated in newer Kubernetes versions, they served as a foundation
for applying restrictions to Pods. Through them, it was possible to control the execution of
privileged containers, access to host resources, and the use of Linux kernel capabilities. The
modern approach is now based on Pod Security Admission (PSA) modes, which incorporate the
same logic through admission controllers and security profiles such as seccomp and AppArmor.
These tools allow the application of security policies with granular control, enhancing the
protection of workloads. As stated in the official Kubernetes documentation, while PSA/PSPs
provide significant security, full protection depends on proper implementation and a
combination with other measures such as RBAC and Network Policies, which highlights the
strengths and limitations of these tools in real-world environments.

The work presented in [15], offers a structured reference framework for Kubernetes security,
systematizing best practices into eleven fundamental commandments. This framework covers all
aspects of security, from hardening the control plane to the secure management of secrets and
the implementation of network restrictions. The article's contribution is pivotal as it bridges the
gap between theory and practice, providing a strategic tool for implementing secure
containerized applications. Furthermore, this analysis allows for a comparison between different
practices, highlighting where they excel and where they may present weaknesses (e.g., the need
for automation or a combination of other measures).

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 26 of 71
the European Union et ety =4 N and Innovation

NRT:..

w 0. R K D3.5 - Pre-Deployment Security per Construction Measures.rl
o\ A l*

The main security features of Kubernetes—Network Policies and Pod Security Policies—form the
foundation for building a secure runtime environment. Their evolution, combined with the
systematization of knowledge and the application of best practices, shapes the modern state of
the art in Kubernetes security. Research in this field continues to evolve, responding to the
growing demands of cloud-native and edge computing environments, and highlighting the need
for a balance between security, performance, and usability in real-world settings.

2.2.4.2. Kubernetes security strengths

It is important to evaluate how the Kubernetes features collectively contribute to the broader
security objectives of a system. A well-established framework for this analysis is the CIA triad
(Confidentiality, Integrity, and Availability), which defines the fundamental pillars of information
security. Kubernetes supports confidentiality by combining isolation mechanisms with fine-
grained access controls to protect sensitive data in shared environments. At the orchestration
level, as study [16] highlights, container-based scheduling and namespaces create separation
between tenants, reducing the risk of data exposure across workloads. Evaluations of different
Container Network Interface (CNI) plugins confirm that strong segmentation can be enforced
even in resource-constrained environments, such as edge clusters or loT gateways, where
computational and networking capacity are limited. Studies comparing different plugins show
that enforcing network policies does not introduce major penalties in throughput or latency, even
when the number of policies scales into the thousands [14]. This demonstrates that
confidentiality through network isolation is achievable not only in large cloud data centres but
also in smaller, distributed deployments. At the configuration level, confidentiality also depends
on secure manifests: empirical studies reveal that many security incidents are due to
configuration errors, such as exposed credentials or overly permissive settings [17]. However,
Kubernetes provides primitives like Secrets, security contexts, and privilege restrictions that,
when properly applied, help protect confidential information. Complementing these features,
there can be found best-practice guidelines such as enforcing role-based access control (RBAC)
and applying network and Pod security policies, that further strengthen Kubernetes security, as
they ensure that both data access and communication paths are tightly controlled [15].

Kubernetes provides integrity maintenance via multiple complementary mechanisms that ensure
workloads and communications remain consistent with intended policies. On the orchestration
side, Kubernetes uses policy-driven scheduling, which means that the system places workloads
on nodes according to clear rules set by administrators. This helps keep the cluster running
consistently and avoids situations where a workload might be started in the wrong place or with
the wrong resources [14]. This consistency protects against accidental misplacements and helps
preserve the correctness of operations even in large, dynamic environments. Integrity is also
protected at the network level through access controls such as Role-Based Access Control (RBAC),
which ensure that only authorized users or services can change important settings [17], [15].

e rojctfundec by
Co-funded by ee © smmaesen s « A9, .4 UK Research Page 27 of 71
the European Union {118 et ety =4 N and Innovation

NRT:..

w 0. R K D3.5 - Pre-Deployment Security per Construction Measures.rl
o\ A l*

Integrity is reinforced by network policies, which apply the principle of least privilege to
communication. This means allowing Pods to connect only to explicitly permitted peers,
therefore reducing the chance of malicious tampering or data injection between services. In
addition, network policies improve integrity by limiting how Pods can talk to each other, so that
they only exchange the data needed for their tasks and are less exposed to malicious or
accidental tampering [16]. Importantly, evaluations show that these policies can be scaled to
thousands of rules with negligible performance impact, meaning they preserve secure
communication without weakening the system’s responsiveness. Studies of real Kubernetes
configurations show that while errors are common, features like security contexts and privilege
restrictions give administrators tools to keep workloads in a safe and correct state when they are
applied properly.

Complementing the above, Kubernetes contributes to availability by ensuring that applications
remain operational despite failures, resource shortage, or the addition of security controls.
Scheduling policies and replication strategies keep workloads running smoothly by redistributing
them when nodes or resources become unavailable, which helps ensure that the service remains
accessible and usable by authorized users whenever it is needed [16]. Automatic scaling
mechanisms also adapt resource use to match changing demand, reducing the risk of service
interruptions during peak loads. In addition, study [13] demonstrates that even with thousands
of network policies in place, latency and throughput performance remains stable, showing that
security enforcement does not come at the cost of system responsiveness.

2.2.4.3. Kubernetes security weaknesses

While Kubernetes offers robust security features, the literature identifies several weaknesses and
recurring challenges that can undermine its overall security posture. A key issue arises from
insecure or improper configurations, such as weak authentication, poorly defined network
policies, and excessive permissions. Sometimes administrators set up Kubernetes with weak or
missing security settings. Examples of this include giving users, Pods, or services more
permissions than they really need, exposed credentials issues, manifesting by leaving passwords,
API keys, or tokens in plain text inside configuration files, and default root access, which means
letting containers run as root inside Pods, which makes it easier for attackers to break into the
host. These misconfigurations increase the risk of unauthorized access, data breaches, and
privilege escalation, leaving clusters open to attack. Closely related is the problem of root access
and privilege escalation, where containers often run with elevated privileges by default, enabling
malicious actors to break out of their containers and compromise the underlying host system if
not properly restricted [19]. The empirical study of Kubernetes manifests [17] finds widespread
security misconfigurations, such as missing security context, excessive privileges and hard-coded
credentials. These significantly increase the attack surface and confirm that misconfiguration is
one of the most critical and common weaknesses.

e Prcjec funded by
Co-funded by ee © smmaesen s « A9, .4 UK Research Page 28 of 71
the European Union {118 P ey =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

Another major weakness is the limited strength of namespace isolation. Although namespaces
are designed to separate workloads logically, they do not provide strong security isolation.
Without additional controls such as strict network segmentation or Pod security restrictions,
attackers who gain access to one namespace may be able to move laterally across the cluster.
The paper [19] also highlights that improper access control, including weakly configured role-
based access control (RBAC), can allow users or services to perform unauthorized actions,
undermining both confidentiality and integrity of workloads.

In addition, the reliance on container images introduces risks tied to image vulnerabilities and
supply chain security. If images are not scanned or hardened, they may carry exploitable software
flaws into the cluster. If combined with inadequate runtime security, this creates opportunities
for attackers to escalate privileges or inject malicious code. As multiple studies show,
vulnerability management and patching practices are often inconsistent. Delays in applying
patches to Kubernetes components and container images expose clusters to known exploits,
while insufficient monitoring and logging reduce visibility into ongoing threats. Paper [15]
concludes that while security practices are well documented, many organizations fail to apply
them consistently. This gap between available practices and their actual adoption remains a
central security challenge.

2.2.5. O-RAN xAPP security

In O-RAN project, xAPP are containerized payloads onboarded the near Real Time RIC. O-RAN
security Working Group 11 (WG11) has been very active in defining the security exigencies
related to O-RAN open architecture, as its desired openness generates novel security threats. As
the architecture includes several APl-defined interfaces between several units, the security of
these APIs is the main concern. As O-RAN enables operators or tech vendors proprietary software
workloads to be on-boarded in the Near and Non -Real Time RICs, hence sharing local resources,
these workloads shall be verified before being on-boarded and executed.

WG11 has produced several documents to establish how these workloads can be authenticated
and remotely attested. In this sub section, we take a deep dive to assess the maturity of the
specifications or recommendations, assessing in which directions NATWORK can elevate security,
notably leveraging one or several PDSCM. As part of NATWORK, we consider IS-RD’s Liquid xAPP
as a workload to protect. For clarity, the following survey does not claim to be fully
comprehensive in terms of analysis of WG11 recommendations document. The security aspect is
treated in different areas and angles (e.g., O-cloud, risks assessment). However, our survey
highlights what shall be retained in view of defining NATWORK’s offering.

Our survey delivers the following order of precedence in WG11 documentation:

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 29 of 71
the European Union et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

e O-RAN ALLIANCE TS, “O-RAN Near-RT RIC Architecture [20]

e O-RAN Security Requirements and Controls Specifications [21]

e O-RAN Study on Security for Service Management and Orchestration (SMO) [22]
e O-RAN Study on Security for O-Cloud [23]

e O-RAN Study on Zero Trust Architecture for O-RAN 2.0 [24]

e O-RAN xAPP SDK [25]

e O-RAN Study on Security for Near Real Time RIC and xApps 5.0 [26]

2.2.5.1. xAPP authentication process

Two stage XAPP registration (i.e., SMO, near RT RIC): MOI generation

Figure 1 reflects O-RAN two stage xAPP registration sequence. The xAPP signature produced by
the xAPP provider is an asymmetric encryption of the xAPP manifest. The manifest contains the
digest of xAPP package and security policy elements.

The service provider checks the signature delivered by the provider, verifying its provenance (i.e.,
public key delivered with signature). From this step, the service provider signs again the xAPP
signature and delivers it to the SMO.

The SMO, after checking the identity of the service provider (i.e., public key delivered with the
signature), will have access to the manifest. SMO also extracts its data structures and produces
an integrity verification of the package, using that digest. Once this integrity verification is made,
all fields are supposed to be valid, and SMO produces an xAPP metadata store in its catalogue.

The SMO will then forward these elements to the near RT RIC and instruct the generation, signing
and catalogue storage of the xAPP managed object instance (MOI). The MOI will then be used for
all verifications by the near real time RIC, validating the xAPP authenticity and compliance with
security requirements.

The MOl is the composite metadata of the xAPP, containing references to the xApp identity (e.g.,
name, version), packing elements (e.g., list of containers, command used to run the container),
controls (i.e., internal to the xAPP), metrics, certificates, the image digest, deployment policies,
network policies, security policies and many other xAPP descriptive fields.

Prcjec funded by
Co-funded by O s reon poo RO (@ UK Research Page 300f 71
the European Union P — =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

-Clou Near-RT RIC Platform

I SMO | l DMS l | XApp] | 01 Termination I [Management Services Security Function

1 <<MS>> registration request

1a. Security validation request for xApp _

i. Validate Service Provider signature
ii. Validate Solution Provider signature
iii. Verify certificates are not revoked.

1b. xApp security processing B’

1c. Security validation response

2. continue registrabion processing if validation passed
assign xApp ID, create xApp MOI

_ 3. <gMS>> registration response

opt /7 [If SMO has subscribed]
4, <<013> Notify MO| Creation

-
-

I SMO l l DMS l | XApp l I 01 Termination l [Management Services Security Function

Figure 1. General xAPP authentication in near RT-RIC

XAPP onboarding verification workflow

The SMO initiates the onboarding workflow and triggers the near RT RIC. For that, the SMO
provisions the xAPP metadata, enabling the reconciliation with the xAPP MOI.

The near RT RIC checks its operational status and validates the onboarding, checking that the
deployment (i.e., affinity rule), networking and security exigencies as stated in the xAPP MOlI,
then transfers the onboarding status (i.e., possible, not possible) to the SMO. All authentication
and authorization credentials used by the near RT RIC APIs are stored in the near RT RIC.

The near RT RIC does not produce an xAPP digest verification, which is done at the SMO level. If
the xAPP deployment in the near RT RIC is possible, the SMO triggers for the deployment of the
XAPP containers to the near RT RIC (where APl authorization and authentication tokens are made
ready).

Takeaways and identified security gaps

e The above-described workflow relates to the authentication process initiated with a
registration in a catalogue and the verification of attributes in correspondence with the
catalogue-stored artefact during on-boarding.

e The process is multi-stakeholder and complex. The xAPP integrity verification is done by
comparing a signed digest stored at the SMO.

e The SMO acts as the security guard, making the peripheral checks before use. Once the
XAPP integrity has been checked by the SMO, it is no longer checked thereafter. The SMO

Prcjec funded by
Co-funded by 6 s e o B8 (@ UK Research Page 310f71
the European Union Pt b - =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

is trusted to deliver correct onboarding triggers. A compromise SMO can produce
corrupted xAPP onboarding demands luring the near RT-RIC.

e The near RTRIC consumes both and then validates the xAPP MOI, creating a trust anchor
issue. A corrupted near RT RIC can vet unauthorized xAPP being trusted.

e The threat model considered by O-RAN excludes a corrupted near RT-RIC and a corrupted
SMO.

2.2.5.2. WG11 statement on XAPP remote attestation

In O-RAN Security Requirements and Controls Specifications 11.0 [21], WG11 recommends a
conceptually defined remote attestation service (AS) for providing additional benefits besides
verifying the O-Cloud platform integrity by Chain of Trust. WG11 stipulates that the remote AS
should be extended to include O-RAN Applications integrity as depicted in Figure 2.

0-RAN Apps/VNFs/CNFs

Virtual instance
(VM/Cantainer)

Admins define O- .3 App/VNF/CNF

/‘1'\ Cloud platform and pS vy
S Apps/VNFs/CNFs LA,
trust policies P

- — Virtual resources |
r ™ /
(Could be within the SMO ‘ - A

Management | Virtualization layer
Attestation) AS periadically P|atf0rm ., {Hypervisor/Container Engine)
server \5 retrieves Trust Agent :
-\h_ _/ measurements \ / 'y > Hardware resources
_ ASverifies collected . | J
(a) measurements against . The trust agent RoT
" trust policies _g__,. periodically collect
measurements O-Cloud Platform

Figure 2. O-RAN theoretical full stack remote attestation framework

WG11 details the remote attestation of the O-CLOUD platform. The remote attestation is multi
layered and full-stack, covering O-cloud hardware root of trust, the hardware resources, the
virtualization layer, the virtual root of trust and finally the on-boarded applications (e.g., XAPP).
Although this full stack remote attestation does not specify a TPM leverage but is inspired from
it, as notions of root of trust (i.e., RoT in the picture) and virtual root of trust (i.e., vRoT) suggest
it.

2.2.5.3. xAPP runtime integrity verification

XAPP tampering is identified as a security Key Issue (aka Op-2) by WG11, stressing the possibility
for an attacker to “Negatively affect the O-RAN platform”. WG11 also states that “Detecting and
preventing threats during application runtime is still an on-going research problem”. WG11
pinpoints three research issues of:

e Trust of the integrity monitoring solution which can be itself tweaked and corrupted,

roject funded by
Co-funded by d s e, L@ (@ UK Research Page 320f71
the European Union i fralrutry =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

e Verifying the integrity of a running application requires knowledge of the known good
states of the application and what is not. Changing application data within memory may
not necessarily indicate a tampered application, especially considering Al/ML application

e Performance impact of integrity monitoring for control loop execution times for xApps
and rApps. The Near-RT RIC requires control loops from 10 milliseconds to 1s, and the
non-RT RIC control loops are specified for more than 1 second. These control loop
execution times must be considered, especially for xApps, when factoring in potential
negative effects on performance by monitoring for integrity on running O-RAN
applications.

These three elements are indeed to be considered when designing a runtime integrity
verification.

2.2.5.4. xAPP SBOM management

WG11 stresses that one noticeable element is that the requirement or recommendation for xAPP
SBOM processing does not translate into a “related security control”. WG11 recalls that SBOM
verification is an activity practiced during development but checks of correct dependencies
during runtime are hardly worked out.

2.2.5.5. Takeaways

Our survey has brought us the following vision and lessons learnt:

On xApp authentication

e WG11 has streamlined the design and workflow of xAPP authentication verification,
articulated by the SMO (using the digest and supplier signature) first before the near RT
RIC (using a locally produced security content-rich xAPP MOI grasping all security
exigencies).

e The SMO is the central ledger which detains the catalogue of verified xAPPs and triggers
the operations of the near RT-RIC at onboarding request.

e The maturity of the defined scheme is high. The accuracy of the different description
reflects a strong understanding of all operational and security considerations for xAPP
onboarding.

e The security relevance of this scheme imposes that both SMO and the near RT RIC are
integrated.

On xApp remote attestation

e A general full stack remote attestation framework including all layers from the hardware
anchor to the xAPP.

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 330f 71
the European Union s ——— =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

e No TPM requirement on the near RT-RIC is stated, although the terminology used evokes
it.

e The schema defines the SMO as the central verification utility, comparing all
measurements of different types and including xAPP digest.

e As mentioned for authentication, the SMO and the trust agent must be integrated.

e The maturity level of the recommendations can be assessed as preliminary and
conceptual.

On xAPP runtime integrity verification

e WG 11 stresses the requirement for runtime integrity verification, breaking the threat
model as employed in authentication (i.e., corrupted SMO, corrupted near RT-RIC)

e WG 11 positions runtime integrity as a research challenge, notably stressing the impact
of performance induced by periodic integrity verification. In the NATWORK project, this
can be viewed as a security gap to cover.

On xAPP SBOM management

e WG 11 stresses the requirement for continuous verification of used dependencies at
runtime.

2.3. Binary pre-deployment hardening techniques

2.3.1. General

Native payloads (i.e., executables, libraries) have been PDSCM hardened against various threats
for longbeen directly exposed to attackers, as their bare metal deployment limits the system
protection virtualization or containerization can bring. For attackers who have acquired the code
file, static analysis discovers the code and data structures, enabling both reverse engineering and
tampering. For attackers with administrative rights on the platform that runs the payload,
dynamic analysis is without limit, with the support of tracers, debuggers and decompilers,
capable of mapping the memory allocated to the running process.

Against CIA attacks, a major shift came with the emergence of TEE from 2015 onwards. A 360°
high-level survey of PDSCM techniques is given below, according to the different payload threat
models.

2.3.2. Confidentiality preservation

The SotA integrates the following PDSCM techniques. In the last three decades, academic surveys
[27][28][29][30] have covered the promises, efficiency and performance impact of the different

rojctfundec by
Co-funded by O s eeen poo RO (@ UK Research Page 34 of 71
the European Union et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

techniques employed in code security.

2.3.2.1. Code encryption

Encrypting the code section of the ELF formatted .exe or .so (i.e., for library) files, prevents static
analysis but the protection breaks as soon as the code start executing (i.e., the encrypted code
section is decrypted before execution). Code encryption protection depends on the encryption
algorithm. AES 256 encryption is generally practiced and brings a plain security assurance (against
static analysis)

Code encryption has no impact on performance as the decrypted code is identical to the original,
and a short latency at start is caused by the decryption primitive plugged at the code entry point.
Can be bridged or interfaced with a selective provisioning of the decryption key to a restricted
perimeter of platforms. This does not prevent the integral collection of the decrypted code on a
legit platform, which is migratable to any other platform.

Runtime code reconstruction uses basic code encryption on restricted snippet with a timely
description just before the snippet execution. This method reduces the exposure window of the
code snippet to a few CPU clocks around the snippet execution. Code encryption is a direct
PDSCM as the code shall be modified before release (i.e., encrypted code section or snippets).

2.3.2.2. Code obfuscation

With the objective of elevating the level of efforts required to produce a reverse engineering
through a dynamic analysis, code obfuscation over complexify the code structure. Obfuscation
brings a relative security assurance but a hardly scaled resilience. Used in the video game
industry, it aims at securing the publisher sales during first days after a game release date. Code
obfuscation is generally associated with hidden anti-tampering traps impeding the progression
of the attackers. Hidden traps are added snippets using elementary original code memory cells.

A large variety of code obfuscation techniques have been designed and used over time (e.g.,
control flow flattening, code virtualization, instruction substitution, opaque predicate/junk code
insertion, data structure obfuscation, symbol and string encryption) [31][32][33]. Each of them
brings in one specific context (i.e., when applied to one specific executable) a different efficiency
and performance impact. The performance impact can be significant (i.e., in the range of 100%
for complex code virtualization or control flow flattening), restricting their usage to security-
sensitive code and skilled integration teams. Obfuscation requires a specific set up activity on
each payload. Al-based tools simplify this workflow [34][35]. Al-based deobfuscation tools
[36][37] de-obfuscate code, recognizing obfuscated code patterns and removing them. Code
obfuscation is a direct PDSCM as the code shall be modified through obfuscation patterns.

rojctfundec by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 350f 71
the European Union et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

2.3.2.3. Trusted Execution Environment

TEE is a processor vendor-supported technique, arising first in 2015 (i.e., with ARM’s TrustZone),
producing on-the-fly (encrypted) memory page decryption and integrity verification prior use.
The pages are encrypted in DRAM, decrypted when used, and re-encrypted thereafter. The
memory in the “enclave” or TEE-protected area (used by the processor) cannot be accessed for
read or write by any external process. The Trusted Computing Basis (TCB) aggregates all memory
pages protected therein.

Intel’s SGX original design (i.e., 2019) restricted the TCB size to the bare minimum; notably, a
vulnerable TCB can be equally exploited and totally covertly. Vulnerability scanners cannot access
the TCB, hence are inoperant with a vulnerable TCB (aka evil TCB threat model). SGX is a shelter
for security-sensitive executables and routines. No system calls are permitted from the TCB,
generally implying code modifications. The new generation of VM-based ultra-large TCB (Intel’s
TDX, AMD’s SEV-NP, and ARM’s CCA) has emerged since 2020, following AMD'’s first SEV release
for the cloud market. These TEEs drastically simplify the DevSecOps as untouched VM onboards
the TCB, but they equally drastically augment the malicious TCB risk. The TEE impact on
performance fluctuates from an average of 10-30% for SGX to an average of 5-10% for VM-based
TEE. Placement inside SGX was a direct PDSCM, as code shall be modified and prepared to
onboard SGX. With VM-based TEEs, PDSCM is an indirect action, consisting in selecting prior
deployment the TEE equipped platforms.

PDSCM consist in either modifying the payload (i.e., by encryption or obfuscation) or ensuring its
execution in a TEE.

2.3.3. Integrity preservation

The SotA integrates several techniques employed at various level (i.e., system level, application
level through PDSCM).

System-level security: Software tampering protection is an epic battle, that one can date back to
the 40s and 50s, at which Van Neumann’s CPU architecture was preferred against Harvard’s,
which merges both data and code in the same memory space. As data shall be writable, there is
native protection to prevent writing on code residing aside. It took a long time for operating
systems to adopt Write xor Execute (WxorE) principle (i.e., in the 1990s onward) with declarative
flags preventing code tampering. For attackers with administrative rights on the platform, WxorE
flags can be removed and the code modified. Henceforth, WxorE protection does not prevent
memory introspection and tampering.

Prcjec funded by
Co-funded by O s reon poo RO (@ UK Research Page 36 0f 71
the European Union P — =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

2.3.3.1. Application-level security by PDSCM

The SotA contains the following integrity preservation measures:

e Authentication provides the recipient with the assurance that the static code file has not
been tampered with after it was signed by the developer or operator and before it was
onboarded on a platform. Both payload’s provenance and integrity are checked together
with the payload signature and the developer’s public key delivered in the payload’s
manifest. For that, the code file hashing, then asymmetric encrypted deliver these two
assurances.

e Remote attestation provides the payload operators with the assurance that their
deployed payloads are integrated where they are deployed, leveraging similar basic
techniques. Remote attestation needs a Prover where the code executes, producing the
guote, and a remote verifier comparing the quote with a reference measurement.

e Granular and imbricated integrity verification: Software-based techniques have been
designed to create a lattice of imbricated elementary memory state checks, which deliver
probabilistic protection. The density of these buried traps, executed on the fly during
execution, is correlated with the induced performance penalty.

e Trusted Execution Environment brings a de-facto integrity preservation to the TCB,
notably through on-the-fly integrity check processed at memory page loads.

PDSCM consist in application-level security as stated above.

2.3.4. Availability preservation

For software, availability exclusively relates to the availability of the needed resources allocated
by the execution environment. Techniques integrate system-level techniques, user-triggered
resource reallocation, and application performance monitoring. The following exclusively relates
to CPU sharing, while shared memory process allocation techniques similarly impact software
availability. For simplicity, memory allocation is not listed below.

2.3.4.1. System-level native CPU allocation (to processes)

Natively, CPU regulates the resource allocation to the different processes in operations with
time-sharing, priority scheduling or affinity pinning to distribute the processes execution over
several cores. Similarly, VM hypervisors regulate the resource allocation between VMs, based on
credit-based, fair scheduling, proportional share, and CPU quotas.

2.3.4.2. User-level arbitrary resource allocation

Systems deliver users sufficient administrative rights to adjust the resource allocated to a process
(e.g., Linux’s cgroup, nice/renice scheduling priority, taskset to bind processes and containers to

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 37 0f 71
the European Union s ——— =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

cores). Hypervisor administrators permit permissioned users to adjust the CPU resource
allocation (e.g., allocation of vCPUs assigned to a VM, adjust CPU shares, limits, reservations (e.g.,
VMware, vSphere, Xen, KVM), and finally by pinning vCPUs to physical CPUs.

2.3.4.3. Performance monitoring

CPU performance monitoring is offered by many different tools natively including in the
operating system or integrated applications

Operating system commands

- At CPU level (e.g., Linux commands top, htop, uptime, ps).
- At CPU core level (e.g., Linux commands mpstat, pidstat, perf)

Integrated performance application

A large set of Monitoring applications belongs in the SotA:

e Nagios [38], a widely used infrastructure monitoring (with plugins for CPU usage).

e Zabbix [39], a popular open-source monitoring system with CPU usage metrics.

e Prometheus + Grafana [40], a modern full stack for time-series CPU metrics and
dashboards.

e Datadog [41], a cloud-based monitoring with strong CPU profiling and alerts.

e New Relic [42], a SaaS monitoring for applications and infrastructure, including CPU
usage.

Self-contained performance monitoring

In [43], a disruptive approach intends to assess the allocated resource level by the payload itself
(through payload rewriting) or better through an agent (i.e., sidecar container). PDSCMs consist
of setting up monitoring applications in the execution environment, producing operating system
commands, or modifying the code for self-probing.

2.3.4.4. IPR security

Several techniques are employed to prevent illicit use of software, infringing the licence rights.
Techniques can be summarized as below:

Digital Right Management (DRM)
DRM techniques are present on the market in the following patterns:

o Software activation consists, through a remote server licence activation service, to (i)
collect machine specific invariants, (ii) process accordingly an activation token by an
activation server, once pending user right to install is verified, install the machine
invariant specific activation token on the permissioned platform. At software start, the

rojctfundec by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 38 of 71
the European Union et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

machine invariants are collected a second time and reconcile with the activation token
through a test, triggering the software start if positive.

o Dongle binding consists of checking the presence of a non-duplicable dongle on the
machine, at the software start.

Both above techniques imply modification of the code, notably at its entry point to insert the
DRM routine.

o Machine binding consists of checking the presence of a digital blob in the execution
environment to start the software. Several flavours of blob anti-duplication and migration
security are employed, preventing easy localization and copy. Ultimate security is
achieved when the blob is resident in a TEE.

o Watermarking has no semantic and would not stop the software execution, but it is used
to track each user licence, separately. In case of illicit replication, it is used to trace back
the copy. In practice, watermarks come with a change on the code package.

PDSCM consist in modifying the code or placing a watermark inside the code package.

2.3.4.5. Vulnerability preservation

Vulnerabilities have several origins such as buffer overflow (i.e., exploitation permitted by Van
Neumann architecture), memory management errors (e.g., use-after-free), Input validation and
injection (e.g., SQL injection), race conditions, and higher-level origins (e.g., wrong
authentication, misconfiguration, and cryptographic weaknesses).

PDSCM consists of identifying the vulnerability and curating the code (i.e., reprogramming as no
curation exists at executable level). Vulnerability detection, however, can be practiced at all steps
of the executable file generation (i.e., at programming, on binary executables).

2.4, Web Assembly security

2.4.1. WASM technology history and key design attributes

As stated in D2.1, WASM was defined by Internet browser giants [44], as a substitute to JavaScript
highly portable interpreted language. The working group objective was to raise concurrently
JavaScript's security, performance and sustainability, in alignment with NATWORK’s vision. For
that, WASM core asset is its lower-level instruction set, closer to machine atomic operations,
faster to interpret and supposedly harder to reverse. Since its standardisation [45] in 2019,
WASM has attracted several CPU intensive industries, domains and technologies (e.g.,
blockchains, FaaS, crypto mining, gaming engines). WASM module interpretation is faster and
more sustainable than any containerization solutions and its inherited portability ideal for cloud

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 39 0f 71
the European Union s ——— =4 N and Innovation

NRAT:.. | |

w w*R K D3.5 - Pre-Deployment Security per Construction Measures.rl
continuum payload migration in networking. The exact same WASM can be executed at very
different platforms, equipped with their platform-specific WASM runtime (i.e., interpreter).
Notably, by contrast to containers, WASM technology expands the continuum up to the User
Thanks to the high traction and work on WASM development activity, WASM
compilers are today totally polyglot, able to compile programs written in any existing languages.

Equipment.

Hereto, for networking, WASM is a high potential contender for instant and highly migratable 6G
services over the continuum.

2.4.2. WASM security analysis

Table 6 provides a rapid view on the key pros and cons of WASM security, deriving from our own
study and security surveys [46][47]. We have excluded the generally-cited low-level bytecode
instruction set, supposedly making reverse engineering harder, a relative security guarantee (i.e.,
seasoned reversers are efficient at assembly level, a lower level than WASM instruction set) and
Al-enhanced reverse engineering tools will bring instant, near-complete WASM module
decompilation in several programming languages outputs [48][49][50].

Table 6. Strengths and weaknesses of WASM security

Strengths Weaknesses

Sandbox execution environment, where: -Code tampering: Through remotely-spawn

-Payloads can run but cannot access other
process memory space.

-Native enforcement of Write xor Execute,
making code tampering impossible through

privilege escalation attacks or by direct memory
introspection, the memory states can be
modified. Write xor Execute memory protection
cannot be applied WASM bytecodes (i.e.,

data channel, without local memory
introspection. This strong security
assurance applies to native compiled WASM
payloads (i.e., through JIT or AOT
compilation) and the WASM runtime itself.
-Type-control by WASM runtime producing
buffer bound checking, making buffer
overflow attack unexploitable.

writable data structures).

-As an inheritance or common taken attack path
to JavaScript, JIT spraying technique tweaks the
JIT compilation to generate malicious code
snippets activable as backdoors.

2.4.3. WASM module integrity.

In a general perspective, two techniques deal with workload integrity. Trusted Execution
Environments (TEE) decrypt on-the-fly encrypted swapped memory pages, restricting access to
the DRAM-stored ephemeral decrypted pages. Additional integrity checks are produced at each
page load, on-the-fly. Confidentiality and Integrity are delivered de facto for any resident
workloads. Authentication and remote attestation, produce a verification of integrity using

Co-funded by L9, .4 UK Research
the European Union =4 B and Innovation

Project funded by

sn SN S O i mm

Page 40 of 71

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

hashing and a comparison with a signed reference measurement (i.e., signed certificate attached
with the workload). These processes ascertain both the provenance and integrity of the
workload. While authentication operates at the workload location only, remote attestation
operates on both ends (i.e., where the workload is deployed, at the remote location).

2.4.3.1. TEE-delivered integrity

By placing the WASM runtime into a TEE, both WASM runtime and module are preserved of
confidentiality and integrity attacks. As detailed in [51], using TEE shall be considered and
restricted to security-sensitive workloads as it implies higher memory and CPU consumption,
leads to novel threat models (e.g., DoS by Raw hammering, evil TCB) and frustrates workload
portability (i.e., heterogeneity). The workload-specific performance impact induced by TEE
placement also varies with the type of TEE. VM-based optimized TEE (i.e., Intel’s TDX, AMD’s SEV
and ARM’s CCA) performance penalty range is generally below 10%. Executable-based TEE (i.e.,
ARM'’s TrustZone, Intel’s SGX) impact is higher and bounded below 30%. In NATWORK, our vision
is to consider TEE for these specific security sensitive workloads (e.g., network probe), which
deployment can be managed with care and the extra resource consumption measured to be
acceptable.

2.4.3.2. Distinction between authentication and remote attestation

Authentication solutions ascertain the provenance of the workload, leveraging asymmetric
encryption and secondly the integrity or genuineness of the workload, leveraging a hashing on
the workload artefact data. Authentication is a security service beneficial to the recipient of a
workload (i.e., an infrastructure operator), taking for granted it is trustworthy to make this test.
Remote attestation does not depend on the recipient's trustworthiness and is a security
assurance delivered to the workload operator (i.e., service operator). For the service operator,
there is a need to check that what is deployed remotely corresponds to what is expected (i.e.,
identity check). The verification is worked out remotely leveraging components on both side (a
“prover” at the workload location, a “verifier” at another position).

2.4.3.3. SotA’s Integrity techniques

Table 7 shows the current state of the art related to WASM identity and integrity verification,
regrouping the usual techniques of WASM module authentication at onboarding, remote
attestation at onboarding, TEE-based remote attestation, and WASM module runtime
integrity.Table 7. WASM authentication and remote attestation techniques identifies, for each
technique, the verified artefacts attributes, some noticeable operational considerations and how
the current state of the corresponding SotA.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 41 of 71
the European Union s ——— =4 N and Innovation

NRT:..

W R.RK

Integrity
technique

D3.5 - Pre-Deployment Security per Construction Measures.rl

Table 7. WASM authentication and remote attestation techniques

Location of the
Prove and
Verification
routines

Artefact verified Other

attributes

considerations

State of the

Co-funded by
the European Union

BESNS °=: =

and Innovation

WS
o

Authentication Both at payload’s | -Origin (i.e., Public -No payload -Browsers ‘
execution site key’s owner) identity SRI,
-Integrity (i.e., vs the [information -DIY,
signature generation | collected -Wasm-sign,
time, prior -No signature -WABT,
deployment) management LUCET
required
Remote -Prove routine at | -ldentity (i.e., -Requires In NATWORK,
attestation payload artefact’s ident) signature by IMEC
execution site -Origin (i.e., by management (i.e.,
-Verify routine is | database signature pristine and
remote public key) trustworthy
-Integrity (i.e., vs the | signature
signature generation | database at the
time, prior verifier site)
deployment)
TEE-based 3-party remote | -SGX TEE genuiness | -Verified -WaTz,
remote utility (i.e., Intel | Payload integrity Attributes vary -Twine,
attestation attestation (i.e., vs the SGX with TEE types -Enarx,
(Intel’SGX service) enclave generation (e.g., AMD’s SEV- | -RA-WEB
sample) time at build stage) SNP)
-Implicit attributes of | -No enclave
confidentiality and identity delivered
integrity assurances
for the payload
during runtime.
Runtime integrity | -Prove routine is [Loaded memory -The memory None
verification at execution site. | pages footprint pages footprint
-Verify routine | integrity (vs. a can also be used
can be either at | reference for remote
execution site or [measurement made | attestation. Both
remotely at first run or prior remote attestation
deployment) and runtime
integrity checks
can use the exact
same maerial
O e UK Research Page 42 of 71

Nan"f‘,@'*

w / "R K D3.5 - Pre-Deployment Security per Construction Measures.rl
-\ A l*

Integrity Location of the Artefact verified Other State of the
technique Prove and attributes considerations art

Verification
routines

-Continuous
attestation
repeats
periodically,
integrity
verification.

2.4.3.4. WASM authentication techniques

Two different types of authentication techniques must be distinguished. The first being
embedded by web browsers, and the second by runtimes.

Browser SubResource authentication

The .wasm file integrity verification is practiced through Subresource (SRI), an in-browser
functionality, w/o checking the origin and taking for granted that the source is trusted. Typically,
source trust can be derived by a variety of complementary techniques (e.g., OAuth, mutual TLS,
session tokens) used to authenticate the source in the http/https handshake.

Runtime authentication

For WASM runtimes (e.g., WASMTIME, WASMER), programming a DIY (Do It Yourself) protocol
leveraging a classical hashing routine is always possible as depicted in Figure 3. Moreover, several
tools combine source authentication and payload integrity verification, leveraging a signed hash
(i.e., signature) (e.g., Wasm-Sig, WABT, Lucet).

’Development | ’ Build and signature generation ‘ ’On-boarding: Authenticity verification
Time »
WASM frameworks compilation Signature generation i n
(e.g., WASMTIME, WASMER, WAMR) (e.g., DIY, Wasm-Sig, Slgna.ture verifier
WAPR, WABT, LUCET) (e.g., DIY, Wasm-sign, WAPR, WABT, LUCET

5 € compiler &
C] e WASM module
@ crs comiter) .wasm file ﬁ

® b.u';;z‘.‘" ;—m
e > e | Signature: Signed

i1 hash and public key)

Python
» compiler for
wass

..
A ey
Crooni cneor JRAN

v Public key provenance
+ Local Hash reconstruction
v" Hashes identity check

Figure 3: WASM runtime-orchestrated module authentication

Co-funded by
the European Union and Innovation

: L_:ﬁ i UK Research Page 43 of 71

NRT:..

w / "R K D3.5 - Pre-Deployment Security per Construction Measures.rl
-\ l*

2.4.3.5. Remote attestation
To the best of our knowledge, there is no existing remote attestation framework for WASM
modules. In networking, WASM modules will be Network Functions and thus ETSI NFV security
working group recommendations fully apply [52]. Module authentication suffices when payloads
are executed in browsers, while it is not sufficient for networking, where remote attestation is
required for service operators.

Theoretical WASM remote attestation implementation

Although we have not found any existing WASM module remote attestation framework, we
believe that the first implementations will come soon. A WASM remote attestation framework
can be constructed with the support of existing authentication tools, without major technical
difficulties. For that, the authentication verifier can be turned into a prover, forwarding signed
guotes to a distant verifier, which checks the validity of the prover's public key and the signature
by comparison with the same payload's signature stored in its database. This theoretical
implementation is illustrated in Figure 4.

iDeveIopment ‘ Build and signature generation ‘On boarding: Remote attestation verification .
Time >
WASM fr Ks ion Signature generation R
(e.g., WASMTIME, WASMER, WAMR) (e.g., DIY, Wasm-Sig, - Slsn?tur;’ T;;e;/ - ;
e — WAPR, WABT, LUCET) (€8, DIY, Wasnr:sign, WAPR, WABT, LUGE
. WASM module
(C] ot comtior { wasm file
® ume M @)
@ o ©F comiler M . # &4‘(#
or wase Signature= Private L e T LT TP
& o] Tt * keyencrypted hash + .
Pod ol oonres for - Public key) .

DISTANT CHECK

v" Prover’s public key verification
Hashes reconstruction from
ﬁ Signature database and from
Prover-signature [
¥ Hashes identity verification ! Signature database

o
o
o
o
o

(references)

Figure 4: Theoretical WASM remote attestation framework

2.4.4, SotA Takeaways

We have reached the following conclusions:

e WASM authentication is a usual and well-established technique, delivering a security
attribute for the workload recipient (i.e., the cloud infra operator) while remote
attestation is required for service operators.

and Innovation

Co-funded by
the European Union

L_:ﬁ i UK Research Page 44 of 71

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

e All technical bricks used for authentication can be assembled to construct a remote
attestation of the WASM module when they are onboarded.

e After the remote attestation onboarding test, the WASM module runtime integrity is
lacking, and there is a security gap to fill.

e TEE remote attestation brings the assurance that the WASM module executes in a
sheltered execution environment where confidentiality and integrity are near certain, but
at the cost of deployment constraints, performance degradation, and excessive memory
consumption. According to the TEE type and, more specifically, if the TEE is process- or
VM-centric, the remote attestation respectively attests to whether this specific process is
inside or not. VM-based remote attestation checks the complete VM in its initial state,
without insight and accuracy down to the different processes inside the VM.

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 45 of 71
the European Union i fralrutry =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

3. NATWORK’s PDSCMs on containerized payloads

3.1. Kubernetes pre-deployment progress

Kubernetes provides several native mechanisms for security, including Network Policies, Role-
Based Access Control (RBAC), and Pod Security Admission. However, studies have shown that
security incidents frequently arise not from the absence of these features but from their
misconfiguration or misuse. Common problems include exposed credentials, overly broad RBAC
assignments, containers running with elevated privileges, and network policies that are either
missing or too permissive. These weaknesses are particularly dangerous in distributed
environments such as edge clusters and multi-tenant deployments, where the attack surface is
naturally wider. Alongside the identified weaknesses presented in Section 2.2.4.3, NATWORK
addresses these challenges by emphasizing pre-deployment hardening, ensuring that workloads
are validated and secured before they reach the production environment.

To achieve this, we propose the integration of CERTH’s Al-based Intrusion Detection System (Al-
IDS) into the Kubernetes pre-deployment pipeline. The Al-IDS would act as a policy gatekeeper
within the CI/CD process and Admission Controllers, performing in-depth analysis of deployment
manifests and configuration files. For example, in Figure 5: Pod manifest with root privileges and
no resource limits, Pod manifests and Helm charts can be scanned to detect dangerous practices
such as privilege escalation (e.g., containers defined with runAsUser: ©, running as root),
missing resource limits (Pods deployed without resources.limits, able to consume unlimited
CPU/memory), or the exposure of sensitive credentials (passwords hardcoded in environment
variables instead of referencing Kubernetes Secrets).

apiVersion: vl
kind: Pod
metadata:

name: insecure-pod
spec:

containers:

- name: app

image: myregistry/app:latest

securityContext:
runAsUser: 0 # <= Runs as root (privilege escalation risk)

env:
- name: DB PASSWORD # <= Hardcoded secret
value: "supersecretl23"
resources: # <= Missing limits -> no control of CPU/Memory usage
reguests:
cpu: "100m"

Figure 5: Pod manifest with root privileges and no resource limits

Another critical domain of analysis involves Network Policies and RBAC rules. Here, insecure
configurations often allow unrestricted traffic or excessive permissions. For instance in Figure 6:

Prcjec funded by
Co-funded by d i g B8 (4@ UK Research Page 46 of 71
the European Union Pt = ; =4 B and Innovation

NRT:..

w / "R K D3.5 - Pre-Deployment Security per Construction Measures.rl
-\ A l*

NetworkPolicy allowing unrestricted ingress traffic, a Network Policy with ingress: { from:
[1 } effectively permits all traffic, enabling lateral movement between Pods. Similarly, RBAC
bindings that assign cluster-admin rights to a microservice service account provide
unnecessary and dangerous access to the entire cluster. Even a misconfigured role granting write
access to namespaces intended to be read-only can compromise cluster integrity.

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: allow-all-ingress

spec:
podSelector: {}
ingress:
- from: [] # <= Allows all sources to connect -> lateral movement risk

Figure 6: NetworkPolicy allowing unrestricted ingress traffic

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRoleBinding
metadata:
name: insecure-binding
subjects:
- kind: ServiceAccount
name: microser e-sa
namespace: default
roleRef:
kind: ClusterRole
name: cluster-admi <= Grants full cluster-admin rights to a single service
apiGroup: rbac.authorization.k8s.io

Figure 7: RBAC binding granting cluster-admin to a service account

Finally, as shown in Figure 7: RBAC binding granting cluster-admin to a service accountexternal
interfaces and IP bindings must be reviewed to prevent unintentional exposure of services to
the internet. Examples as in Figure 8: Service of type LoadBalancer exposing an internal API
include Services of type LoadBalancer created without source IP restrictions, exposing internal
APIs publicly, Pods configured with hostNetwork: true that bypass the cluster network and
bind directly to the host, or workloads mapping host ports such as 22 (SSH) onto every node,
unintentionally opening attack vectors at the infrastructure level.

apiVersion: vl
kind: Service
metadata:
name: public-service
spec:
type: LoadBalancer # <= Exposes service to the internet by default
ports:
- port: 8080
targetPort: 80
selector:
app: internal-api # <= An internal API unintentionally made public

Figure 8: Service of type LoadBalancer exposing an internal AP/

Prcjec funded by
Co-funded by d s o RO (4 UK Research Page 47 of 71
the European Union Pt = =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

By catching these risks at the pre-deployment stage, insecure workloads are blocked before they
ever enter production, ensuring that Kubernetes clusters start from a hardened and trustworthy
baseline.

The benefits of this approach are multiple. By embedding shift-left security into NATWORK’s
DevSecOps workflow, developers and operators gain immediate feedback on security flaws
during the build and deployment phases, long before the workloads run in production. This
reduces the likelihood of misconfigurations reaching live clusters, thereby lowering the risk of
privilege escalation, data leakage, or lateral movement attacks. Furthermore, the approach
ensures that clusters start from a hardened security baseline, which improves resilience across
both cloud-native and edge/O-RAN environments.

The proposed solution integrates CERTH’s Al-IDS into the Kubernetes pre-deployment pipeline
as a policy gatekeeper. By analysing manifests, Helm charts, RBAC rules, and Network Policies
before workloads are deployed, it detects misconfigurations such as privilege escalation, exposed
secrets, and overly permissive access. This shift-left security approach blocks insecure workloads
early, provides immediate feedback to developers, and establishes a hardened baseline for
deployment. As a result, NATWORK strengthens Kubernetes security against misconfiguration-
driven risks, reducing the likelihood of privilege escalation, data leakage, and lateral movement
attacks, while enhancing resilience across cloud-native and edge/O-RAN environments.

3.2. PDSCMs on microservices

The pre-deployment security measures outlined in Section 2.2.3 - Pre-deployment Microservice
Security by construction are currently at varying stages of implementation within the NATWORK
project. The declarative modelling of CNF (Containerised Network Function) dependencies and
the specification of their cybersecurity requirements are under active development, with an
initial mature version already integrated into the secure-by-design orchestrator (sFORK) for
runtime management. These models, expressed through Kubernetes YAML manifests and Helm
charts, provide an explicit description of service dependencies, allowed communications, and
resource bindings. This allows sFORK to reason about CNF composition and to enforce secure
scheduling decisions at runtime. The declarative approach is already being implemented in the
NCL testbed to test inter-service communication and meeting security requirements of the 6G
slices.

The project has successfully adopted and implemented Submariner to establish secure inter-
cluster communication tunnels, providing encrypted connectivity between clusters. These
tunnels provide confidentiality and authentication for cross-cluster service traffic and are
integrated into the orchestration workflows. This step guarantees that communication links

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 48 of 71
the European Union s ——— =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

between clusters are operational and secure at the service level. The use of IPsec has already
been validated in initial testbed experiments, enabling secure multi-cluster orchestration.

The automatic (re)configuration of RBAC rules, informed by vulnerability assessment tools, is
planned for a subsequent phase of the project to further harden the security baseline. While
RBAC rules can already be defined declaratively, NATWORK is exploring automated
(re)configuration based on vulnerability assessment results. Lightweight tools such as Kubesec
can provide recommendations on patching runtimes and tightening access rights, which can then
be translated into RBAC policies. This would allow DevSecOps pipelines to dynamically adapt
permissions before deployment, aligning the access model with both security requirements and
runtime risk assessment.

We created a secure baseline before deployment through dependency modelling and encrypted
inter-cluster channels. The automatic RBAC policies are planned to be developed. On top of this
baseline, runtime optimisation strategies, CTI-driven selective sharing of hygiene scores and Al-
based workload prediction developed in D3.1 provide additional protection, optimisation and
adaptability. This combination allows sFORK to make placement and scaling decisions with both
pre-deployment hardening and live feedback in mind, linking DevSecOps practices with runtime
orchestration.

3.3. O-RAN xAPP onboarding security analysis and progress

3.3.1. IS-RD Liquid xAPP threat model

IS-Wireless’s Liquid RAN and Liquid near-Real-Time RIC (Radio Intelligent Controller) together
form an open, cloud-native RAN system following O-RAN Alliance specifications. The near-RT RIC
hosts xApps — microservice applications that ingest RAN data and issue control decisions — which
interface with RAN components (e.g., O-DU/O-CU) over standardized O-RAN interfaces (such as
the E2 interface). The entire system is deployed on a Kubernetes-based cloud-native platform,
meaning RAN, RIC, and xApp components run in containers orchestrated by Kubernetes. This
architecture introduces new security considerations due to microservice communication, multi-
vendor plugin apps, and disaggregated network elements.

We applied the STRIDE methodology with its threat modeling categories — Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service (DoS), and Elevation of Privilege — to
identify potential threats to the IS-Wireless xApp in four contexts:

e Kubernetes Cloud — The cloud-native infrastructure that orchestrates and secures
containers running Liquid RAN, RIC, and xApps.

e near-RT RIC Platform — The control framework that hosts xApps and manages near real-
time optimization of RAN functions via standardized O-RAN interfaces.

P

roject funded by
Co-funded by d b o poo RO (@ UK Research Page 49 of 71
the European Union i fralrutry =4 B and Innovation

NRT:..

W R.RK

D3.5 - Pre-Deployment Security per Construction Measures.rl

e 3rd party xApp — Another vendor’s modular microservice deployed on the RIC that

consumes RAN data and issues control actions for tasks like traffic steering or slice

assurance.
e Liquid RAN Components — The disaggregated RAN building blocks (O-DU, O-CU, O-RU)
that deliver radio access services and interact with the RIC through E2 and O1 interfaces.

Each STRIDE category is discussed with examples in these contexts in the following Table 8. Liquid
near-RT RIC xApp STRIDE analysis

Table 8. Liquid near-RT RIC xApp STRIDE analysis

STRIDE Kubernetes near-RT RIC xApp (3rd- Liquid RAN
Category Cloud Platform party plugin) Components
(framework & (O-DU/O-CU
services) and O-RU)
Spoofing - Rogue pod - Malicious xApp | - Rogue xApp - Fake base
impersonating a or process presents stolen or | station (rogue O-
service due to impersonates RIC | forged DU) tries to
lack of mTLS, internals via credentials during | connect to RIC's
allowing attacker | unsecured APls, onboarding to E2 interface,
to masquerade as | injecting pose as a trusted | impersonating a
xApp or API commands as if vendor’s xApp (if | legitimate RAN
server. from a trusted onboarding node to inject
- Compromised module. process is weak). | false data.
credentials used | - Lack of mutual | - One xApp - Spoofed
to create auth allows a fake | pretends to be gNodeB ID in E2
malicious pods, RIC component to | another via inter- | messages if
appearing as register as part of | xApp API if authentication is
legitimate RIC and intercept | mutual auth isn’t | missing,
components. traffic. enforced. misleading the
RIC about the
sender.
Tampering | - Supply chain - Manipulation of | - Malicious xApp | - Injection of false
attacks inserting | RIC message bus | tampering with configuration via
malicious code traffic (if not control messages | O1 or E2:
into container signed) . to disrupt service. | attacker alters a
images. - Exploiting a - Altering data it parameter (like
- Attacker vulnerability to receives frequency or TX
modifies cluster modify RIC’s state | (telemetry) power) in transit,
config to alter (e.g., change before passing to impacting RAN
network policies other modules,

Co-funded by
the European Union

Project funded by

BESNS 5=

~ R9,.q UK Research
=4 B and Innovation

Page 50 of 71

NRT:..

W R.RK

STRIDE
Category

Kubernetes
Cloud

or disable
security checks.

D3.5 - Pre-Deployment Security per Construction Measures.rl

near-RT RIC
Platform
(framework &
services)

policy values in
memory).

XApp (3rd-
party plugin)

feeding false info
into RIC
decisions.

Liquid RAN
Components
(O-DU/O-CU

and O-RU)

behavior.

- Tampering with
fronthaul or
synchronization
messages (if
physical access
gained) causing
RAN faults.

Repudiation

- Inadequate
audit logs let an
attacker change
settings and
delete evidence,
claiming
innocence (e.g.,
deleting a rogue
pod leaves no
trace if logging is
off).

- No tracking of
which admin or
service account

performed a
critical action,

- Poor logging of
xApp actions
means a rogue
XApp can send a
harmful
command and
later deny it was
the source.

- If RIC
configuration
changes aren’t
logged with
who/when, an
attacker could flip
them undetected.

- If xApp actions
aren’t audited, a
vendor can deny
their xApp caused
an incident.

- XApp could
manipulate its log
outputs or use
unsupported
channels to
perform actions,
evading normal
logs.

- A compromised
RAN node could
deny sending a
critical alert if
logs are not
collected (e.g., it
turned off an
alarm and claims
it never
happened).

- If RAN audit logs
(of commands
received from
RIC) are absent,
RAN vendor could
repudiate that a

used to read all
Kubernetes
Secrets (e.g., RIC
credentials).

- Sniffing intra-
cluster traffic if

or monitoring
data exfiltrated
via a debug
interface left
open, leaking cell
performance or
user metrics.

read access to
subscriber data
or cell configs via
a misused API,
leaking sensitive
info externally

enabling plausible detrimental
denial. command came
from their
equipment.
Information | - Stolen service - RIC’s database - XApp gains - Unencrypted
Disclosure account token unauthorized CUs/DUs control

traffic could be

sniffed, revealing
subscriber traffic
patterns or keys.

- 01 interface
data (config files,

Co-funded by
the European Union

Project funded by

BESNS -

~ R9,.q UK Research
=4 B and Innovation

Page 51 of 71

NRAT:.-
W R.RK

D3.5 - Pre-Deployment Security per Construction Measures.rl

STRIDE Kubernetes near-RT RIC XApp (3rd- Liquid RAN
Category Cloud Platform party plugin) Components
(framework & (O-DU/O-CU
services) and O-RU)
no encryption, - An unauthorized | (e.g., phone performance
revealing RAN user in RIC could | |ocations). reports)
telemetry or query data meant | _ Supply-chain intercepted by an
credentials. for SMO or compromised attacker, leaking
operators (like xApp quietly network .
network topology | sands configuration
info). confidential RAN | details.
data to attacker’s
server.
Denial of - Attackers spam | - Crash of acore | - An xApp - Flooding the RIC
Service the Kubernetes RIC service (E2 intentionally with excessive
APl to overwhelm | terminator, consumes measurement
the control plane | routing manager) | excessive RIC reports or fault
(schedule triggered by resources (e.g., indications (a
countless pods) malformed xApp | subscribes to hacked O-DU
causing message, halting | every possible could spam E2
management near-RT control. event at high messages) to
outage. - Multiple xApps | frequency) to overwhelm RIC
- A noisy neighbor | issuing heavy overwhelm the processing
container compute tasks RIC or E2 node capacity.
exhausts node O'ke complex Al (preventing other | - Desynchronizing
CPU/'memory, mferen’ces) freeze xApps from RAN: e.g., a
starving RIC the RIC’s real-) I
components (if time processing. | fimely Himing sync
i . attack making
no limits). pro?essmg). cells go out of
- Failure to sync, effectively a
handle DoS on radio
backpressure: a service.
slow or hung
XApp causes
gueue buildup,
blocking other
xApps’ messages
(indirect DoS).
Elevation of | - Compromised -AbuginRIC(or |-Acompromised |-IfanO-DUis
Privilege container escapes | RMR library) xApp exploits an | compromised, it
to host (if running | allows code API flaw to could potentially

Co-funded by
the European Union

Project funded by

sGSNS “Jf:’f P

~ R9,.q UK Research
=4 B and Innovation

Page 52 of 71

NRT:..

W R.RK

STRIDE
Category

Kubernetes
Cloud

privileged),
gaining root on
host node.

- Excessive RBAC
privileges let a
low-level service

_ proper assigned scope). | node) beyond
account modify | sandboxing calls | _ xApp escapes its | design.
cluster roles privileged RIC container (if _ Malware on a

(becoming
cluster-admin).

D3.5 - Pre-Deployment Security per Construction Measures.rl

near-RT RIC

Platform
(framework &

services)
execution, letting
an xApp gain
control of the RIC
host process.
- An xApp without

APls to change its
permissions or
access other
xApps’ data.

XApp (3rd-
party plugin)

elevate its role
(gaining
permissions to
control all cells
instead of its

running with
unnecessary
privileges) and
modifies host or
RIC files,
effectively
becoming an
admin on the
system.

Liquid RAN
Components
(O-DU/O-CU

and O-RU)

issue privileged

Core network
messages or alter
its role (e.g., act
as a ‘master’

DU could use the
O-RAN interfaces
to pivot into the
RIC’s domain,
escalating its
reach into the
control plane.

3.3.2.

NATWORK work on xAPP security

3.3.2.1. General

To augment the traction of our security development, we shall first stand on WG11 integrity
solutions showing a high maturity level, notably xAPP authentication at onboarding. Hence, our
development will be steered to develop solutions in three areas where WG11 work is of lesser
maturity level (i.e., remote attestation, runtime integrity and SBOM runtime enforcement). We
will work with ISRD, acting as the aka Liquid xAPP provider and the integration of D-MUTRA
blockchain-based remote attestation framework. The following work plan has been defined.

3.3.2.2.

The WG11 architecture places the SMO as the central and unique verification utility, which

On remote attestation
exposes it to DoS attacks caused by flooding attestation requests. The SMO is the utility which
also validates remote attestation. Last and as stated above our work plan is twofold:

e Develop an alternative to the SMO centralized verification (and storage of xAPP
catalogue), based on D-MUTRA decentralized framework. This alternative framework

Page 53 of 71

~ R9,.q UK Research
=4 B and Innovation

Prject funds
Co-funded by] oo
the European Union -

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

shall no longer be directly dependent on the integrity of the verification and measuring
entities.

Develop a user-centric remote attestation where permissioned stakeholders can collect
their workload remote attestation timestamped results.

3.3.2.3. Onruntime integrity

We will progress on the three challenges defined by the WG11:

Trustworthiness of the integrity monitoring: security analysis of our decentralized
structure
Applicability of remote attestation when applied to Al/ML: Consider how model
parameters can tentatively integrate the range of the measured memory footprint
Performance impact: Elaborate three possible schemes of:
o Spread-over-time hashing technique, to reduce the resource consumption by the
measuring thread
Linux’s cgroup CPU resource restriction, applied to the measuring thread
On-demand trigger to limit to one measurement only (i.e., at user-defined timing).

3.3.2.4. On SBOM runtime verification

Taking advantage of the sidecar container as used for D-MUTRA, we will expand its functionality

from integrity verification to dependency check, intercepting all called dependency at runtime.

We will consider how an agent can share the file system and get a dynamic view of the called

dependencies. According to the permission for sidecar mounting, we will define the appropriate

implementation either using a sidecar or by binary rewriting.

3.3.2.5. PDSCM for xAPP security

The following PDSCMs will be applied on the Liquid xAPP:

SECaaS processing for reference measurement: This pre-deployment step elaborates the
reference measurement and stores it on the SECaaS. This reference measurement will be
used by D-MUTRA for integrity verification.

Docker compose for sidecar mounting: This operation consists of modifying the Docker
orchestration, adding a script line referring to the sidecar container for its future collateral
mounting aside the xAPP container.

3.3.2.6. xAPP migratability

xAPP migratability may be affected with the sidecar mounting, as this opposes some WG11
guidelines (i.e., restricting deployment to what SMO strictly knows). However, in some restricted
conditions, sidecar mounting is permitted. Noticeably, in the Security Near-RT RIC xApps technical

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 54 of 71
the European Union s ——— =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

report [26] , there is a specific mention of sidecar containers: “Optional side-car container for key
and certificate management reduces the attack surface on the Applications.”

According to a deeper technical survey, we will opt for the sidecar mount or a direct SECaaS
rewriting of the xAPP as is described in Figure 9.

Benefits of sidecar mounted SECaaS

In Figure 9, two different setup workflows are represented. The left-hand section shows a PDSCM
based workflow with operations performed prior to deployment by a SECaaS. In the right-hand
section, a diagram without SECaaS is shown, applying only to containerised workloads and
enabling a Drop and Attest model, where the “dropped” container has not gone through pre-
deployment change, therefore is deployed without modification or measurement. This simplified
workflow is more scalable while limiting possible security functions to runtime integrity only. In
fact, no prior-deployment code encryption, for code confidentiality preservation, can be
delivered. Moreover, no prior-deployment reference measurement will be produced by the
(inexistant) SECaaS but the reference measurement is collected at the first execution of the
payload, by the sidecar container and serves for future integrity measurement. This schema does
not bring remote attestation as the measure cannot be verified with a locally stored reference
measurement but brings runtime integrity verification, which represents however the main
security gap to fill.

Protected xAPP 1
XAPP Original ggcaas X | *APP Containerized XAPP Containerized
= | workload workload
P TN
x86 native —mﬁ]
Sal L
>_

. @ssid . ™ ¥y
|
x86 containerized o ==y

DOCKERFILE

R

DOCKERFILE

]

NATWORK’s SECaaS-free workflow for
containerized payloads, with sidecar add-on

NATWORK’s SECaaS-based workflow to
generate modified x86 binaries and
containerized workloads

Deployment . N
S Y
(&

.) = v .
& X .

% N Blockchain and = r°y

Mol smart contract g 2= rh"‘"

Figure 9. Two schemes for xAPP security.

Prcjec funded by
Co-funded by d b e K9, 4 UK Research Page 55 of 71
the European Union Pt E = =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

3.3.2.7. xAPP performance and latency

The blockchain-based remote attestation induces a penalty of around 2-3 seconds, integrating
the complete DLT cycle. We will investigate if this is acceptable with standard on-boarding (and
RAN near real time loops (i.e., 10 ms -1s). A possible shift to Attest-After-Starting pattern will also
be investigated as it drops latency to nil. The performance impact of three different runtime
integrity verification methods will be measured.

Project funded by

Co-funded by 6 sgpeemen e B8 (4 UK Research Page 56 of 71
the European Union i fralrutry =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

4. NATWORK’s PDSCMs on native workloads

4.1. General

Montimage’s MMT (Montimage Monitoring Tool) network anomaly detection is a good
candidate for PDSCM for the native deployment case. As evoked in Section 2, PDSCM can harden
security services, by nature targets of choice exposed to various attacks. A dedicated effort has
been initiated and is on-going in the NATWORK project.

4.2. MMT’s threat model

The MMT Framework is a modular platform for network monitoring, traffic analysis, and security
enforcement. It is designed for both research and operational environments, providing deep
visibility into traffic patterns as well as the ability to enforce security rules in real time. The
framework is composed of several key components:

— MMT-Probe: A high-performance packet capture and analysis engine based on Deep
Packet Inspection technique that extracts traffic metadata, protocol details, and
application-level insights.

— MMT-Security: A security enforcement module that applies detection rules (compiled
into .so shared libraries) to traffic flows, identifying threats, anomalies, or policy
violations.

— MMT-Operator (optional): Interfaces for orchestration, visualization, and management
of collected data and security alerts.

The MMT framework can be deployed in two main ways depending on the needs of the
environment. One option is native installation, where users compile the binaries such as MMT-
probe, MMT-security, and the associated .so modules, and then run them directly on Linux
systems. This approach provides maximum flexibility for integration with custom setups and
allows fine-grained control over configuration and optimization. Alternatively, a more modern
and reproducible method is containerized deployment using pre-built Docker images. With this
approach, all dependencies are packaged together, making it easier to install, test, and update
the framework while ensuring consistency across environments. Containerized deployment also
simplifies orchestration with tools such as Kubernetes or Docker Compose, which is particularly
valuable in infrastructures that need to scale dynamically or enforce standardized deployment
practices.

When deploying the MMT framework, whether through native binaries or containerized
environments, the security of the software artefacts and associated rulesets is a critical concern.

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 57 of 71
the European Union s ——— =4 N and Innovation

NRT:..

w 0. R K D3.5 - Pre-Deployment Security per Construction Measures.rl
o\ A l*

A binary or shared library that has been tampered with, replaced, or misconfigured can

undermine the entire monitoring and enforcement pipeline. To evaluate these risks

systematically, we apply the STRIDE methodology [54], which helps us reason about potential

threats across six key categories. We discuss in detail the threat model of deploying MMT that

highlights multiple pre-deployment security considerations.

Spoofing is a significant concern during the distribution and deployment of MMT.
Without proper controls, an attacker could impersonate a legitimate developer or
repository and trick operators into installing a maliciously crafted version of MMT-probe,
MMT-security, or one of the . so detection modules. In practice, this can occur if binaries
are downloaded from unofficial mirrors or if Docker images are pulled from unverified
registries. Preventing spoofing requires strong authentication of both the source
repository and the individuals who build and release MMT.

Tampering focuses on the risk of modification to binaries or rulesets before they are
deployed. Because MMT-Security relies on compiled . so rules to enforce detection logic,
even a subtle modification in a library could result in rules being disabled, altered, or
replaced with logic that intentionally bypasses threats. For example, a tampered library
could silently allow specific malicious traffic through, creating a blind spot in monitoring.
To counter this risk, deployments must incorporate artifact integrity validation, such as
checksum verification, digital signatures, or trusted build pipelines.

Repudiation arises when there is no clear accountability for changes made to binaries or
configurations. In environments without proper logging and version control, it may be
impossible to prove whether a binary was modified by a malicious actor or simply updated
by a developer. This lack of traceability hinders incident response and weakens
confidence in the security posture. Implementing auditable pipelines, logging all artifact
changes, and enforcing commit signing are crucial to address repudiation threats.
Information disclosure represents another serious category of risk. The detection
rulesets themselves may encode proprietary intellectual property or sensitive patterns
used for anomaly detection. If these . so libraries or associated configuration files are
leaked, an adversary could gain insights into the organization’s detection strategy,
allowing them to craft evasive attacks. Moreover, improper containerization or
configuration could inadvertently expose sensitive credentials used by MMT to external
parties. Ensuring proper access control, encrypting secrets, and limiting container
privileges are necessary steps to reduce exposure.

Denial of Service (DoS) can result from the deployment of corrupted or malicious artifacts
that cause instability in the monitoring stack. For example, a malformed ruleset could
trigger a crash loop in MMT-security, rendering the detection system unavailable.
Similarly, a binary modified to consume excessive resources could degrade the overall

e Prcjec funded by
Co-funded by ee € spenen e « A9, .4 UK Research Page 58 of 71
the European Union {118 P ey =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

monitoring environment. DoS threats highlight the importance of testing rulesets in
staging environments before production rollout, as well as implementing resource
isolation through container orchestration platforms like Kubernetes.

— Elevation of Privilege threats occur when compromised binaries or libraries exploit
elevated system permissions to execute unauthorized actions. Since the MMT framework
often runs in privileged environments where it has access to raw network traffic and
sensitive telemetry, a backdoored version of MMT-probe or MMT-security could be used
to exfiltrate data or manipulate monitoring outcomes. Preventing this requires strict
adherence to the principle of least privilege in both IAM roles and container runtime
configurations, ensuring that even if a component is compromised, its ability to escalate
further within the environment is minimized.

4.3. PDSCM on MMT

With respect to detailed threat analysis exposed above, MMT integrity preservation appears to
be the priority as the vast majority of threats are directly linked to a modification of the
executable, being at the time of deployment (i.e., spoofing) or during its execution (i.e.,
tampering, repudiation, elevation of privileges and denial of service). Code tampering is the self-
evident attack vector for all security-related software. NATWORK has considered two alternatives
detailed below.

4.3.1. MMT remote attestation and continuous integrity verification

Covering both stages of deployment and runtime, the two techniques can be offered by D-
MUTRA, a TSS’s solution providing automatic remote attestation and using the same memory
footprint measurement for both verifications. D-MUTRA is an outcome of DESIRE-6G SNS project
[49] that aligns with NATWORK, fostering workload migratability by removing technical
dependencies (e.g., TPM, Linux’s IMA presetting). Its runtime integrity verification is designed for
being penalty-free (with a cap of 1% performance penalty). Noticeably, D-MUTRA leveraging of
Hyperledger blockchain shall not be perceived as a dependency as the blockchain can be setup
anywhere, separately from the workload's execution environments.

In Use Case 4.6 dedicated to DoS prevention by self-monitoring, we will initiate our work with
the implementation of D-MUTRA to assess the integrity of MMT. Penalty measurements will be
worked out as well as the blockchain footprint inflation rate.

The PDSCM consists in modifying MMT executable to integrate different routines (i.e., Prove,
Verify, DLT-com) for MMT to integrate D-MUTRA service, hereto be remotely attested and
continuously integrity verified.

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 59 of 71
the European Union s ——— =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

4.3.2. MMT in-TEE sheltering

As part of Use Case 4.5 dedicated to optimized and explainable MTD, ZHAW and Montimage are
closely working on the dynamic placement of MMT in and out of a TEE enclave with AMD’s SEV-
SNP (Secure Encrypted Virtualization with Secure Nested Paging) [53], a VM-type TEE. The
experiments are conducted on AMD EPYC v4 processors, which provide native support for AMD
SEV-SNP [5] Noticeably, the experiment totally aligns with NATWORK’s concept, consisting of a
hot migration of MMT to a TEE sheltering, (only) at occurrence or presumption of a security
threat. We believe that this policy totally makes sense, with the avoidance of a costly by default
overprotection (i.e., if MMT were sheltered in TEE by default).

The planned PDSCM consists of inserting MMT inside a migratable SEV-SNP managed Virtual
Machine. TEE sheltering overhead, although assessed to be relatively small with the VM-type
form of SEV-SNP, is still to be measured. The impact in terms of memory consumption and CPU
overhead will be measured in the use case as part of upcoming NATWORK efforts.

P

roject funded by
Co-funded by d b o poo RO (@ UK Research Page 60 of 71
the European Union i fralrutry =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

5. NATWORK’s PDSCM on WASM workloads

NATWORK’s work on WASM workload security has focused on module runtime integrity
verification, a runtime method assessing the integrity of the workload memory footprint and
comparing it with a pre-deployment reference measurement. This work aims at filling a security
gap, deemed critical for WASM adoption in networking, where a WASM module can be directly
modified since it is treated as a data structure where no Write xor Execute protection can be
enforced. By doing so, NATWORK is taking a significant step. Referring to the list of possible
PDSCMs as listed in Section 2.1 of this document, our work stands on integrity preservation,
detecting tampering in the complete module lifetime.

The PDSCM consists of collecting a reference measurement prior to deployment (and used during
the verification occurring on-boarding or module execution). It also consists in installing a
workload identifier used for reconciling the workload and its reference measurement. The main
difficulty of our development consists in collecting at runtime evidence that the workload has
not been modified.

5.1. NATWORK runtime integrity technique

To collect integrity evidence at runtime, we first analysed a WASM payload memory map as
shown in Figure 10.

Application
0 A mem_size

Read/Write

Virtual Machine

0 | oxsroo | call2
0x91AA

; Stack
CEIRITETY] Instructions H

0x7F12

w N

Figure 10. Memory map of WASM runtime (virtual machine) and module (application)

We discovered that WASMTIME created three distinct memory areas (i.e., stack, WASM
instructions and linear memory). An integrity checker requires access to the WASM instructions
during runtime which can only be accessed at the runtime level. As a matter of fact, linear
memory only contains offsets to the WASM instructions, insufficient to assess integrity. Then,
our reverse engineering of WASMTIME, we had then discovered that we could force a JIT
compilation and a serialization of the executable binary blob. A serialized blob is a specific format

rojctfundec by
Co-funded by 6 s e, R @ Q) UK Research Page 61 of 71
the European Union = ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

derived from ELF. This format contains the instructions in the classical ELF's text section.
Noticeably, these x86 native assembly instructions result from the JIT compilation which ingests
the WASM's module instruction. Any change to the WASM module results in a different set of
native instructions. Our implementation is depicted in the flow graph of Figure 11.

Load WASM Module with
Modified WASMTIME

Spawn
Integrity Thread

/7 i - - ‘:\\
o ™~
Main Thread Integrity Thread
/ \
|

A 4

L]

F JIT and WASMTIME®
Interpret & Run WASM b o ?

Modut serialize method to
odule

m produce ELF formated file
“ k

,' .

Compute SHA-256 of ELF's
text section

Periodic Check

A 4

Collect reference
measurement and Verify

@ 7

SHA-256
A \
\ Success Fa%lure
\ .
Integrity Verified Integrity Failed: Alert

Figure 11. Flow diagram of NATWORK WASM module runtime integrity verification

We have created a second thread triggering JIT+ serialization and we produce a hash of the ELF's
text section and compare it to a reference signature. The reference measurement derives from
the same exact process in our SECaa$, using the exact same components. Two methods can be
used to store the reference measurement. It can be appended directly on the WASM module,
resident in our SECaaS or be stored after generation at the first loop iteration. It is then used for
comparison.

Our WASMTIME interpreter has been appended with Prove and Verify routines able to generate
the hash and verify it by comparison with the reference measurement.

Prcjec funded by
Co-funded by d o e o B8 (@ UK Research Page 62 of 71
the European Union Pt E - =4 B and Innovation

N nT et D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK c ‘
5.2. Integration in D-MUTRA blockchain based mutual remote
attestation

For the integration with D-MUTRA, a blockchain-based mutual remote attestation framework,

the following steps shall be worked out.

Producing a modified WASTIME runtime

WASMTIME is open source, the integrity verification functions are programmed at source code
level, and a novel compilation of the runtime is generated, as depicted in Figure 12.

TSS source code of
WASM integrity
check routines

Add

Start Compilation

WASMTIME original WASMTIME source WASMTIME Runtime
source code code modified modified

Figure 12. Modified WASMTIME runtime generation

Full stack remote attestation scheme

The modified WASM runtime is per-se a security-sensitive entity accessing the WASM payload at
the first place and secondly producing its integrity verifications. It is a basic security provision to
attest the runtime at the first place.

Modified WASMTIME WASM module!

(: Runtime signature signatures
| WASM payload SECaas [
| (memory map) Verifier #

Modified WASM payload Ie

7
‘ Verify routineJ (Prover routine J

[‘ Blockcﬁair;routine]

Modified WASMTIME

Figure 13. WASM full-stack remote attestation

Figure 13 shows a basic workflow where TSS modified WASMTIME interpreter is first checked (1)
by comparison of a SECaaS reference measurement before the modified runtime delivers payload

integrity verification (2).

Project fu

Co-funded by © mpmee—en 5
the European Union e

and Innovation

L_:ﬁ i UK Research Page 63 of 71

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

Several implementations are considered for measuring the runtime. The agent can be appended
with its own proving routine, or if the runtime is delivered as a container, a side car container will
be added for the proving task. In both cases, the SECaaS will be used as a centralized verifier.

Mutual remote attestation scheme

D-MUTRA enacts a novel software-based chain of trust based on integrity freshness criteria,
where the most recently verified payload is elected by consensus to make the next payload
verification. In the context of WASM, D-MUTRA principle must be slightly deviated. WASM
module cannot directly verify a peer (i.e., module), but WASM runtime can. The verifier election
smart contract shall elect WASM runtimes, as reflected in Figure 14.

D-MUTRA blockchain based mutual
remote attestation

Modified WASMTIME WASM module)
Runtime signature signatures

Verify rout: Proves routine |
Blocichan routne
SECaaS
odtied waswTIVE Verifier
b ’ \
/ * Remote attestations are stored in blocks
* Smart contract elects the verifier as the last
attested modified runtime
* SECaaS provisions the reference
measurement to the elected verifier

* Modules are Proven by their runtime which
can verify their peers

Figure 14. WASM mutual remote attestation by D-MUTRA

5.3. Alignment with NATWORK

5.3.1. Workload portability

Keeping in mind the stated priority of workload migration ability as defined in D2.1, it is worth
stating that our solution restricts deployment to locations where a modified WASMTIME runtime
is implemented, only where integrity verification is requested. Conversely, WASM modules can
still be executed in a standard WASM runtime but without integrity being verified during their
execution. In fact, WASM top notch migratability is conserved and untouched as WASM modules
can still be executed on any platform duly equipped with a WASM runtime of any kind. In the
context of the Telecom industry, workloads will be executed in either controlled or managed
execution environments. The execution environments are either detained or managed by
operators which deploy their workloads (i.e., telecom operators) or by their contractors (i.e.,

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 64 of 71
the European Union i fralrutry =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

cloud vendors). In both cases, prior to deploying the WASM module, a managed deployment and
verification leveraging either authentication or better remote attestation of the specific runtimes
can be processed. In practice, telecom operators can set up a pre-deployment security per
construction deployment of the runtimes to get a runtime integrity of their modules thereafter.
This policy can be worked out because it implies a limited and controlled number of deployments
at pre-identified locations. Moreover, the possible execution of the same WASM modules with
unchanged runtimes, relaxes this runtime pre-deployment policy and justifies it, in the
perspective of the telecom operators whose modules can still execute everywhere (up to
uncontrollable end user endpoints) but will be integrity verified in a perimeter defined by the
runtime pre-deployment policy.

5.3.2. Performance impact

As shown in [49], the performance impact induced by integrity verification can be capped to an
average 1%, by use of two techniques:

- Spread-over-time hashing, where each step of the hashing process is paused with duration
adjustable idle times. This technique resides in a specific development by modification of a
hashing function. No administrative right is needed to employ this user-level technique.
Noticeably, the performance impact is workload dependent.

- Linux’s cgroup resource limitation, applied to the measuring thread, ensuring that the WASM
module interpretation executed at the same time is not allocated with a reduced amount of
CPU resources. Administrative rights must be delivered to leverage this system's utility.

These two techniques will be complemented with an on-demand activation pattern, lower
bounding the impact irrespectively to the workload type and tentatively through an
implementation without specific administrative right. The specific advantage of on-demand
trigger is the limitation to one measure made sporadically, with no periodic repetition, hereto
dropping drastically dropping the induced costs.

5.3.3. Sustainability

Sustainability shall be considered over resource consumption in terms of CPU processing and
memory usage. With an adjustable CPU processing level limited to 1%, the solution can be
considered sustainable.

The memory consumption of the measuring process is always lower than the memory footprint
of the monitored process and generally smaller by several orders of magnitude. A short-lived
buffer is used and released after each measurement cycle.

When integrated with the D-MUTRA blockchain-based remote attestation framework,
blockchain inflation rate must be monitored and controlled by limiting the block creation

rojctfundec by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 65 of 71
the European Union et ety =4 N and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.R:RK

cadence. In a high-frequency scenario—one attestation every 2 seconds for 3 agents—the system
produces approximately 47.3 million attestations per year, resulting in around 28.4 GB of
blockchain data annually. However, D-MUTRA mitigates this by storing only tampering
detections, which are rare events. This reduces the blockchain inflation rate by 6 to 12 orders of
magnitude, depending on the frequency of detected anomalies. In this condition, one tampering
detection inflates the blockchain by approximately 600 Bytes, which is totally negligible. In
addition to tampering detection, each onboarding induces a remote attestation at the same cost.

5.4. Future work in the NATWORK project and beyond.

5.4.1. D-MUTRA integration

As explained, the full stack remote attestation and the integration into D-MUTRA will be carried
out during the project.

5.4.2. Towards O-latency at start

An implementation of a novel Attest-After-Starting measuring sequence will be established,
enabling workload to instantly start. To cover the associated integrity blind window (i.e., between
the workload start and its measurement), our design will consider a bridge with the workload
authentication at on-boarding. From the authentication step onward, our attestation takes
runtime measurements.

5.4.3. Lower bounding the performance impact in all situations with an on-
demand trigger

An implementation of an on-demand activation of the runtime verification will be established,
dropping the performance impact in all situations, irrespective of the workload size and
detention of platform administrative right.

5.4.4. WASM module confidentiality preservation

We will devise and implement confidentiality preservation, through another set of modifications
on WASMTIME runtime and a SECaa$ processing. The latter will encrypt the WASM module while
the former will decrypt the encrypted module before execution.

5.4.5. During or beyond NATWORK. Mitigating JIT spraying

During NATWORK, we will study the possibility to detect JIT spraying, leveraging our integrity
verification second thread as described in Figure 11. Flow diagram of NATWORK WASM module
runtime integrity verification JIT spraying defense was not part of our original plan, according to
our feasibility study, the implementation of JIT spraying defense will be tentatively worked out
during or following NATWORK.

P

roject funded by
Co-funded by d b poo RO (@ UK Research Page 66 of 71
the European Union i fralrutry =4 B and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

6. Conclusion

In NATWORK, PDSCMs is elaborated on the three payload formats, elevating security
substantially in each domain:

1. Containerized xAPP security is elevated, beyond O-RAN authentication specifications and
fulfilling O-RAN WG11 identified persisting security threat (i.e., runtime tampering),
applying runtime integrity verification. The PDSCM consists of a modified Docker’s
orchestration layer, to bridge a sidecar container. If this schema cannot be applied, the
PDSCM will consist of modifying the xAPP to inject the required routines for the
continuous integrity verification.

2. Highly migratable WASM modules security is significantly improved by a PDSCM
consisting of modifying the WASM runtime, not the WASM module itself. This is a
significant security improvement, done without touching the payload, making WASM
technology safer and usable for networking.

3. Our work on native payloads integrates use cases illustrating how PDSCM hardens a
security service. Two PDSCMs are implemented, consisting of (i) placing MMT probe (i.e.,
a network anomaly detection probe) into SEV-NP TEE and (ii) modifying it to be attestable
and runtime verified. This work will be continued and exemplified in Use Cases 4.5 and
4.6, respectively. This will notably show how MMT integrity preservation can be offered
by two opposing techniques (i.e., TEE and remote attestation) and the intricacies and
impacts of each in terms of performance and sustainability.

PDSCMs contribute to NATWORK's reconciliation principle, reducing the costs of security by
applying security at each elementary component. They also contribute to NATWORK’s security
challenges, hardening the security code itself, for more reliable security services. They differ in
nature and are enacted at different levels, impacting differently workload migratability as
recalled in Section.2.1.1.2.

As each use case and context differs (e.g., no workload migration considered, possession of
platform administrative rights, severity of the security threat, and access to technology), the
appropriate PDSCM can be implemented to better match the requirements and offered
possibilities.

6.1. Next steps

The next phase will focus on validating and integrating the proposed Pre-Deployment Security
per Construction Measures (PDSCM) across native, container, and WASM payloads. Efforts will
extend towards adaptive, performance-aware security regulation, ensuring optimal trade-offs

Prcjec funded by
Co-funded by O s reon poo RO (@ UK Research Page 67 of 71
the European Union P — =4 B and Innovation

NRT:.-.
W.R:RK

D3.5 - Pre-Deployment Security per Construction Measures.rl

between protection, efficiency, and sustainability. Validation through representative cloud—edge
use cases will demonstrate secure and platform-agnostic payload mobility. Continued
collaboration with confidential computing and WASM ecosystem initiatives will ensure alignment
with state-of-the-art developments, reinforcing NATWORK’s objective to deliver secure,
interoperable, and energy-efficient computing continuum operations. These efforts will be
reported in the deliverable D3.6 — “Pre-Deployment Security per Construction Measures.r2” due
to M30.

Project funded by

Co-funded by © mmpaeemen
the European Union Cotebmin e r

L_:ﬁ i UK Research Page 68 of 71

and Innovation

NRT:..

D3.5 - Pre-Deployment Security per Construction Measures.rl
W.ALRK

References

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Intel. (n.d.). Confidential containers made easy. Retrieved September 21, 2025, from
https://www.intel.com/content/www/us/en/developer/articles/technical/confidential-

containers-made-easy.html

RedHat. (n.d.). Zero trust starts here: Validated patterns for confidential container
deployment. Retrieved September 21, 2025, from
https://www.redhat.com/en/blog/validated-patterns-confidential-container-deployment
Falcao, E., Silva, F., Pamplona, C., Melo, A., Asadujjaman, A. S. M., & Brito, A. (2025).
Confidential Kubernetes deployment models: Architecture, security, and performance
trade-offs. Applied Sciences, 15(18), 10160. https://doi.org/10.3390/app151810160

Intel. (n.d.). TDX documentation. Retrieved September 21, 2025, from
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-

extensions/documentation.html
AMD. (n.d.). SEV-SNP documentation. Retrieved from
https://www.amd.com/fr/developer/sev.html

Ye, M. (2024). Enabling Performant and Secure EDA as a Service in Public Clouds Using
Confidential Containers. Retrieved September 21, 2025, from
https://arxiv.org/pdf/2407.06040v1

Confidential Containers. (2024). Introduction to Confidential Containers (CoCo). Retrieved
September 21, 2025, from
https://confidentialcontainers.org/blog/2024/02/16/introduction-to-confidential-
containers-coco/

Pronteff. (n.d.). Openshift confidential containers now on Microsoft Azure. Retrieved
September 21, 2025, from https://pronteff.com/openshift-confidential-containers-now-

on-microsoft-azure/

Edgeless Systemes. (n.d.). Marblerun. Retrieved from
https://www.edgeless.systems/products/marblerun

Johnson, M. A., et al. (2024). Confidential Container Groups: Implementing confidential
computing on Azure container instances. ACM Queue 22(2). https://spawn-
queue.acm.org/doi/pdf/10.1145/3664293

Sanctuary. (n.d.). Trusted container extensions for container-based confidential

computing. Retrieved September 21, 2025, from https://sanctuary.dev/en/blog/container-

based-confidential-computing/

Brasser, F. (2022). Trusted Container Extensions for Container-based Confidential
Computing. https://arxiv.org/pdf/2205.05747

Prcjec funded by
Co-funded by O s reon poo RO (@ UK Research Page 69 of 71
the European Union P — =4 B and Innovation

https://www.intel.com/content/www/us/en/developer/articles/technical/confidential-containers-made-easy.html
https://www.intel.com/content/www/us/en/developer/articles/technical/confidential-containers-made-easy.html
https://www.redhat.com/en/blog/validated-patterns-confidential-container-deployment
https://doi.org/10.3390/app151810160
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.amd.com/fr/developer/sev.html
https://arxiv.org/pdf/2407.06040v1
https://confidentialcontainers.org/blog/2024/02/16/introduction-to-confidential-containers-coco/
https://confidentialcontainers.org/blog/2024/02/16/introduction-to-confidential-containers-coco/
https://pronteff.com/openshift-confidential-containers-now-on-microsoft-azure/
https://pronteff.com/openshift-confidential-containers-now-on-microsoft-azure/
https://www.edgeless.systems/products/marblerun
https://spawn-queue.acm.org/doi/pdf/10.1145/3664293
https://spawn-queue.acm.org/doi/pdf/10.1145/3664293
https://sanctuary.dev/en/blog/container-based-confidential-computing/
https://sanctuary.dev/en/blog/container-based-confidential-computing/
https://arxiv.org/pdf/2205.05747

NRT:..

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]

w 0. R K D3.5 - Pre-Deployment Security per Construction Measures.rl
o\ A l*

Budigiri, G., Baumann, C., Mihlberg, J. T., Truyen, E., & Joosen, W. (2021). Network policies
in Kubernetes: Performance evaluation and security analysis. In 2021 Joint European
Conference on Networks and Communications & 6G Summit (EuUCNC/6G Summit).

Koukis, G., Skaperas, S., Kapetanidou, I. A.,, Mamatas, L., & Tsaoussidis, V. (2024).
Performance evaluation of Kubernetes networking approaches across constrained edge
environments. In 2024 |IEEE Symposium on Computers and Communications (ISCC).
Shamim, M. S. I., Bhuiyan, F. A., & Rahman, A. (2020). Xi commandments of Kubernetes
security: A systematization of knowledge related to Kubernetes security practices. In 2020
IEEE Secure Development (SecDev) (pp. 58—64).

Carridn, C. (2022). Kubernetes scheduling: Taxonomy, ongoing issues and challenges. ACM
Computing Surveys, 55, 1-37.

Rahman, A,, Shamim, S. ., Bose, D. B., & Pandita, R. (2023). Security misconfigurations in
open source Kubernetes manifests: An empirical study. ACM Transactions on Software
Engineering and Methodology, 32, 1-36.

Wlodarczak, P. (2017). Cyber immunity: A bio-inspired cyber defense system. In
Bioinformatics and Biomedical Engineering: IWBBIO 2017, Proceedings, Part Il (Vol. 5).
Springer.

Kampa, S. (2024). Navigating the landscape of Kubernetes security threats and challenges.
Journal of Knowledge Learning and Science Technology, 3, 274-281.

O-RAN Alliance. (n.d.). Near-RT RIC architecture 7.0. Retrieved from
https://specifications.o-ran.org/specifications

O-RAN Alliance. (n.d.). Security requirements and controls specifications 12.0. Retrieved
from https://specifications.o-ran.org/specifications

O-RAN Alliance. (n.d.). Study on security for Service Management and Orchestration (SMO)
6.0. Retrieved from https://specifications.o-ran.org/specifications

O-RAN Alliance. (n.d.). Study on security for O-Cloud 7.0. Retrieved from
https://specifications.o-ran.org/specifications

O-RAN Alliance. (n.d.). Study on Zero Trust Architecture for Secure O-RAN. Retrieved from
https://specifications.o-ran.org/specifications

O-RAN Software Community. (n.d.). O-RAN xAPP SDK. Retrieved from https://If-o-ran-
sc.atlassian.net/wiki/spaces/ORANSDK/pages/14516830/xAppFramework

O-RAN Alliance. (n.d.). Study on security for Near Real Time RIC and xApps 5.0. Retrieved
from https://specifications.o-ran.org/specifications

Collberg, C., Thomborson, C., & Low, D. (1997). A taxonomy of obfuscating transformations.
Barak, B. (2016). Hopes, fears, and software obfuscation (survey / review).

Xu, H., Zhou, Y., Kang, Y., & Lyu, M. R. (2017). On Secure and Usable Program Obfuscation:
A Survey. arXiv:1710.01139.

De Sutter, B., et al. (2024). Evaluation Methodologies in Software Protection Research.

e Prcjec funded by
Co-funded by ee © e « A9, .4 UK Research Page 70 of 71
the European Union {118 P — =4 B and Innovation

https://specifications.o-ran.org/specifications
https://specifications.o-ran.org/specifications
https://specifications.o-ran.org/specifications
https://specifications.o-ran.org/specifications
https://specifications.o-ran.org/specifications
https://lf-o-ran-sc.atlassian.net/wiki/spaces/ORANSDK/pages/14516830/xAppFramework
https://lf-o-ran-sc.atlassian.net/wiki/spaces/ORANSDK/pages/14516830/xAppFramework
https://specifications.o-ran.org/specifications

NRT:..

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]
[47]

[48]
[49]
[50]
[51]
[52]

[53]

[54]

w 0. R K D3.5 - Pre-Deployment Security per Construction Measures.rl
o\ A l*

ARXAN Technologies. (n.d.). Application security. Retrieved from
https://digital.ai/products/application-security/

VMProtect. (n.d.). VMProtect. Retrieved from https://vmpsoft.com/

SOLIDSHIELD. (n.d.). SOLIDSHIELD. Retrieved from https://www.solidshield.com/
AppDome. (n.d.). AppDome. Retrieved from https://www.appdome.com

Obfuscator-ai. (n.d.). Obfuscator-ai. Retrieved from https://pypi.org/project/obfuscator-ai

Li, R., et al. (2024). PowerPeeler : A Precise and General Dynamic Deobfuscation Method
for PowerShell Scripts.

Garba, P., & Favaro, M. (2019). Saturn: Software deobfuscation framework based on LLVM
Nagios. (n.d.). Nagios monitoring tool. Retrieved from https://www.nagios.org/

Zabbix. (n.d.). Zabbix monitoring tool. Retrieved from
https://www.zabbix.com/documentation/current/en/

Prometheus. (n.d.). Prometheus + Grafana. Retrieved from https://prometheus.io/
Datadog. (n.d.). Datadog monitoring tool. Retrieved from https://www.datadoghg.com/
New Relic. (n.d.). New Relic monitoring tool. Retrieved from https://newrelic.com/
DESIRE-6G Project. (n.d.). Deliverable D3.3. Retrieved from
https://zenodo.org/records/17077365

W3C. (n.d.). WASM W3 working group. Retrieved from

https://www.w3.org/groups/wg/wasm

W3C. (n.d.). WASM specifications. Retrieved from https://www.w3.org/TR/wasm-core-
2/WASM
Perrone, G., & Romano, S. P. (2024, July). WebAssembly and security: A review.

Michaud, Q., et al. (2024, October). Securing stack smashing protection in WebAssembly
applications

She, X., et al. (2024) WaDec: Decompiling WebAssembly Using Large Language Model
Werner, B. (n.d.). WasmRev. Retrieved from https://github.com/benediktwerner/rewasm

Fang, W., et al. (2024). StackSight: Unveiling WebAssembly through large language models
and neurosymbolic chain-of-thought decompilation.

Lacoste, M., & Lefebvre, V. (2023). Trusted execution environments for telecoms:
Strengths, weaknesses, opportunities, and threats. IEEE Privacy and Security Journal.

ETSI. (2019). GR NFV-SEC 018 V1.1.1: Network functions virtualisation (NFV); Security;
Report on NFV remote attestation architecture.

AMD. (n.d.). SEV-NP TEE user documentation. Retrieved from
https://www.amd.com/fr/developer/sev.html

OWASP. (n.d.). STRIDE methodology for threat modeling. Retrieved from
https://owasp.org/www-community/Threat Modeling Processttstride

e Prcjec funded by
Co-funded by ee © smmeson « A9, .4 UK Research Page 71 of 71
the European Union {118 P — =4 B and Innovation

https://digital.ai/products/application-security/
https://vmpsoft.com/
https://www.solidshield.com/
https://www.appdome.com/
https://pypi.org/project/obfuscator-ai
https://www.nagios.org/
https://www.zabbix.com/documentation/current/en/
https://prometheus.io/
https://www.datadoghq.com/
https://newrelic.com/
https://zenodo.org/records/17077365
https://www.w3.org/groups/wg/wasm
https://www.w3.org/TR/wasm-core-2/WASM
https://www.w3.org/TR/wasm-core-2/WASM
https://github.com/benediktwerner/rewasm
https://www.amd.com/fr/developer/sev.html
https://owasp.org/www-community/Threat_Modeling_Process#stride

