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Executive summary 
This deliverable presents the Pre-Deployment Security per Construction Measures (PDSCM) 

developed in the NATWORK project. PDSCM refers to security mechanisms and actions applied 

prior to payload deployment, aiming to strengthen software artefacts against security threats 

from the outset. The work addresses three main types of software payloads executed across the 

computing continuum: native binaries, containerized applications, and WebAssembly (WASM) 

modules. 

The deliverable first defines the PDSCM concept and presents a state-of-the-art (SotA) review of 

existing measures and associated threat models. The SotA is then continued by addressing the 

three-payload format separately for clarity.    

The deliverable enumerates the actions carried out in NATWORK for each payload format. 

Notably, they elevate significantly the security of xAPP during execution in the near RT-RIC, 

WASM module during execution and exemplify how a security service (i.e., MMT anomaly 

detection) can be secured by two alternative techniques, i.e. TEE (Trusted Execution 

Environments) and D-MUTRA remote attestation.    

Finally, the deliverable analyses the differences in PDSCM applicability across workload and 

system levels and discusses their implications for usability and operational efficiency. The results 

demonstrate how PDSCMs contribute to NATWORK’s overall vision of secure, performant, and 

sustainable operations across the computing continuum. 

.  
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1. Introduction 
NATWORK aims to regulate performance and security at sustainable resource consumption using 

bio-inspired principles as do natural entities and immune systems. When projected to telecom 

networks, these bio-inspired mechanisms can be set as means to reconcile security and 

sustainability, security and performance, performance and sustainability.  

PDSCMs are pre-deployment security measures applied on software payloads, reinforcing their 

immunity against various threats. Three payload formats are discussed (i.e., native, containers 

and WASM) with their specific facets. 

When payloads are protected by construction before deployment, all attack vectors are less 

efficient and the whole system healthier and more sustainable. However, on the other hand, an 

important consideration is to assess the direct performance impact caused by the PDSCM, which 

opposes NATWORK’s concept of higher-performance and more cost-efficient cybersecurity. An 

overreaction induced by security is potentially resource costly. Performance penalties must be 

measured and when possible be adjustable, as discussed in this deliverable.  

1.1. Purpose and structure of the document  

The purpose of the document is to assess and position how PDSCMs are beneficial to the 

NATWORK concept. This work includes a specific SotA and the description of specific PDSCM 

applied over the three treated formats. 

Following the Introduction, which sets the stage for the document's purpose, audience, and its 

interconnections within the project's framework, the structure continues as follows: 

Sections: 

2. Section 2 SotA: Presents the PDSCM state of the art, including our definition of PDSCM 

3. Section 3 NATWORK PDSCMs on containerized payloads: Describes the NATWORK 

specific research actions towards container-oriented PDSCMs 

4. Section 4 NATWORK PDSCMs on native payloads: Describes the NATWORK specific 

research actions towards native-oriented PDSCMs 

5. Section 5 NATWORK PDSCMs on WASM: Describes the NATWORK specific research 

actions towards WASM-oriented PDSCMs 

6. Section 6 Conclusions: Wraps up the document, reflecting on the project's strategic 

orientation and establishing expectations for future milestones. 
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1.2. Intended Audience 

The NATWORK D3.5 Deliverable Pre-Deployment Security per Construction Measures.r1 is for 

Public Dissemination. It is there devised for the internal and external use of the NATWORK 

consortium, comprising members, project partners, affiliated stakeholders and the public. This 

document mainly focuses on the pre-deployment security per construction measures of the 

project, thereby serving as a referential tool throughout the project's lifespan. 

1.3. Interrelations 

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and 

resources from academia, industry, and research sectors, focusing on user-centric service 

development, robust economic and business models, cutting-edge cybersecurity, seamless 

interoperability, and comprehensive on-demand services. The project integrates a collaboration 

of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a 

broad representation for addressing security requirements of emerging 6G Smart Networks and 

Services in Europe and beyond. 

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically 

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple 

activities across various WPs, the structure ensures clarity in responsibilities and optimizes 

communication amongst the consortium's partners, boards, and committees. The interrelation 

framework within NATWORK offers smooth operation and collaborative innovation across the 

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e., 

Research Institutes, Universities, SMEs, and large industries) enabling scientific, technological, 

and security advancements in the realm of 6G.  

The current D3.5 – “Pre-Deployment Security per Construction Measures” deliverable 

addresses specific software payload hardening techniques, applied at deep and elementary level 

(i.e., software payloads). However, high level security services, applied at the different layers and 

technical domains of NATWORK (RAN, cloud, core, data plane, orchestration and management 

layer), described in Deliverable D2.1 – “General State of the Art Security” and in Deliverable D3.1 

– “Secure by design orchestration and Management” are all based on different and distributed 

software payloads. By hardening these payloads, PDSCMs directly impact the security of security 

services. These inter-deliverable relations are detailed in Section 2. 

D3.5 is also related to D2.2 – “Use Case Scenarios and Requirements”, where use cases will 

implement PDSCM (e.g., native PDSCM applied on MMT probe takes part of Use Case 4.5 

Enabling optimized explainable MTD). Finally, D3.5 will feed the integration and validation efforts 

within WP6, for evaluating and improving the assets presented in this deliverable. 
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2. State of the art analysis 

2.1. Introduction 

Our state-of-the-art analysis is focused on pre-deployment security per construction measures 

(PDSCM), specific actions on the workloads, to be taken prior to their deployment, and covering 

the workload formats of x86 executables, containers and WASM. 

For clarity, this section starts with a definition of PDSCM, followed with exemplification of their 

usage inside high-level service security solutions developed in priorly submitted deliverables (i.e., 

D 2.1, D3.1), clarifying how PDSCMs contribute to 6G services security. Through this, we intend 

to clarify their usability and merits to cope with NATWORK security challenges, reconciliating 

networking security, performance and sustainability.   

2.1.1. Definition and usability 

2.1.1.1. Definition 

As a simple definition, PDSCMs embrace the following criteria: 

• Act at the software payload level 

• Enhance the security of workload against a specific security threat model 

• Implemented prior deployment, by activation of tools or security methodologies 

• Modify the workloads, security-related parameters and their execution environments 

Table 1 enumerates PDSCMs, as commonly used in the SotA. It is worth noting that the first three 

PDSCM dealing with CIA threats are cardinal on which all following PDSCMs depend. For instance, 

user right enforcement solution must be protected and are defended against CIA attacks.  

Table 1. PDSCM enumeration 

PDSCM Threat Model Employed techniques 

Confidentiality 
preservation 

 -Static (i.e., on executable 
or module file) code 
analysis 
 -Dynamic (i.e., on 
memory footprint) code 
analysis 

-Placement in trusted execution 
environment 
-Code section encryption 
-Code obfuscation 

Integrity 
preservation 

 -Static file tampering 
-Memory footprint 
tampering 
 

-Placement in trusted execution 
environment 
-Authentication (i.e., delivering execution 
environment local assurance of code 
integrity at onboarding) 
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PDSCM Threat Model Employed techniques 

-Remote attestation (i.e., delivering 
remotely the assurance that code is 
integrated at on-boarding) 
-Runtime integrity verification 

Availability 
preservation 

 Flood DoS, DDoS, 
deprivation of resource 

-Resource isolation 
-Resource monitoring 
-Workload performance monitoring 
-System level network traffic limitation 

Singularization -IP theft 
-Cloning 
-Impersonation 
 

-Placement in TEE + selective provisioning of 
a key needed for execution 
-Selective provisioning of a key needed for 
execution 

Locality 
enforcement 

 -IP theft 
-Illicit placement outside a 
permitted perimeter 
 

-Placement in TEE + selective provisioning of 
a key needed for execution 

Interfaces 
hardening 

-API abuse 
 

-Hardening APIs with RBAC 

User right 
enforcement 
(against IPRs) 

-Licence violation 
 

-Digital right management techniques such 
as: 
-Code-to-machine binding 
-Software activation method delivering 
activation tokens 
- Tokenization 

Vulnerability 
curation 

-Detect then exploit a 
vulnerability 
 

-Safe coding methodology 
-Dependency vulnerability scanning 
-Code confidentiality, preventing discovery 
 

Access control  -Violation of access policy 
to content or 
functionalities, through 
impersonation or privilege 
escalation  

-Role Based Access Control (RBAC) 
enforcement 

 

2.1.1.2. Workload migratability 

The usability of PDSCM varies with the level where it is setup as follows: 

• Technology-level (e.g., TEE enforcement, VM isolation), restricted workload deployment 

in duly equipped or specific platform) 
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• System-level parametrization (e.g., network flow limitation) requires the user possession 

of system administrative right. Thereafter, at deployment, the workload should be 

deployed in such tuned systems. 

• Workload-level (e.g., binary rewriting, vulnerability safe programming) requires getting 

access to the code (and right to change it). No restriction applies during workload 

deployment.  

Workload migratability over the continuum is a very interesting property, magnified by workload-

level PDSCM. The workload is protected by itself with no dependence on the platform.    

2.1.2. Interaction with service-level security solutions 

Already submitted D2.1 and D3.1 are service-level security focused, hence located at a higher 

level than atomic software payloads as considered here. D2.1 produces a 360° service security 

survey while D3.1 is more specifically addressing secure orchestration and data plane 

computation offloading (i.e., which brings its own security considerations and needs). As a 6G 

service security depends on many, composed and chained software payloads spread along the 

traffic pathway either directly traversed (i.e., network functions) or indirectly (e.g., networking 

management and orchestration, security functions), software security appears as a common 

exigency to be fulfilled on each running software payloads, being security-related or not. Hence, 

PDSCM is applied to each software workload deployed by service-level security solutions to 

enhance the trust and security assigned to service-level security solutions.  

2.1.3. Interaction with D 2.1 service level security services  

D2.1 – “SotA Analysis & Benchmark Assessment” provides a detailed SotA analysis on prevalent 

security solutions implemented at the different technical domains traversed by a 6G service. Key 

attack vectors on the RAN, data plane, orchestration, and edge-core are detailed. It produces a 

list of commonly found security services and associated technologies at different network layers.  

For clarity, we define the interaction of PDSCM against each of these functions in Table 2. 

Table 2. Potential PDSCMs leverage in D2.1 Security Services 

D2.1 Service 
level Security 

List of potentially activated PDSCM (at workload level) 

Defence in Depth -RBAC perimetric security (parametrization) 

  
Workload MTD 

-TEE enablement, for a secured migration of attacked workloads 
-Remote attestation, easing workload secure migration 
-Workload deep monitoring (early bird anomaly detection) 

Workload isolation -Runtime integrity (preventing tampering attack) 
-Performance monitoring (preventing resource attrition by container 
co-residents) 
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D2.1 Service 
level Security 

List of potentially activated PDSCM (at workload level) 

Trust management -Integrity of trust metrics collectors and aggregating scoring algorithms 
-Confidentiality of trust metrics collectors and aggregating scoring 
algorithms 
-Singularisation of trust assessors 

Attack detection 
and protection 

-On the anomalous traffic detection workload 
-Integrity elevation techniques (e.g., TEE, remote attestation, runtime 
integrity verification) 
 -Confidentiality elevation techniques (e.g., encryption, placement in 
TEE) 
-Locality enforcement, mitigating impersonation 

Machine learning 
Frameworks for 
CTI analysis 

Multi stakeholder collaborative CTI, with distributed CTI nodes 
consuming and producing CTI feeds. 
-CTI node remote attestation and continuous integrity verification 
-TEE placement of each CTI node producing and consuming feeds 
-CTI node singularization for multi factor identification 
-Cloud security, VM introspection threat model: 
-Continuous workload integrity verification 
-TEE-bastioned VM (e.g., TDX, SEV-NP, CCA TEE) 
-Workload singularization for identity checks.  

Service accurate 
monitoring and 
traceability 
  

-Monitoring metric producers integrity verification 
-Monitoring metric producers confidentiality preservation by TEE 
placement 
-Monitoring metric producers singularization for MFA 

   

2.1.3.1. Matching D2.1 priority challenges 

The list of priority challenges and how they are potentially addressed through PDSCM included 

in deliverable D2.1 is presented in the following table. 

Table 3. Security challenges by PDSCM leverage as per D2.1 

D 2.1 prioritized 
challenge 

PDSCM match and high-level specification 

Fostering software 
migratability 
 

- Payload self-contained hardening, directly implies platform-
agnosticism.  
Not all PDSCMs are self-contained (e.g., TEE-dependent) but a 
significant number are (e.g., modified payload for tampering resilience)   

Security and 
Privacy 
(e.g., platform 
agnostic security, 

- Devise novel, low-noise continuous integrity verification 
 
Data governance Policies: 



              D3.5 - Pre-Deployment Security per Construction Measures.r1  

 
Page 18 of 71 

 

D 2.1 prioritized 
challenge 

PDSCM match and high-level specification 

continuous 
security, data 
governance) 

-Establish non-ambiguous identification and localization of data 
consumers and producers, based on novel PDSCM.  

Energy efficiency 
and sustainability 

On-demand security: 
- Develop PDSCM which trigger security verification on-demand, hence 
drastically reducing energy consumption and performance impact. 

    

2.1.4. Interaction with D 3.1   

Deliverable D3.1 – “Secure-by-design orchestration and management & Data plane computation 

offloading” discusses two interrelated matters. The document details service and function 

orchestration at various technical domains (i.e., far edge, CRAN, core, and, finally, the data plane). 

In a general perspective, orchestration and function placement decisions shall derive from the 

ingestion of trustworthy metrics reflecting the current load state at the targeted hosting platform 

and of course be trustworthy and secure by itself. As stated in Table 4, PDSCM can contribute to 

reach these security attributes. The deliverable highlights the relevance of MANO API security, 

the high heterogeneity of the different entities which take part in the management and 

orchestration, as well as the core requirement for ultra-fast decision taking. When energy 

efficiency is piled up on the list of high-level specifications, we reach a challenge or trade-off 

between orchestration responsiveness, reliability/security and energy. Last, AI will be an 

essential asset to make these multi-modal and complex decisions. Therefore, AI trustworthiness 

and security are pivotal. 

Table 4. Potential PDSCMs leverage in D 3.1 MANO 

D3.1 Orchestration domains How PDSCM interfere  
Orchestration at the Extreme 
Edge  

All orchestration and management solutions and 
workloads are exposed to CIA threat models. PDSCMs 
shall be used to harden such deployed workloads. 
Typically, code tampering can have devastating influence 
on the network reliability or energy consumption. 

Orchestration at the CRAN 

Orchestration at the Core 

Data plane function off-loading 

   

2.1.5. Summary 

As illustrated by this matching work, PDSCMs directly contribute to fulfil NATWORK’s security 

challenges as stressed in D 2.1 and D 3.1. In practice, their contribution can be essential and a 

condition to meet specific identified challenge. Typically, magnifying payload migratability along 

the continuum can only met if the payload security is self-contained, resulting from a PDSCM.  
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In a general perspective, all NATWORK security services exemplified in D2.1 and MANO services 

exemplified in D3.1 are built and dependent of several software payloads whose hardening by 

PDSCMs makes them more reliable and at lower resource consumption.  

 

2.2. PDSCMs for containers 

2.2.1. Introduction 

Containerized environments have become the de facto standard for deploying and scaling cloud-

native applications, but their flexibility and efficiency also introduce new security challenges. Pre-

deployment hardening is therefore a critical phase, as it establishes the foundation for ensuring 

that workloads can be executed with strong guarantees of confidentiality, integrity, and 

availability (CIA). By addressing security early in the lifecycle, it is possible to reduce the attack 

surface, prevent misconfigurations, and ensure that orchestration frameworks operate on 

trusted components. 

This section surveys the key aspects of pre-deployment container and microservice security, 

building upon novel Confidential Computing (CC) frameworks, DevSecOps practices, and 

Kubernetes-native hardening approaches. First, we provide an overview of container security 

concerns and their mapping to the CIA triad, highlighting how emerging Confidential Computing 

frameworks and secure orchestration mechanisms extend traditional models of protection 

(Section 2.2.2). We then examine pre-deployment container security by construction, analysing 

frameworks such as CNCF’s CoCo. This survey evaluates their security merits, performance 

implications, and migratability, identifying trade-offs relevant to practical adoption (Section 

2.2.2). 

Next, we focus on microservice-level hardening, building on the secure-by-design orchestrator 

(sFORK) introduced in Deliverable D3.1. From a DevSecOps perspective, declarative modelling, 

pre-established secure inter-cluster channels, and strict role-based access controls are discussed 

as essential measures to ensure that orchestration begins from a secure baseline (Section 2.2.3). 

We then turn to Kubernetes security analysis, since Kubernetes has emerged as the dominant 

orchestration platform. We describe its main security features—such as Network Policies, Pod 

Security Policies (and their successors, Pod Security Admission modes), RBAC, and security 

contexts—while evaluating their strengths and weaknesses with respect to CIA, performance, 

and usability (Section 2.2.4). 

Finally, we extend the scope beyond conventional cloud-native environments by considering the 

O-RAN ecosystem, where containerized xAPPs are onboarded in the near Real-Time RIC. This 
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context highlights specific pre-deployment verification and attestation challenges, as defined by 

O-RAN WG11, and illustrates how container hardening principles must be adapted to telecom-

grade distributed systems (Section. 2.2.5). 

Together, these subsections provide a comprehensive view of container and microservice pre-

deployment hardening techniques, emphasizing how different frameworks and orchestrators 

converge toward the goal of delivering trustworthy and resilient cloud-native applications. 

 

2.2.2. Confidential containers frameworks 

With the growing traction to large TCB trusted execution environments, their adoption for 

containers through confidential containerization is becoming a mature technology. We had 

produced a technical survey of four emblematic frameworks (i.e., CoCo, MarbleRun, Parma,TCX) 

with the lens of performance, sustainability and security.  

2.2.2.1. Confidential Containers (CoCo) 

Security 

The Confidential Containers (CoCo) project is an open-source Cloud Native Computing 

Foundation (CNCF) initiative that integrates Trusted Execution Environments (TEEs) with 

Kubernetes to protect data in use at the pod level [1] CoCo builds on Kata Containers by running 

each pod inside a Confidential VM (CVM) – a lightweight VM with memory encryption – so that 

workloads are isolated not only from each other but even from the host and cloud administrator 

[2]. CoCo introduces a “Trustee” component (including a Key Broker Service and Attestation 

Service) to handle remote attestation and key management for these CVMs [3]. This means that 

each container’s image and startup state can be measured and verified, and encryption keys for 

secrets or images are only released if the pod is confirmed to be running in a genuine TEE-backed 

VM. Overall, CoCo significantly strengthens confidentiality and integrity: even if the host OS or 

hypervisor is compromised, the encrypted memory and attestation process protect the 

container’s code and data. 

Performance 

CoCo’s use of hardware-backed VMs (like Intel TDX [4] or AMD SEV [5] adds some overhead 

compared to standard containers, but this overhead is mostly attributable to the TEE mechanisms 

themselves. In practice, CoCo can achieve near-native performance for many workloads. For 

example, one study found that running a workload under CoCo on an SEV-enabled cluster 

incurred only about an 8% throughput overhead relative to a native Kubernetes pod (versus ~5% 

overhead using Kata alone without memory encryption [6]. Another evaluation noted that with 

proper tuning, Confidential VMs perform comparably to non-confidential VMs – the difference 
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was often within single-digit percentages for CPU and I/O-bound tasks. The “peer pods” mode 

(where pods are launched as confidential VMs via cloud provider APIs) can introduce higher 

startup latency and resource overhead (e.g. one vCPU reserved for TEE runtime) but yields strong 

isolation [3]. In summary, CoCo’s performance overhead is low enough that most applications 

see only modest slowdowns, making it feasible for production use. 

Sustainability 

CoCo leverages TEEs already available in cloud and on-premises hardware to securely extend 

workloads across hybrid cloud [7]. It enables secure cloud bursting – confidentially offloading 

overflow work from private datacenters to public cloud – without maintaining duplicate 

infrastructure [8]. By scaling confidential workloads on demand using existing TEE-enabled 

servers, CoCo maximizes hardware utilization and avoids idle, redundant machines. This efficient 

use of resources translates into better energy efficiency for confidential computing deployments. 

2.2.2.2. MarbleRun 

Security 

MarbleRun [9] is an open-source platform that acts as a “service mesh for confidential 

computing”, particularly targeting Intel SGX enclaves. Instead of VMs, MarbleRun orchestrates 

process-level TEEs (enclaves) across a distributed application. It provides a deployment manifest 

that specifies the expected cryptographic identity and connections of each microservice enclave, 

and it will only consider the overall application trusted if all components match this manifest. 

This yields a powerful security guarantee: an entire pipeline of services can be remotely attested 

and verified as a unit, rather than just individual enclaves. MarbleRun also handles secure key 

management and inter-service encryption transparently. Upon startup, each enclave gets a 

certificate issued by MarbleRun’s CA and uses it to establish mutually authenticated TLS 

connections with other enclaves, ensuring data exchanged between services is encrypted and 

only goes to attested endpoints. Secrets (like decryption keys or credentials) can be sealed to the 

enclave identities and distributed via MarbleRun once the deployment is verified. In essence, 

MarbleRun extends zero-trust principles: even if the underlying Kubernetes nodes or networks 

are untrusted, the enclave network remains secure and verifiable at runtime. 

Performance 

Running containerized workloads inside SGX enclaves does introduce performance 

considerations. Intel SGX enclaves have hardware memory protections that can cause overhead 

on I/O and memory-intensive operations (e.g., due to enclave context switches and limited 

secure memory sizes). In general, SGX-based solutions tend to show higher overheads for heavy 

workloads compared to VM-based TEEs – one study notes that AMD SEV (VM encryption) had 

negligible performance impact, whereas Intel SGX could introduce significant slowdowns in 
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certain scenarios. However, MarbleRun’s design allows enclaves to be selectively used for the 

sensitive parts of an application, and its overhead can be modest for typical microservice 

interactions. MarbleRun itself adds a small constant overhead for attestation and key exchange 

during startup, but after that, services communicate directly over TLS with negligible additional 

latency. Thus, while developers should expect some overhead from using SGX enclaves, 

MarbleRun demonstrates that a distributed enclave architecture can still meet performance 

requirements for many applications. 

Sustainability 

MarbleRun orchestrates Intel SGX enclaves as Kubernetes-managed microservices, allowing 

confidential workloads to scale up or down flexibly without static overprovisioning. Secure 

services are deployed at a fine-grained microservice level, so each enclave is lightweight and uses 

only the necessary CPU and memory. By integrating enclave workflows into Kubernetes, 

MarbleRun ensures resources are allocated on demand, supporting sustainability goals. The 

result is a confidential microservice architecture that provides strong security while minimizing a 

waste of computing and energy resources. 

2.2.2.3. Parma 

Security  

Parma is the architecture underpinning Microsoft Azure’s confidential container groups, 

designed to provide strong confidentiality without altering container images [10]. It leverages 

AMD SEV-SNP (a VM-level TEE) to run an entire container group inside a hardware-encrypted VM 

(also called a UVM – UltraViolet VM in Azure’s terms). Parma’s key innovation is the use of an 

attested execution policy that defines exactly what actions the cloud’s container runtime is 

allowed to perform within the guest VM. At launch, the policy (covering permitted system calls, 

mount operations, network config, etc.) is cryptographically measured and included in the 

hardware attestation report. This means the attestation not only vouches for the VM’s initial 

software (kernel, guest agent) but also locks down how containers inside can behave. If anything 

outside the policy is attempted (e.g., mounting an unexpected filesystem layer or executing a 

disallowed command), the guest agent will block it, and the deviation would make the attestation 

report invalid. In addition, Parma uses proven techniques to protect container data: container 

image layers are stored on an integrity-protected file system (using dm-verity), and any writable 

storage is encrypted so that plaintext data only ever appears inside the VM’s secure memory. 

The result is a very strong security posture: the cloud provider’s host OS and hypervisor are 

excluded from the trust boundary, and even a malicious or compromised infrastructure cannot 

inject code or inspect data without detection. Only the combination of the tenant’s approved 

container images and the Parma guest agent (running under SEV-SNP’s protection) are in the 

Trusted Computing Base. 
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Performance 

Parma was built to impose nearly zero performance penalty beyond the cost of hardware 

encryption. Empirical evaluations on prototype Azure Container Instances showed that 

introducing Parma’s policy enforcement had a negligible effect on throughput and latency 

compared to using SEV-SNP alone [10]. Parma doesn’t heavily modify the runtime execution path 

– it primarily adds checks during container setup and relies on hardware to handle memory 

protection. Networking and disk I/O operations are still hardware-accelerated inside the VM, so 

throughput remains high. In summary, workloads under Parma run at virtually the same speed 

as they would in a normal confidential VM. This low overhead means users of Azure confidential 

containers can achieve strong security without sacrificing the performance or scalability of their 

applications. 

Sustainability  

Parma isolates container groups inside individual VM-based TEEs, combining virtual machine 

security with container agility. Its design introduces almost no performance overhead – around 

1% additional overhead in tests – which means negligible extra energy consumption for 

confidentiality [10]. With such low CPU and memory overhead, Parma’s confidential containers 

run nearly as efficiently as ordinary containers. This balance of strong isolation and performance 

ensures security is achieved with minimal impact on resource usage, promoting sustainable 

computing. 

2.2.2.4. Trusted Container Extensions (TCX) 

Security  

Trusted Container Extensions (TCX) is a research prototype architecture that combines the agility 

of Docker containers with the protection of hardware TEEs [11]. In TCX, each container runs 

inside a lightweight VM called a Secure Container VM (SC-VM), which is backed by AMD SEV 

encryption to ensure the container’s memory is always encrypted and cannot be read or 

tampered with by the host OS or hypervisor. A unique aspect of TCX is that it uses a single trusted 

VM per host to coordinate security for all the SC-VMs on that machine. By centralizing services, 

TCX can, for example, set up a secure channel between containers even if they are on different 

hosts – to the container it looks like normal networking, but in reality, all traffic is transparently 

encrypted and authenticated by the TCX layer. The container runtime (Docker/Kubernetes) is 

extended so that when you launch a container, it is provisioned in an SC-VM with all these 

protections enabled. Integrity and confidentiality are enforced at multiple levels: the VM’s disk 

image and the container filesystem are measured and encrypted, and all interactions between 

secure containers go through encrypted tunnels that the host cannot spoof. Essentially, TCX 

ensures that even in a hostile cloud, containers can only run trusted code and their data stays 
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safe. The strong hardware-enforced isolation means the attack surface is much smaller than in 

standard container setups. This architecture achieves protections similar to confidential VMs but 

maintains a container-centric deployment model. 

Performance  

The TCX researchers demonstrated that this approach incurs minimal performance overhead. 

Their implementation (built on Kata Containers with AMD SEV-SNP) showed an average overhead 

of about 5.8% on CPU-intensive benchmarks (SPEC2017) compared to native execution [12]. 

Real-world server workloads were also tested: for instance, Nginx web server throughput under 

TCX was only slightly reduced, and a Redis in-memory database saw modest slowdowns primarily 

due to the underlying SEV memory encryption cost. The overhead introduced by the TCX layer 

itself (beyond what SEV encryption alone causes) was very low. This is because TCX still leverages 

hardware virtualization extensions for speed and optimizes its secure services. Networking 

overhead in TCX’s secure channels was also kept low by using efficient in-kernel encryption for 

virtual network interfaces. The research concluded that TCX’s performance is practical for 

production, as even high-throughput workloads and multi-container deployments scaled well 

with TCX’s protections in place. 

Sustainability 

TCX combines the manageability and agility of standard containers with the strong protection 

guarantees of TEEs, promoting efficient resource utilization. It provides significant performance 

advantages, reducing the need for excessive computational resources and supports sustainable 

deployment practices by enabling secure, high-performance computing within containerized 

environments [12]. 

2.2.2.5. Conclusions 

In summary and depicted in Table 5, each framework has its unique strengths, catering to 

different workload requirements, infrastructure capabilities, and organizational priorities. CoCo 

stands out for its hybrid cloud support, enabling secure cloud bursting and efficient resource 

utilization across environments. Marblerun excels in Kubernetes-native orchestration, providing 

minimal overhead and seamless integration for enclave-based workloads. Parma offers VM-

based isolation with minimal performance overhead, making it ideal for high-performance, 

confidential computing tasks. TCX combines the agility of standard containers with robust 

security guarantees, achieving a balance between performance and sustainability. The table 

summarizing each framework’s security, performance and sustainability levels is provided below. 
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Table 5 Confidential Containers Comparison 

Framework Security Performance Sustainability 
CoCo High Variable  High 

MarbleRun High Moderate High 

Parma Very High High Moderate 

TCX High High High 

 

2.2.3. Pre-deployment Microservice Security by construction 

In Deliverable D3.1, we described how the secure-by-design orchestrator (sFORK) manages 

resources and security at runtime using dependency graphs, CTI-driven selective sharing, hygiene 

scores and AI-based workload prediction service. The deployment side of the framework includes 

the instantiation of microservices of a 6G service, which starts from a secure baseline that 

complements the cybersecurity-based service placement and scheduling. From a DevSecOps 

perspective, several actions should be applied before deployment to reduce the attack surface 

and provide reliable security guarantees: 

• Declarative modelling of microservice dependencies: Service dependencies must be 

explicitly described (e.g., Kubernetes YAML or Helm charts). This avoids insecure 

couplings between services and provides the orchestrator with a complete view of 

allowed communications and resource bindings. 

• Secure inter-cluster channel establishment: Secure communication channels between 

clusters should be pre-defined at the configuration level. Using CLI-based tooling, 

developers/operators can set up encrypted tunnels (e.g., via mTLS, IPsec, or Submariner, 

etc.) that guarantee authentication and confidentiality before services are deployed. This 

step prevents unprotected connections from being instantiated in production. 

• Role-Based Access Control (RBAC) rules setting: Access rights need to be restricted from 

the start. Role-Based Access Control (RBAC) policies should be defined before 

deployment, giving each service and operator only the permissions they really need. 

These measures establish a baseline of trust and security for microservice deployments that can 

be embedded into the DevSecOps pipeline. The orchestration layer (sFORK) later operates on 

already-hardened payloads, where dependencies, communications, and access rights are strictly 

controlled. 
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2.2.4. Kubernetes security analysis 

2.2.4.1. Main security features 

Security in Kubernetes has emerged as a fundamental field of research, as this platform has been 

established as the standard for container orchestration in cloud-native environments. The 

Kubernetes architecture integrates multi-layered security mechanisms aimed at protecting both 

applications and the underlying infrastructure. At the heart of these mechanisms are two key 

tools: Network Policies and Pod Security Policies (PSPs). 

Network Policies are a crucial tool for controlling the flow of data between Pods and services. 

Through them, administrators can define detailed rules for allowing communication, achieving 

isolation between applications, and limiting exposure to lateral movement attacks. Study [13] 

highlights the dual nature of these policies, examining both their performance and security. The 

results show that eBPF-based solutions, such as Calico and Cilium, offer robust security with 

negligible performance impact, making Network Policies suitable for use even in resource-

constrained environments. Additionally, paper [14] emphasizes that the choice of network 

infrastructure (overlay vs. underlay) in edge environments significantly affects both the 

performance and effectiveness of policies, highlighting the need for a balance between security 

and performance in constrained systems. This allows for a more realistic and comparative 

evaluation of Network Policies depending on their application environment. 

Although PSPs have been deprecated in newer Kubernetes versions, they served as a foundation 

for applying restrictions to Pods. Through them, it was possible to control the execution of 

privileged containers, access to host resources, and the use of Linux kernel capabilities. The 

modern approach is now based on Pod Security Admission (PSA) modes, which incorporate the 

same logic through admission controllers and security profiles such as seccomp and AppArmor. 

These tools allow the application of security policies with granular control, enhancing the 

protection of workloads. As stated in the official Kubernetes documentation, while PSA/PSPs 

provide significant security, full protection depends on proper implementation and a 

combination with other measures such as RBAC and Network Policies, which highlights the 

strengths and limitations of these tools in real-world environments. 

The work presented in [15], offers a structured reference framework for Kubernetes security, 

systematizing best practices into eleven fundamental commandments. This framework covers all 

aspects of security, from hardening the control plane to the secure management of secrets and 

the implementation of network restrictions. The article's contribution is pivotal as it bridges the 

gap between theory and practice, providing a strategic tool for implementing secure 

containerized applications. Furthermore, this analysis allows for a comparison between different 

practices, highlighting where they excel and where they may present weaknesses (e.g., the need 

for automation or a combination of other measures). 
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The main security features of Kubernetes—Network Policies and Pod Security Policies—form the 

foundation for building a secure runtime environment. Their evolution, combined with the 

systematization of knowledge and the application of best practices, shapes the modern state of 

the art in Kubernetes security. Research in this field continues to evolve, responding to the 

growing demands of cloud-native and edge computing environments, and highlighting the need 

for a balance between security, performance, and usability in real-world settings. 

2.2.4.2. Kubernetes security strengths 

It is important to evaluate how the Kubernetes features collectively contribute to the broader 

security objectives of a system. A well-established framework for this analysis is the CIA triad 

(Confidentiality, Integrity, and Availability), which defines the fundamental pillars of information 

security. Kubernetes supports confidentiality by combining isolation mechanisms with fine-

grained access controls to protect sensitive data in shared environments. At the orchestration 

level, as study [16] highlights, container-based scheduling and namespaces create separation 

between tenants, reducing the risk of data exposure across workloads. Evaluations of different 

Container Network Interface (CNI) plugins confirm that strong segmentation can be enforced 

even in resource-constrained environments, such as edge clusters or IoT gateways, where 

computational and networking capacity are limited. Studies comparing different plugins show 

that enforcing network policies does not introduce major penalties in throughput or latency, even 

when the number of policies scales into the thousands [14]. This demonstrates that 

confidentiality through network isolation is achievable not only in large cloud data centres but 

also in smaller, distributed deployments. At the configuration level, confidentiality also depends 

on secure manifests: empirical studies reveal that many security incidents are due to 

configuration errors, such as exposed credentials or overly permissive settings [17]. However, 

Kubernetes provides primitives like Secrets, security contexts, and privilege restrictions that, 

when properly applied, help protect confidential information. Complementing these features, 

there can be found best-practice guidelines such as enforcing role-based access control (RBAC) 

and applying network and Pod security policies, that further strengthen Kubernetes security, as 

they ensure that both data access and communication paths are tightly controlled [15]. 

Kubernetes provides integrity maintenance via multiple complementary mechanisms that ensure 

workloads and communications remain consistent with intended policies. On the orchestration 

side, Kubernetes uses policy-driven scheduling, which means that the system places workloads 

on nodes according to clear rules set by administrators. This helps keep the cluster running 

consistently and avoids situations where a workload might be started in the wrong place or with 

the wrong resources [14]. This consistency protects against accidental misplacements and helps 

preserve the correctness of operations even in large, dynamic environments. Integrity is also 

protected at the network level through access controls such as Role-Based Access Control (RBAC), 

which ensure that only authorized users or services can change important settings [17], [15]. 
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Integrity is reinforced by network policies, which apply the principle of least privilege to 

communication. This means allowing Pods to connect only to explicitly permitted peers, 

therefore reducing the chance of malicious tampering or data injection between services. In 

addition, network policies improve integrity by limiting how Pods can talk to each other, so that 

they only exchange the data needed for their tasks and are less exposed to malicious or 

accidental tampering [16]. Importantly, evaluations show that these policies can be scaled to 

thousands of rules with negligible performance impact, meaning they preserve secure 

communication without weakening the system’s responsiveness. Studies of real Kubernetes 

configurations show that while errors are common, features like security contexts and privilege 

restrictions give administrators tools to keep workloads in a safe and correct state when they are 

applied properly. 

Complementing the above, Kubernetes contributes to availability by ensuring that applications 

remain operational despite failures, resource shortage, or the addition of security controls. 

Scheduling policies and replication strategies keep workloads running smoothly by redistributing 

them when nodes or resources become unavailable, which helps ensure that the service remains 

accessible and usable by authorized users whenever it is needed [16]. Automatic scaling 

mechanisms also adapt resource use to match changing demand, reducing the risk of service 

interruptions during peak loads. In addition, study [13] demonstrates that even with thousands 

of network policies in place, latency and throughput performance remains stable, showing that 

security enforcement does not come at the cost of system responsiveness.  

2.2.4.3. Kubernetes security weaknesses 

While Kubernetes offers robust security features, the literature identifies several weaknesses and 

recurring challenges that can undermine its overall security posture. A key issue arises from 

insecure or improper configurations, such as weak authentication, poorly defined network 

policies, and excessive permissions. Sometimes administrators set up Kubernetes with weak or 

missing security settings. Examples of this include giving users, Pods, or services more 

permissions than they really need, exposed credentials issues, manifesting by leaving passwords, 

API keys, or tokens in plain text inside configuration files, and default root access, which means 

letting containers run as root inside Pods, which makes it easier for attackers to break into the 

host. These misconfigurations increase the risk of unauthorized access, data breaches, and 

privilege escalation, leaving clusters open to attack. Closely related is the problem of root access 

and privilege escalation, where containers often run with elevated privileges by default, enabling 

malicious actors to break out of their containers and compromise the underlying host system if 

not properly restricted [19]. The empirical study of Kubernetes manifests [17] finds widespread 

security misconfigurations, such as missing security context, excessive privileges and hard-coded 

credentials. These significantly increase the attack surface and confirm that misconfiguration is 

one of the most critical and common weaknesses. 
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Another major weakness is the limited strength of namespace isolation. Although namespaces 

are designed to separate workloads logically, they do not provide strong security isolation. 

Without additional controls such as strict network segmentation or Pod security restrictions, 

attackers who gain access to one namespace may be able to move laterally across the cluster. 

The paper [19] also highlights that improper access control, including weakly configured role-

based access control (RBAC), can allow users or services to perform unauthorized actions, 

undermining both confidentiality and integrity of workloads. 

In addition, the reliance on container images introduces risks tied to image vulnerabilities and 

supply chain security. If images are not scanned or hardened, they may carry exploitable software 

flaws into the cluster. If combined with inadequate runtime security, this creates opportunities 

for attackers to escalate privileges or inject malicious code. As multiple studies show, 

vulnerability management and patching practices are often inconsistent. Delays in applying 

patches to Kubernetes components and container images expose clusters to known exploits, 

while insufficient monitoring and logging reduce visibility into ongoing threats. Paper [15] 

concludes that while security practices are well documented, many organizations fail to apply 

them consistently. This gap between available practices and their actual adoption remains a 

central security challenge. 

2.2.5. O-RAN xAPP security 

In O-RAN project, xAPP are containerized payloads onboarded the near Real Time RIC. O-RAN 

security Working Group 11 (WG11) has been very active in defining the security exigencies 

related to O-RAN open architecture, as its desired openness generates novel security threats. As 

the architecture includes several API-defined interfaces between several units, the security of 

these APIs is the main concern. As O-RAN enables operators or tech vendors proprietary software 

workloads to be on-boarded in the Near and Non -Real Time RICs, hence sharing local resources, 

these workloads shall be verified before being on-boarded and executed.   

WG11 has produced several documents to establish how these workloads can be authenticated 

and remotely attested. In this sub section, we take a deep dive to assess the maturity of the 

specifications or recommendations, assessing in which directions NATWORK can elevate security, 

notably leveraging one or several PDSCM. As part of NATWORK, we consider IS-RD’s Liquid xAPP 

as a workload to protect. For clarity, the following survey does not claim to be fully 

comprehensive in terms of analysis of WG11 recommendations document. The security aspect is 

treated in different areas and angles (e.g., O-cloud, risks assessment). However, our survey 

highlights what shall be retained in view of defining NATWORK’s offering.  

Our survey delivers the following order of precedence in WG11 documentation: 
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• O-RAN ALLIANCE TS, “O-RAN Near-RT RIC Architecture [20]  

• O-RAN Security Requirements and Controls Specifications [21] 

• O-RAN Study on Security for Service Management and Orchestration (SMO) [22] 

• O-RAN Study on Security for O-Cloud [23] 

• O-RAN Study on Zero Trust Architecture for O-RAN 2.0 [24] 

• O-RAN xAPP SDK [25] 

• O-RAN Study on Security for Near Real Time RIC and xApps 5.0 [26] 

 

2.2.5.1. xAPP authentication process 

Two stage xAPP registration (i.e., SMO, near RT RIC): MOI generation 

Figure 1 reflects O-RAN two stage xAPP registration sequence.  The xAPP signature produced by 

the xAPP provider is an asymmetric encryption of the xAPP manifest. The manifest contains the 

digest of xAPP package and security policy elements.  

The service provider checks the signature delivered by the provider, verifying its provenance (i.e., 

public key delivered with signature). From this step, the service provider signs again the xAPP 

signature and delivers it to the SMO. 

The SMO, after checking the identity of the service provider (i.e., public key delivered with the 

signature), will have access to the manifest. SMO also extracts its data structures and produces 

an integrity verification of the package, using that digest. Once this integrity verification is made, 

all fields are supposed to be valid, and SMO produces an xAPP metadata store in its catalogue.  

The SMO will then forward these elements to the near RT RIC and instruct the generation, signing 

and catalogue storage of the xAPP managed object instance (MOI). The MOI will then be used for 

all verifications by the near real time RIC, validating the xAPP authenticity and compliance with 

security requirements. 

The MOI is the composite metadata of the xAPP,  containing references to the xApp identity (e.g., 

name, version), packing elements (e.g., list of containers, command used to run the container), 

controls (i.e., internal to the xAPP), metrics, certificates, the image digest, deployment policies, 

network policies, security policies and many other xAPP descriptive fields.  
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Figure 1. General xAPP authentication in near RT-RIC 

xAPP onboarding verification workflow 

The SMO initiates the onboarding workflow and triggers the near RT RIC. For that, the SMO 

provisions the xAPP metadata, enabling the reconciliation with the xAPP MOI. 

The near RT RIC checks its operational status and validates the onboarding, checking that the 

deployment (i.e., affinity rule), networking and security exigencies as stated in the xAPP MOI, 

then transfers the onboarding status (i.e., possible, not possible) to the SMO. All authentication 

and authorization credentials used by the near RT RIC APIs are stored in the near RT RIC. 

The near RT RIC does not produce an xAPP digest verification, which is done at the SMO level. If 

the xAPP deployment in the near RT RIC is possible, the SMO triggers for the deployment of the 

xAPP containers to the near RT RIC (where API authorization and authentication tokens are made 

ready). 

  Takeaways and identified security gaps 

• The above-described workflow relates to the authentication process initiated with a 

registration in a catalogue and the verification of attributes in correspondence with the 

catalogue-stored artefact during on-boarding. 

• The process is multi-stakeholder and complex. The xAPP integrity verification is done by 

comparing a signed digest stored at the SMO.    

• The SMO acts as the security guard, making the peripheral checks before use. Once the 

xAPP integrity has been checked by the SMO, it is no longer checked thereafter. The SMO 
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is trusted to deliver correct onboarding triggers. A compromise SMO can produce 

corrupted xAPP onboarding demands luring the near RT-RIC. 

• The near RTRIC consumes both and then validates the xAPP MOI, creating a trust anchor 

issue. A corrupted near RT RIC can vet unauthorized xAPP being trusted. 

• The threat model considered by O-RAN excludes a corrupted near RT-RIC and a corrupted 

SMO. 

2.2.5.2. WG11 statement on xAPP remote attestation 

In O-RAN Security Requirements and Controls Specifications 11.0 [21], WG11 recommends a 

conceptually defined remote attestation service (AS) for providing additional benefits besides 

verifying the O-Cloud platform integrity by Chain of Trust. WG11 stipulates that the remote AS 

should be extended to include O-RAN Applications integrity as depicted in Figure 2. 

 

Figure 2. O-RAN theoretical full stack remote attestation framework 

WG11 details the remote attestation of the O-CLOUD platform. The remote attestation is multi 

layered and full-stack, covering O-cloud hardware root of trust, the hardware resources, the 

virtualization layer, the virtual root of trust and finally the on-boarded applications (e.g., xAPP). 

Although this full stack remote attestation does not specify a TPM leverage but is inspired from 

it, as notions of root of trust (i.e., RoT in the picture) and virtual root of trust (i.e., vRoT) suggest 

it.  

2.2.5.3. xAPP runtime integrity verification  

xAPP tampering is identified as a security Key Issue (aka Op-2) by WG11, stressing the possibility 

for an attacker to “Negatively affect the O-RAN platform”. WG11 also states that “Detecting and 

preventing threats during application runtime is still an on-going research problem”. WG11 

pinpoints three research issues of: 

• Trust of the integrity monitoring solution which can be itself tweaked and corrupted,  
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• Verifying the integrity of a running application requires knowledge of the known good 

states of the application and what is not. Changing application data within memory may 

not necessarily indicate a tampered application, especially considering AI/ML application 

• Performance impact of integrity monitoring for control loop execution times for xApps 

and rApps. The Near-RT RIC requires control loops from 10 milliseconds to 1s, and the 

non-RT RIC control loops are specified for more than 1 second. These control loop 

execution times must be considered, especially for xApps, when factoring in potential 

negative effects on performance by monitoring for integrity on running O-RAN 

applications.    

These three elements are indeed to be considered when designing a runtime integrity 

verification. 

2.2.5.4. xAPP SBOM management 

WG11 stresses that one noticeable element is that the requirement or recommendation for xAPP 

SBOM processing does not translate into a “related security control”. WG11 recalls that SBOM 

verification is an activity practiced during development but checks of correct dependencies 

during runtime are hardly worked out.     

2.2.5.5. Takeaways 

Our survey has brought us the following vision and lessons learnt:  

On xApp authentication  

• WG11 has streamlined the design and workflow of xAPP authentication verification, 

articulated by the SMO (using the digest and supplier signature) first before the near RT 

RIC (using a locally produced security content-rich xAPP MOI grasping all security 

exigencies).  

• The SMO is the central ledger which detains the catalogue of verified xAPPs and triggers 

the operations of the near RT-RIC at onboarding request. 

• The maturity of the defined scheme is high. The accuracy of the different description 

reflects a strong understanding of all operational and security considerations for xAPP 

onboarding. 

• The security relevance of this scheme imposes that both SMO and the near RT RIC are 

integrated.  

On xApp remote attestation  

• A general full stack remote attestation framework including all layers from the hardware 

anchor to the xAPP. 
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• No TPM requirement on the near RT-RIC is stated, although the terminology used evokes 

it. 

• The schema defines the SMO as the central verification utility, comparing all 

measurements of different types and including xAPP digest. 

• As mentioned for authentication, the SMO and the trust agent must be integrated.   

• The maturity level of the recommendations can be assessed as preliminary and 

conceptual. 

On xAPP runtime integrity verification 

• WG 11 stresses the requirement for runtime integrity verification, breaking the threat 

model as employed in authentication (i.e., corrupted SMO, corrupted near RT-RIC) 

• WG 11 positions runtime integrity as a research challenge, notably stressing the impact 

of performance induced by periodic integrity verification. In the NATWORK project, this 

can be viewed as a security gap to cover. 

On xAPP SBOM management 

• WG 11 stresses the requirement for continuous verification of used dependencies at 

runtime. 

 

2.3. Binary pre-deployment hardening techniques 

2.3.1. General 

Native payloads (i.e., executables, libraries) have been PDSCM hardened against various threats 

for longbeen directly exposed to attackers, as their bare metal deployment limits the system 

protection virtualization or containerization can bring. For attackers who have acquired the code 

file, static analysis discovers the code and data structures, enabling both reverse engineering and 

tampering. For attackers with administrative rights on the platform that runs the payload, 

dynamic analysis is without limit, with the support of tracers, debuggers and decompilers, 

capable of mapping the memory allocated to the running process. 

Against CIA attacks, a major shift came with the emergence of TEE from 2015 onwards. A 360° 

high-level survey of PDSCM techniques is given below, according to the different payload threat 

models. 

2.3.2. Confidentiality preservation 

The SotA integrates the following PDSCM techniques. In the last three decades, academic surveys 

[27][28][29][30] have covered the promises, efficiency and performance impact of the different 
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techniques employed in code security.  

2.3.2.1. Code encryption  

Encrypting the code section of the ELF formatted .exe or .so (i.e., for library) files, prevents static 

analysis but the protection breaks as soon as the code start executing (i.e., the encrypted code 

section is decrypted before execution). Code encryption protection depends on the encryption 

algorithm. AES 256 encryption is generally practiced and brings a plain security assurance (against 

static analysis)  

Code encryption has no impact on performance as the decrypted code is identical to the original, 

and a short latency at start is caused by the decryption primitive plugged at the code entry point. 

Can be bridged or interfaced with a selective provisioning of the decryption key to a restricted 

perimeter of platforms. This does not prevent the integral collection of the decrypted code on a 

legit platform, which is migratable to any other platform. 

Runtime code reconstruction uses basic code encryption on restricted snippet with a timely 

description just before the snippet execution. This method reduces the exposure window of the 

code snippet to a few CPU clocks around the snippet execution. Code encryption is a direct 

PDSCM as the code shall be modified before release (i.e., encrypted code section or snippets).  

2.3.2.2. Code obfuscation 

With the objective of elevating the level of efforts required to produce a reverse engineering 

through a dynamic analysis, code obfuscation over complexify the code structure. Obfuscation 

brings a relative security assurance but a hardly scaled resilience. Used in the video game 

industry, it aims at securing the publisher sales during first days after a game release date. Code 

obfuscation is generally associated with hidden anti-tampering traps impeding the progression 

of the attackers. Hidden traps are added snippets using elementary original code memory cells. 

A large variety of code obfuscation techniques have been designed and used over time (e.g., 

control flow flattening, code virtualization, instruction substitution, opaque predicate/junk code 

insertion, data structure obfuscation, symbol and string encryption) [31][32][33]. Each of them 

brings in one specific context (i.e., when applied to one specific executable) a different efficiency 

and performance impact.  The performance impact can be significant (i.e., in the range of 100% 

for complex code virtualization or control flow flattening), restricting their usage to security-

sensitive code and skilled integration teams. Obfuscation requires a specific set up activity on 

each payload. AI-based tools simplify this workflow [34][35]. AI-based deobfuscation tools 

[36][37] de-obfuscate code, recognizing obfuscated code patterns and removing them. Code 

obfuscation is a direct PDSCM as the code shall be modified through obfuscation patterns. 
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2.3.2.3.  Trusted Execution Environment 

TEE is a processor vendor-supported technique, arising first in 2015 (i.e., with ARM’s TrustZone), 

producing on-the-fly (encrypted) memory page decryption and integrity verification prior use. 

The pages are encrypted in DRAM, decrypted when used, and re-encrypted thereafter. The 

memory in the “enclave” or TEE-protected area (used by the processor) cannot be accessed for 

read or write by any external process. The Trusted Computing Basis (TCB) aggregates all memory 

pages protected therein. 

Intel’s SGX original design (i.e., 2019) restricted the TCB size to the bare minimum; notably, a 

vulnerable TCB can be equally exploited and totally covertly. Vulnerability scanners cannot access 

the TCB, hence are inoperant with a vulnerable TCB (aka evil TCB threat model). SGX is a shelter 

for security-sensitive executables and routines. No system calls are permitted from the TCB, 

generally implying code modifications. The new generation of VM-based ultra-large TCB (Intel’s 

TDX, AMD’s SEV-NP, and ARM’s CCA) has emerged since 2020, following AMD’s first SEV release 

for the cloud market. These TEEs drastically simplify the DevSecOps as untouched VM onboards 

the TCB, but they equally drastically augment the malicious TCB risk. The TEE impact on 

performance fluctuates from an average of 10-30% for SGX to an average of 5-10% for VM-based 

TEE. Placement inside SGX was a direct PDSCM, as code shall be modified and prepared to 

onboard SGX. With VM-based TEEs, PDSCM is an indirect action, consisting in selecting prior 

deployment the TEE equipped platforms. 

PDSCM consist in either modifying the payload (i.e., by encryption or obfuscation) or ensuring its 

execution in a TEE. 

  

2.3.3. Integrity preservation 

The SotA integrates several techniques employed at various level (i.e., system level, application 

level through PDSCM).  

System-level security: Software tampering protection is an epic battle, that one can date back to 

the 40s and 50s, at which Van Neumann’s CPU architecture was preferred against Harvard’s, 

which merges both data and code in the same memory space. As data shall be writable, there is 

native protection to prevent writing on code residing aside. It took a long time for operating 

systems to adopt Write xor Execute (WxorE) principle (i.e., in the 1990s onward) with declarative 

flags preventing code tampering.  For attackers with administrative rights on the platform, WxorE 

flags can be removed and the code modified. Henceforth, WxorE protection does not prevent 

memory introspection and tampering.  
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2.3.3.1. Application-level security by PDSCM 

 The SotA contains the following integrity preservation measures: 

• Authentication provides the recipient with the assurance that the static code file has not 

been tampered with after it was signed by the developer or operator and before it was 

onboarded on a platform. Both payload’s provenance and integrity are checked together 

with the payload signature and the developer’s public key delivered in the payload’s 

manifest. For that, the code file hashing, then asymmetric encrypted deliver these two 

assurances.  
• Remote attestation provides the payload operators with the assurance that their 

deployed payloads are integrated where they are deployed, leveraging similar basic 

techniques. Remote attestation needs a Prover where the code executes, producing the 

quote, and a remote verifier comparing the quote with a reference measurement.    
• Granular and imbricated integrity verification: Software-based techniques have been 

designed to create a lattice of imbricated elementary memory state checks, which deliver 

probabilistic protection. The density of these buried traps, executed on the fly during 

execution, is correlated with the induced performance penalty.   
• Trusted Execution Environment brings a de-facto integrity preservation to the TCB, 

notably through on-the-fly integrity check processed at memory page loads. 

PDSCM consist in application-level security as stated above.  

  

2.3.4. Availability preservation 

For software, availability exclusively relates to the availability of the needed resources allocated 

by the execution environment. Techniques integrate system-level techniques, user-triggered 

resource reallocation, and application performance monitoring. The following exclusively relates 

to CPU sharing, while shared memory process allocation techniques similarly impact software 

availability. For simplicity, memory allocation is not listed below.  

2.3.4.1. System-level native CPU allocation (to processes) 

Natively, CPU regulates the resource allocation to the different processes in operations with 

time-sharing, priority scheduling or affinity pinning to distribute the processes execution over 

several cores. Similarly, VM hypervisors regulate the resource allocation between VMs, based on 

credit-based, fair scheduling, proportional share, and CPU quotas.  

2.3.4.2. User-level arbitrary resource allocation 

Systems deliver users sufficient administrative rights to adjust the resource allocated to a process 

(e.g., Linux’s cgroup, nice/renice scheduling priority, taskset to bind processes and containers to 
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cores). Hypervisor administrators permit permissioned users to adjust the CPU resource 

allocation (e.g., allocation of vCPUs assigned to a VM, adjust CPU shares, limits, reservations (e.g., 

VMware, vSphere, Xen, KVM), and finally by pinning vCPUs to physical CPUs.  

2.3.4.3. Performance monitoring 

CPU performance monitoring is offered by many different tools natively including in the 

operating system or integrated applications 

Operating system commands 

- At CPU level (e.g., Linux commands top, htop, uptime, ps). 

- At CPU core level (e.g., Linux commands mpstat, pidstat, perf) 

Integrated performance application 

A large set of Monitoring applications belongs in the SotA: 

• Nagios [38], a widely used infrastructure monitoring (with plugins for CPU usage). 

• Zabbix [39], a popular open-source monitoring system with CPU usage metrics. 

• Prometheus + Grafana [40], a modern full stack for time-series CPU metrics and 

dashboards. 

• Datadog [41], a cloud-based monitoring with strong CPU profiling and alerts. 

• New Relic [42], a SaaS monitoring for applications and infrastructure, including CPU 

usage. 

Self-contained performance monitoring 

In [43], a disruptive approach intends to assess the allocated resource level by the payload itself 

(through payload rewriting) or better through an agent (i.e., sidecar container). PDSCMs consist 

of setting up monitoring applications in the execution environment, producing operating system 

commands, or modifying the code for self-probing.   

2.3.4.4. IPR security 

Several techniques are employed to prevent illicit use of software, infringing the licence rights. 

Techniques can be summarized as below: 

Digital Right Management (DRM) 

DRM techniques are present on the market in the following patterns:  

o Software activation consists, through a remote server licence activation service, to (i) 

collect machine specific invariants, (ii) process accordingly an activation token by an 

activation server, once pending user right to install is verified, install the machine 

invariant specific activation token on the permissioned platform. At software start, the 
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machine invariants are collected a second time and reconcile with the activation token 

through a test, triggering the software start if positive.   

o Dongle binding consists of checking the presence of a non-duplicable dongle on the 

machine, at the software start. 

Both above techniques imply modification of the code, notably at its entry point to insert the 

DRM routine. 

o Machine binding consists of checking the presence of a digital blob in the execution 

environment to start the software. Several flavours of blob anti-duplication and migration 

security are employed, preventing easy localization and copy. Ultimate security is 

achieved when the blob is resident in a TEE. 
o Watermarking has no semantic and would not stop the software execution, but it is used 

to track each user licence, separately. In case of illicit replication, it is used to trace back 

the copy. In practice, watermarks come with a change on the code package. 

 PDSCM consist in modifying the code or placing a watermark inside the code package.  

2.3.4.5. Vulnerability preservation 

Vulnerabilities have several origins such as buffer overflow (i.e., exploitation permitted by Van 

Neumann architecture), memory management errors (e.g., use-after-free), Input validation and 

injection (e.g., SQL injection), race conditions, and higher-level origins (e.g., wrong 

authentication, misconfiguration, and cryptographic weaknesses). 

PDSCM consists of identifying the vulnerability and curating the code (i.e., reprogramming as no 

curation exists at executable level). Vulnerability detection, however, can be practiced at all steps 

of the executable file generation (i.e., at programming, on binary executables). 

 

2.4. Web Assembly security 

2.4.1. WASM technology history and key design attributes 

As stated in D2.1, WASM was defined by Internet browser giants [44], as a substitute to JavaScript 

highly portable interpreted language. The working group objective was to raise concurrently 

JavaScript's security, performance and sustainability, in alignment with NATWORK’s vision. For 

that, WASM core asset is its lower-level instruction set, closer to machine atomic operations, 

faster to interpret and supposedly harder to reverse. Since its standardisation [45] in 2019, 

WASM has attracted several CPU intensive industries, domains and technologies (e.g., 

blockchains, FaaS, crypto mining, gaming engines). WASM module interpretation is faster and 

more sustainable than any containerization solutions and its inherited portability ideal for cloud 
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continuum payload migration in networking. The exact same WASM can be executed at very 

different platforms, equipped with their platform-specific WASM runtime (i.e., interpreter). 

Notably, by contrast to containers, WASM technology expands the continuum up to the User 

Equipment.  Thanks to the high traction and work on WASM development activity, WASM 

compilers are today totally polyglot, able to compile programs written in any existing languages. 

Hereto, for networking, WASM is a high potential contender for instant and highly migratable 6G 

services over the continuum.   

2.4.2. WASM security analysis 

Table 6 provides a rapid view on the key pros and cons of WASM security, deriving from our own 

study and security surveys [46][47]. We have excluded the generally-cited low-level bytecode 

instruction set, supposedly making reverse engineering harder, a relative security guarantee (i.e., 

seasoned reversers are efficient at assembly level, a lower level than WASM instruction set) and 

AI-enhanced reverse engineering tools will bring instant, near-complete WASM module 

decompilation in several programming languages outputs [48][49][50].  

Table 6. Strengths and weaknesses of WASM security 

 Strengths Weaknesses 
Sandbox execution environment, where:  
-Payloads can run but cannot access other 
process memory space. 
-Native enforcement of Write xor Execute, 
making code tampering impossible through 
data channel, without local memory 
introspection. This strong security 
assurance applies to native compiled WASM 
payloads (i.e., through JIT or AOT 
compilation) and the WASM runtime itself.  

-Code tampering: Through remotely-spawn 
privilege escalation attacks or by direct memory 
introspection, the memory states can be 
modified. Write xor Execute memory protection 
cannot be applied WASM bytecodes (i.e., 
writable data structures).  

-Type-control by WASM runtime producing 
buffer bound checking, making buffer 
overflow attack unexploitable. 
  

-As an inheritance or common taken attack path 
to JavaScript, JIT spraying technique tweaks the 
JIT compilation to generate malicious code 
snippets activable as backdoors. 

  

2.4.3. WASM module integrity.  

In a general perspective, two techniques deal with workload integrity. Trusted Execution 

Environments (TEE) decrypt on-the-fly encrypted swapped memory pages, restricting access to 

the DRAM-stored ephemeral decrypted pages. Additional integrity checks are produced at each 

page load, on-the-fly. Confidentiality and Integrity are delivered de facto for any resident 

workloads. Authentication and remote attestation, produce a verification of integrity using 
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hashing and a comparison with a signed reference measurement (i.e., signed certificate attached 

with the workload). These processes ascertain both the provenance and integrity of the 

workload. While authentication operates at the workload location only, remote attestation 

operates on both ends (i.e., where the workload is deployed, at the remote location).  

2.4.3.1. TEE-delivered integrity 

By placing the WASM runtime into a TEE, both WASM runtime and module are preserved of 

confidentiality and integrity attacks. As detailed in [51], using TEE shall be considered and 

restricted to security-sensitive workloads as it implies higher memory and CPU consumption, 

leads to novel threat models (e.g., DoS by Raw hammering, evil TCB) and frustrates workload 

portability (i.e., heterogeneity). The workload-specific performance impact induced by TEE 

placement also varies with the type of TEE. VM-based optimized TEE (i.e., Intel’s TDX, AMD’s SEV 

and ARM’s CCA) performance penalty range is generally below 10%. Executable-based TEE (i.e., 

ARM’s TrustZone, Intel’s SGX) impact is higher and bounded below 30%. In NATWORK, our vision 

is to consider TEE for these specific security sensitive workloads (e.g., network probe), which 

deployment can be managed with care and the extra resource consumption measured to be 

acceptable.  

2.4.3.2. Distinction between authentication and remote attestation 

Authentication solutions ascertain the provenance of the workload, leveraging asymmetric 

encryption and secondly the integrity or genuineness of the workload, leveraging a hashing on 

the workload artefact data. Authentication is a security service beneficial to the recipient of a 

workload (i.e., an infrastructure operator), taking for granted it is trustworthy to make this test. 

Remote attestation does not depend on the recipient's trustworthiness and is a security 

assurance delivered to the workload operator (i.e., service operator). For the service operator, 

there is a need to check that what is deployed remotely corresponds to what is expected (i.e., 

identity check). The verification is worked out remotely leveraging components on both side (a 

“prover” at the workload location, a “verifier” at another position).   

2.4.3.3. SotA’s Integrity techniques 

Table 7 shows the current state of the art related to WASM identity and integrity verification, 

regrouping the usual techniques of WASM module authentication at onboarding, remote 

attestation at onboarding, TEE-based remote attestation, and WASM module runtime 

integrity.Table 7. WASM authentication and remote attestation techniques identifies, for each 

technique, the verified artefacts attributes, some noticeable operational considerations and how 

the current state of the corresponding SotA. 
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Table 7. WASM authentication and remote attestation techniques 

Integrity 
technique 

Location of the 
Prove and 
Verification 
routines 

Artefact verified 
attributes 

Other 
considerations 

State of the 
art 

Authentication 
  

Both at payload’s 
execution site 
  

-Origin (i.e., Public 
key’s owner) 
-Integrity (i.e., vs the 
signature generation 
time, prior 
deployment) 
  

-No payload 
identity 
information 
collected 
-No signature 
management 
required  

-Browsers ‘ 
SRI,  
-DIY,  
-Wasm-sign,  
-WABT, 
LUCET 
  

Remote 
attestation 

-Prove routine at 
payload 
execution site 
-Verify routine is 
remote 
  

-Identity (i.e., 
artefact’s ident) 
-Origin (i.e., by 
database signature 
public key)  
-Integrity (i.e., vs the 
signature generation 
time, prior 
deployment)  

-Requires 
signature 
management (i.e., 
pristine and 
trustworthy 
signature 
database at the 
verifier site) 
  

In NATWORK, 
by IMEC 
  

TEE-based 
remote 
attestation 
(Intel’SGX 
sample) 

3rd-party remote 
utility (i.e., Intel 
attestation 
service) 
  

-SGX TEE genuiness 
Payload integrity 
(i.e., vs the SGX 
enclave generation 
time at build stage) 
-Implicit attributes of 
confidentiality and 
integrity assurances 
for the payload 
during runtime.  

-Verified 
Attributes vary 
with TEE types 
(e.g., AMD’s SEV-
SNP) 
-No enclave 
identity delivered 

-WaTZ,  
-Twine,  
-Enarx,  
-RA-WEB 
  

Runtime integrity 
verification 

-Prove routine is 
at execution site. 
-Verify routine 
can be either at 
execution site or 
remotely 
  

Loaded memory 
pages footprint 
integrity (vs. a 
reference 
measurement made 
at first run or prior 
deployment) 
  

-The memory 
pages footprint 
can also be used 
for remote 
attestation. Both 
remote attestation 
and runtime 
integrity checks 
can use the exact 
same maerial 

None 
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Integrity 
technique 

Location of the 
Prove and 
Verification 
routines 

Artefact verified 
attributes 

Other 
considerations 

State of the 
art 

-Continuous 
attestation 
repeats 
periodically, 
integrity 
verification.  

  

2.4.3.4. WASM authentication techniques 

Two different types of authentication techniques must be distinguished. The first being 

embedded by web browsers, and the second by runtimes. 

Browser SubResource authentication 

The .wasm file integrity verification is practiced through Subresource (SRI), an in-browser 

functionality, w/o checking the origin and taking for granted that the source is trusted. Typically, 

source trust can be derived by a variety of complementary techniques (e.g., OAuth, mutual TLS, 

session tokens) used to authenticate the source in the http/https handshake.  

Runtime authentication 

For WASM runtimes (e.g., WASMTIME, WASMER), programming a DIY (Do It Yourself) protocol 

leveraging a classical hashing routine is always possible as depicted in Figure 3. Moreover, several 

tools combine source authentication and payload integrity verification, leveraging a signed hash 

(i.e., signature) (e.g., Wasm-Sig, WABT, Lucet). 

 

 
Figure 3: WASM runtime-orchestrated module authentication 
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2.4.3.5. Remote attestation 

To the best of our knowledge, there is no existing remote attestation framework for WASM 

modules. In networking, WASM modules will be Network Functions and thus ETSI NFV security 

working group recommendations fully apply [52]. Module authentication suffices when payloads 

are executed in browsers, while it is not sufficient for networking, where remote attestation is 

required for service operators. 

Theoretical WASM remote attestation implementation  

Although we have not found any existing WASM module remote attestation framework, we 

believe that the first implementations will come soon. A WASM remote attestation framework 

can be constructed with the support of existing authentication tools, without major technical 

difficulties. For that, the authentication verifier can be turned into a prover, forwarding signed 

quotes to a distant verifier, which checks the validity of the prover's public key and the signature 

by comparison with the same payload's signature stored in its database. This theoretical 

implementation is illustrated in Figure 4. 

 
Figure 4: Theoretical WASM remote attestation framework 

2.4.4.  SotA Takeaways 

We have reached the following conclusions: 

• WASM authentication is a usual and well-established technique, delivering a security 

attribute for the workload recipient (i.e., the cloud infra operator) while remote 

attestation is required for service operators. 
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• All technical bricks used for authentication can be assembled to construct a remote 

attestation of the WASM module when they are onboarded. 

• After the remote attestation onboarding test, the WASM module runtime integrity is 

lacking, and there is a security gap to fill.  

• TEE remote attestation brings the assurance that the WASM module executes in a 

sheltered execution environment where confidentiality and integrity are near certain, but 

at the cost of deployment constraints, performance degradation, and excessive memory 

consumption. According to the TEE type and, more specifically, if the TEE is process- or 

VM-centric, the remote attestation respectively attests to whether this specific process is 

inside or not. VM-based remote attestation checks the complete VM in its initial state, 

without insight and accuracy down to the different processes inside the VM. 
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3. NATWORK’s PDSCMs on containerized payloads 

3.1. Kubernetes pre-deployment progress 

Kubernetes provides several native mechanisms for security, including Network Policies, Role-

Based Access Control (RBAC), and Pod Security Admission. However, studies have shown that 

security incidents frequently arise not from the absence of these features but from their 

misconfiguration or misuse. Common problems include exposed credentials, overly broad RBAC 

assignments, containers running with elevated privileges, and network policies that are either 

missing or too permissive. These weaknesses are particularly dangerous in distributed 

environments such as edge clusters and multi-tenant deployments, where the attack surface is 

naturally wider. Alongside the identified weaknesses presented in Section 2.2.4.3, NATWORK 

addresses these challenges by emphasizing pre-deployment hardening, ensuring that workloads 

are validated and secured before they reach the production environment. 

To achieve this, we propose the integration of CERTH’s AI-based Intrusion Detection System (AI-

IDS) into the Kubernetes pre-deployment pipeline. The AI-IDS would act as a policy gatekeeper 

within the CI/CD process and Admission Controllers, performing in-depth analysis of deployment 

manifests and configuration files. For example, in Figure 5: Pod manifest with root privileges and 

no resource limits, Pod manifests and Helm charts can be scanned to detect dangerous practices 

such as privilege escalation (e.g., containers defined with runAsUser: 0, running as root), 

missing resource limits (Pods deployed without resources.limits, able to consume unlimited 

CPU/memory), or the exposure of sensitive credentials (passwords hardcoded in environment 

variables instead of referencing Kubernetes Secrets). 

 

Figure 5: Pod manifest with root privileges and no resource limits 

Another critical domain of analysis involves Network Policies and RBAC rules. Here, insecure 

configurations often allow unrestricted traffic or excessive permissions. For instance in Figure 6: 
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NetworkPolicy allowing unrestricted ingress traffic, a Network Policy with ingress: { from: 

[] } effectively permits all traffic, enabling lateral movement between Pods. Similarly, RBAC 

bindings that assign cluster-admin rights to a microservice service account provide 

unnecessary and dangerous access to the entire cluster. Even a misconfigured role granting write 

access to namespaces intended to be read-only can compromise cluster integrity. 

 

Figure 6: NetworkPolicy allowing unrestricted ingress traffic 

 

Figure 7: RBAC binding granting cluster-admin to a service account 

Finally, as shown in Figure 7: RBAC binding granting cluster-admin to a service accountexternal 

interfaces and IP bindings must be reviewed to prevent unintentional exposure of services to 

the internet. Examples as in Figure 8: Service of type LoadBalancer exposing an internal API 

include Services of type LoadBalancer created without source IP restrictions, exposing internal 

APIs publicly, Pods configured with hostNetwork: true that bypass the cluster network and 

bind directly to the host, or workloads mapping host ports such as 22 (SSH) onto every node, 

unintentionally opening attack vectors at the infrastructure level. 

 

Figure 8: Service of type LoadBalancer exposing an internal API 
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By catching these risks at the pre-deployment stage, insecure workloads are blocked before they 

ever enter production, ensuring that Kubernetes clusters start from a hardened and trustworthy 

baseline. 

The benefits of this approach are multiple. By embedding shift-left security into NATWORK’s 

DevSecOps workflow, developers and operators gain immediate feedback on security flaws 

during the build and deployment phases, long before the workloads run in production. This 

reduces the likelihood of misconfigurations reaching live clusters, thereby lowering the risk of 

privilege escalation, data leakage, or lateral movement attacks. Furthermore, the approach 

ensures that clusters start from a hardened security baseline, which improves resilience across 

both cloud-native and edge/O-RAN environments.  

The proposed solution integrates CERTH’s AI-IDS into the Kubernetes pre-deployment pipeline 

as a policy gatekeeper. By analysing manifests, Helm charts, RBAC rules, and Network Policies 

before workloads are deployed, it detects misconfigurations such as privilege escalation, exposed 

secrets, and overly permissive access. This shift-left security approach blocks insecure workloads 

early, provides immediate feedback to developers, and establishes a hardened baseline for 

deployment. As a result, NATWORK strengthens Kubernetes security against misconfiguration-

driven risks, reducing the likelihood of privilege escalation, data leakage, and lateral movement 

attacks, while enhancing resilience across cloud-native and edge/O-RAN environments. 

3.2. PDSCMs on microservices  

The pre-deployment security measures outlined in Section 2.2.3 - Pre-deployment Microservice 

Security by construction are currently at varying stages of implementation within the NATWORK 

project. The declarative modelling of CNF (Containerised Network Function) dependencies and 

the specification of their cybersecurity requirements are under active development, with an 

initial mature version already integrated into the secure-by-design orchestrator (sFORK) for 

runtime management. These models, expressed through Kubernetes YAML manifests and Helm 

charts, provide an explicit description of service dependencies, allowed communications, and 

resource bindings. This allows sFORK to reason about CNF composition and to enforce secure 

scheduling decisions at runtime. The declarative approach is already being implemented in the 

NCL testbed to test inter-service communication and meeting security requirements of the 6G 

slices. 

The project has successfully adopted and implemented Submariner to establish secure inter-

cluster communication tunnels, providing encrypted connectivity between clusters. These 

tunnels provide confidentiality and authentication for cross-cluster service traffic and are 

integrated into the orchestration workflows. This step guarantees that communication links 
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between clusters are operational and secure at the service level. The use of IPsec has already 

been validated in initial testbed experiments, enabling secure multi-cluster orchestration. 

The automatic (re)configuration of RBAC rules, informed by vulnerability assessment tools, is 

planned for a subsequent phase of the project to further harden the security baseline. While 

RBAC rules can already be defined declaratively, NATWORK is exploring automated 

(re)configuration based on vulnerability assessment results. Lightweight tools such as Kubesec 

can provide recommendations on patching runtimes and tightening access rights, which can then 

be translated into RBAC policies. This would allow DevSecOps pipelines to dynamically adapt 

permissions before deployment, aligning the access model with both security requirements and 

runtime risk assessment. 

We created a secure baseline before deployment through dependency modelling and encrypted 

inter-cluster channels. The automatic RBAC policies are planned to be developed. On top of this 

baseline, runtime optimisation strategies, CTI-driven selective sharing of hygiene scores and AI-

based workload prediction developed in D3.1 provide additional protection, optimisation and 

adaptability. This combination allows sFORK to make placement and scaling decisions with both 

pre-deployment hardening and live feedback in mind, linking DevSecOps practices with runtime 

orchestration. 

3.3. O-RAN xAPP onboarding security analysis and progress 

3.3.1. IS-RD Liquid xAPP threat model 

IS-Wireless’s Liquid RAN and Liquid near-Real-Time RIC (Radio Intelligent Controller) together 

form an open, cloud-native RAN system following O-RAN Alliance specifications. The near-RT RIC 

hosts xApps – microservice applications that ingest RAN data and issue control decisions – which 

interface with RAN components (e.g., O-DU/O-CU) over standardized O-RAN interfaces (such as 

the E2 interface). The entire system is deployed on a Kubernetes-based cloud-native platform, 

meaning RAN, RIC, and xApp components run in containers orchestrated by Kubernetes. This 

architecture introduces new security considerations due to microservice communication, multi-

vendor plugin apps, and disaggregated network elements. 

We applied the STRIDE methodology with its threat modeling categories – Spoofing, Tampering, 

Repudiation, Information Disclosure, Denial of Service (DoS), and Elevation of Privilege – to 

identify potential threats to the IS-Wireless xApp in four contexts: 

• Kubernetes Cloud – The cloud-native infrastructure that orchestrates and secures 

containers running Liquid RAN, RIC, and xApps. 

• near-RT RIC Platform – The control framework that hosts xApps and manages near real-

time optimization of RAN functions via standardized O-RAN interfaces. 
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• 3rd party xApp – Another vendor’s modular microservice deployed on the RIC that 

consumes RAN data and issues control actions for tasks like traffic steering or slice 

assurance.  

• Liquid RAN Components – The disaggregated RAN building blocks (O-DU, O-CU, O-RU) 

that deliver radio access services and interact with the RIC through E2 and O1 interfaces. 

Each STRIDE category is discussed with examples in these contexts in the following Table 8. Liquid 

near-RT RIC xApp STRIDE analysis 

Table 8. Liquid near-RT RIC xApp STRIDE analysis 

STRIDE 
Category 

Kubernetes 
Cloud 

near-RT RIC 
Platform 

(framework & 
services) 

xApp (3rd-
party plugin) 

Liquid RAN 
Components 
(O-DU/O-CU 
and O-RU) 

Spoofing  - Rogue pod 

impersonating a 

service due to 

lack of mTLS, 

allowing attacker 

to masquerade as 

xApp or API 

server. 

- Compromised 
credentials used 
to create 
malicious pods, 
appearing as 
legitimate 
components. 

- Malicious xApp 

or process 

impersonates RIC 

internals via 

unsecured APIs, 

injecting 

commands as if 

from a trusted 

module. 

- Lack of mutual 
auth allows a fake 
RIC component to 
register as part of 
RIC and intercept 
traffic. 

- Rogue xApp 

presents stolen or 

forged 

credentials during 

onboarding to 

pose as a trusted 

vendor’s xApp (if 

onboarding 

process is weak). 

- One xApp 
pretends to be 
another via inter-
xApp API if 
mutual auth isn’t 
enforced. 

- Fake base 

station (rogue O-

DU) tries to 

connect to RIC’s 

E2 interface, 

impersonating a 

legitimate RAN 

node to inject 

false data. 

- Spoofed 
gNodeB ID in E2 
messages if 
authentication is 
missing, 
misleading the 
RIC about the 
sender. 

Tampering  - Supply chain 

attacks inserting 

malicious code 

into container 

images. 

- Attacker 
modifies cluster 
config to alter 
network policies 

- Manipulation of 

RIC message bus 

traffic (if not 

signed) . 

- Exploiting a 
vulnerability to 
modify RIC’s state 
(e.g., change 

- Malicious xApp 

tampering with 

control messages 

to disrupt service. 

- Altering data it 
receives 
(telemetry) 
before passing to 
other modules, 

- Injection of false 

configuration via 

O1 or E2: 

attacker alters a 

parameter (like 

frequency or TX 

power) in transit, 

impacting RAN 
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STRIDE 
Category 

Kubernetes 
Cloud 

near-RT RIC 
Platform 

(framework & 
services) 

xApp (3rd-
party plugin) 

Liquid RAN 
Components 
(O-DU/O-CU 
and O-RU) 

or disable 
security checks. 

policy values in 
memory). 

feeding false info 
into RIC 
decisions. 

behavior. 

- Tampering with 
fronthaul or 
synchronization 
messages (if 
physical access 
gained) causing 
RAN faults. 

Repudiation  - Inadequate 

audit logs let an 

attacker change 

settings and 

delete evidence, 

claiming 

innocence (e.g., 

deleting a rogue 

pod leaves no 

trace if logging is 

off). 

- No tracking of 
which admin or 
service account 
performed a 
critical action, 
enabling plausible 
denial. 

- Poor logging of 

xApp actions 

means a rogue 

xApp can send a 

harmful 

command and 

later deny it was 

the source. 

- If RIC 
configuration 
changes aren’t 
logged with 
who/when, an 
attacker could flip 
them undetected. 

- If xApp actions 

aren’t audited, a 

vendor can deny 

their xApp caused 

an incident. 

- XApp could 
manipulate its log 
outputs or use 
unsupported 
channels to 
perform actions, 
evading normal 
logs. 

- A compromised 

RAN node could 

deny sending a 

critical alert if 

logs are not 

collected (e.g., it 

turned off an 

alarm and claims 

it never 

happened). 

- If RAN audit logs 
(of commands 
received from 
RIC) are absent, 
RAN vendor could 
repudiate that a 
detrimental 
command came 
from their 
equipment. 

Information 
Disclosure  

- Stolen service 

account token 

used to read all 

Kubernetes 

Secrets (e.g., RIC 

credentials). 

- Sniffing intra-
cluster traffic if 

- RIC’s database 

or monitoring 

data exfiltrated 

via a debug 

interface left 

open, leaking cell 

performance or 

user metrics. 

- xApp gains 

unauthorized 

read access to 

subscriber data 

or cell configs via 

a misused API, 

leaking sensitive 

info externally 

- Unencrypted 

CUs/DUs control 

traffic could be 

sniffed, revealing 

subscriber traffic 

patterns or keys. 

- O1 interface 
data (config files, 



              D3.5 - Pre-Deployment Security per Construction Measures.r1  

 
Page 52 of 71 

 

STRIDE 
Category 

Kubernetes 
Cloud 

near-RT RIC 
Platform 

(framework & 
services) 

xApp (3rd-
party plugin) 

Liquid RAN 
Components 
(O-DU/O-CU 
and O-RU) 

no encryption, 
revealing RAN 
telemetry or 
credentials. 

- An unauthorized 
user in RIC could 
query data meant 
for SMO or 
operators (like 
network topology 
info). 

(e.g., phone 

locations). 

- Supply-chain 
compromised 
xApp quietly 
sends 
confidential RAN 
data to attacker’s 
server. 

performance 
reports) 
intercepted by an 
attacker, leaking 
network 
configuration 
details. 

Denial of 
Service  

- Attackers spam 

the Kubernetes 

API to overwhelm 

the control plane 

(schedule 

countless pods) 

causing 

management 

outage. 

- A noisy neighbor 
container 
exhausts node 
CPU/memory, 
starving RIC 
components (if 
no limits). 

- Crash of a core 

RIC service (E2 

terminator, 

routing manager) 

triggered by 

malformed xApp 

message, halting 

near-RT control. 

- Multiple xApps 
issuing heavy 
compute tasks 
(like complex AI 
inferences) freeze 
the RIC’s real-
time processing. 

- An xApp 

intentionally 

consumes 

excessive RIC 

resources (e.g., 

subscribes to 

every possible 

event at high 

frequency) to 

overwhelm the 

RIC or E2 node 

(preventing other 

xApps from 

timely 

processing). 

- Failure to 
handle 
backpressure: a 
slow or hung 
xApp causes 
queue buildup, 
blocking other 
xApps’ messages 
(indirect DoS). 

- Flooding the RIC 

with excessive 

measurement 

reports or fault 

indications (a 

hacked O-DU 

could spam E2 

messages) to 

overwhelm RIC 

processing 

capacity. 

- Desynchronizing 
RAN: e.g., a 
timing sync 
attack making 
cells go out of 
sync, effectively a 
DoS on radio 
service. 

Elevation of 
Privilege  

- Compromised 

container escapes 

to host (if running 

- A bug in RIC (or 

RMR library) 

allows code 

- A compromised 

xApp exploits an 

API flaw to 

- If an O-DU is 

compromised, it 

could potentially 
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STRIDE 
Category 

Kubernetes 
Cloud 

near-RT RIC 
Platform 

(framework & 
services) 

xApp (3rd-
party plugin) 

Liquid RAN 
Components 
(O-DU/O-CU 
and O-RU) 

privileged), 

gaining root on 

host node. 

- Excessive RBAC 
privileges let a 
low-level service 
account modify 
cluster roles 
(becoming 
cluster-admin). 

execution, letting 

an xApp gain 

control of the RIC 

host process. 

- An xApp without 
proper 
sandboxing calls 
privileged RIC 
APIs to change its 
permissions or 
access other 
xApps’ data. 

elevate its role 

(gaining 

permissions to 

control all cells 

instead of its 

assigned scope). 

- xApp escapes its 
container (if 
running with 
unnecessary 
privileges) and 
modifies host or 
RIC files, 
effectively 
becoming an 
admin on the 
system. 

issue privileged 

Core network 

messages or alter 

its role (e.g., act 

as a ‘master’ 

node) beyond 

design. 

- Malware on a 
DU could use the 
O-RAN interfaces 
to pivot into the 
RIC’s domain, 
escalating its 
reach into the 
control plane. 

 

3.3.2. NATWORK work on xAPP security 

3.3.2.1. General 

To augment the traction of our security development, we shall first stand on WG11 integrity 

solutions showing a high maturity level, notably xAPP authentication at onboarding. Hence, our 

development will be steered to develop solutions in three areas where WG11 work is of lesser 

maturity level (i.e., remote attestation, runtime integrity and SBOM runtime enforcement). We 

will work with ISRD, acting as the aka Liquid xAPP provider and the integration of D-MUTRA 

blockchain-based remote attestation framework. The following work plan has been defined. 

3.3.2.2. On remote attestation 

The WG11 architecture places the SMO as the central and unique verification utility, which 

exposes it to DoS attacks caused by flooding attestation requests. The SMO is the utility which 

also validates remote attestation. Last and as stated above our work plan is twofold: 

• Develop an alternative to the SMO centralized verification (and storage of xAPP 

catalogue), based on D-MUTRA decentralized framework. This alternative framework 
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shall no longer be directly dependent on the integrity of the verification and measuring 

entities.    

• Develop a user-centric remote attestation where permissioned stakeholders can collect 

their workload remote attestation timestamped results. 

3.3.2.3. On runtime integrity 

We will progress on the three challenges defined by the WG11: 

• Trustworthiness of the integrity monitoring: security analysis of our decentralized 

structure 

• Applicability of remote attestation when applied to AI/ML: Consider how model 

parameters can tentatively integrate the range of the measured memory footprint 

• Performance impact: Elaborate three possible schemes of: 

o Spread-over-time hashing technique, to reduce the resource consumption by the 

measuring thread 

o Linux’s cgroup CPU resource restriction, applied to the measuring thread 

o On-demand trigger to limit to one measurement only (i.e., at user-defined timing).   

3.3.2.4. On SBOM runtime verification 

Taking advantage of the sidecar container as used for D-MUTRA, we will expand its functionality 

from integrity verification to dependency check, intercepting all called dependency at runtime. 

We will consider how an agent can share the file system and get a dynamic view of the called 

dependencies. According to the permission for sidecar mounting, we will define the appropriate 

implementation either using a sidecar or by binary rewriting. 

3.3.2.5.  PDSCM for xAPP security 

The following PDSCMs will be applied on the Liquid xAPP: 

• SECaaS processing for reference measurement: This pre-deployment step elaborates the 

reference measurement and stores it on the SECaaS. This reference measurement will be 

used by D-MUTRA for integrity verification. 

• Docker compose for sidecar mounting: This operation consists of modifying the Docker 

orchestration, adding a script line referring to the sidecar container for its future collateral 

mounting aside the xAPP container.    

3.3.2.6. xAPP migratability 

xAPP migratability may be affected with the sidecar mounting, as this opposes some WG11 

guidelines (i.e., restricting deployment to what SMO strictly knows). However, in some restricted 

conditions, sidecar mounting is permitted. Noticeably, in the Security Near-RT RIC xApps technical 
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report [26] , there is a specific mention of sidecar containers: “Optional side-car container for key 

and certificate management reduces the attack surface on the Applications.” 

According to a deeper technical survey, we will opt for the sidecar mount or a direct SECaaS 

rewriting of the xAPP as is described in Figure 9.  

 

Benefits of sidecar mounted SECaaS 

In Figure 9, two different setup workflows are represented. The left-hand section shows a PDSCM 

based workflow with operations performed prior to deployment by a SECaaS. In the right-hand 

section, a diagram without SECaaS is shown, applying only to containerised workloads and 

enabling a Drop and Attest model, where the “dropped” container has not gone through pre-

deployment change, therefore is deployed without modification or measurement. This simplified 

workflow is more scalable while limiting possible security functions to runtime integrity only. In 

fact, no prior-deployment code encryption, for code confidentiality preservation, can be 

delivered. Moreover, no prior-deployment reference measurement will be produced by the 

(inexistant) SECaaS but the reference measurement is collected at the first execution of the 

payload, by the sidecar container and serves for future integrity measurement. This schema does 

not bring remote attestation as the measure cannot be verified with a locally stored reference 

measurement but brings runtime integrity verification, which represents however the main 

security gap to fill. 

 

Figure 9. Two schemes for xAPP security. 
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3.3.2.7. xAPP performance and latency 

The blockchain-based remote attestation induces a penalty of around 2-3 seconds, integrating 

the complete DLT cycle. We will investigate if this is acceptable with standard on-boarding (and 

RAN near real time loops (i.e., 10 ms -1s). A possible shift to Attest-After-Starting pattern will also 

be investigated as it drops latency to nil. The performance impact of three different runtime 

integrity verification methods will be measured. 
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4. NATWORK’s PDSCMs on native workloads 

4.1. General 

Montimage’s MMT (Montimage Monitoring Tool) network anomaly detection is a good 

candidate for PDSCM for the native deployment case. As evoked in Section 2, PDSCM can harden 

security services, by nature targets of choice exposed to various attacks. A dedicated effort has 

been initiated and is on-going in the NATWORK project.  

4.2. MMT’s threat model 

The MMT Framework is a modular platform for network monitoring, traffic analysis, and security 

enforcement. It is designed for both research and operational environments, providing deep 

visibility into traffic patterns as well as the ability to enforce security rules in real time. The 

framework is composed of several key components: 

− MMT-Probe: A high-performance packet capture and analysis engine based on Deep 

Packet Inspection technique that extracts traffic metadata, protocol details, and 

application-level insights. 

− MMT-Security: A security enforcement module that applies detection rules (compiled 

into .so shared libraries) to traffic flows, identifying threats, anomalies, or policy 

violations. 

− MMT-Operator (optional): Interfaces for orchestration, visualization, and management 

of collected data and security alerts. 

The MMT framework can be deployed in two main ways depending on the needs of the 

environment. One option is native installation, where users compile the binaries such as MMT-

probe, MMT-security, and the associated .so modules, and then run them directly on Linux 

systems. This approach provides maximum flexibility for integration with custom setups and 

allows fine-grained control over configuration and optimization. Alternatively, a more modern 

and reproducible method is containerized deployment using pre-built Docker images. With this 

approach, all dependencies are packaged together, making it easier to install, test, and update 

the framework while ensuring consistency across environments. Containerized deployment also 

simplifies orchestration with tools such as Kubernetes or Docker Compose, which is particularly 

valuable in infrastructures that need to scale dynamically or enforce standardized deployment 

practices. 

When deploying the MMT framework, whether through native binaries or containerized 

environments, the security of the software artefacts and associated rulesets is a critical concern. 
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A binary or shared library that has been tampered with, replaced, or misconfigured can 

undermine the entire monitoring and enforcement pipeline. To evaluate these risks 

systematically, we apply the STRIDE methodology [54], which helps us reason about potential 

threats across six key categories. We discuss in detail the threat model of deploying MMT that 

highlights multiple pre-deployment security considerations. 

− Spoofing is a significant concern during the distribution and deployment of MMT. 

Without proper controls, an attacker could impersonate a legitimate developer or 

repository and trick operators into installing a maliciously crafted version of MMT-probe, 

MMT-security, or one of the .so detection modules. In practice, this can occur if binaries 

are downloaded from unofficial mirrors or if Docker images are pulled from unverified 

registries. Preventing spoofing requires strong authentication of both the source 

repository and the individuals who build and release MMT. 

− Tampering focuses on the risk of modification to binaries or rulesets before they are 

deployed. Because MMT-Security relies on compiled .so rules to enforce detection logic, 

even a subtle modification in a library could result in rules being disabled, altered, or 

replaced with logic that intentionally bypasses threats. For example, a tampered library 

could silently allow specific malicious traffic through, creating a blind spot in monitoring. 

To counter this risk, deployments must incorporate artifact integrity validation, such as 

checksum verification, digital signatures, or trusted build pipelines. 

− Repudiation arises when there is no clear accountability for changes made to binaries or 

configurations. In environments without proper logging and version control, it may be 

impossible to prove whether a binary was modified by a malicious actor or simply updated 

by a developer. This lack of traceability hinders incident response and weakens 

confidence in the security posture. Implementing auditable pipelines, logging all artifact 

changes, and enforcing commit signing are crucial to address repudiation threats. 

− Information disclosure represents another serious category of risk. The detection 

rulesets themselves may encode proprietary intellectual property or sensitive patterns 

used for anomaly detection. If these .so libraries or associated configuration files are 

leaked, an adversary could gain insights into the organization’s detection strategy, 

allowing them to craft evasive attacks. Moreover, improper containerization or 

configuration could inadvertently expose sensitive credentials used by MMT to external 

parties. Ensuring proper access control, encrypting secrets, and limiting container 

privileges are necessary steps to reduce exposure. 

− Denial of Service (DoS) can result from the deployment of corrupted or malicious artifacts 

that cause instability in the monitoring stack. For example, a malformed ruleset could 

trigger a crash loop in MMT-security, rendering the detection system unavailable. 

Similarly, a binary modified to consume excessive resources could degrade the overall 
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monitoring environment. DoS threats highlight the importance of testing rulesets in 

staging environments before production rollout, as well as implementing resource 

isolation through container orchestration platforms like Kubernetes. 

− Elevation of Privilege threats occur when compromised binaries or libraries exploit 

elevated system permissions to execute unauthorized actions. Since the MMT framework 

often runs in privileged environments where it has access to raw network traffic and 

sensitive telemetry, a backdoored version of MMT-probe or MMT-security could be used 

to exfiltrate data or manipulate monitoring outcomes. Preventing this requires strict 

adherence to the principle of least privilege in both IAM roles and container runtime 

configurations, ensuring that even if a component is compromised, its ability to escalate 

further within the environment is minimized. 

4.3. PDSCM on MMT 

With respect to detailed threat analysis exposed above, MMT integrity preservation appears to 

be the priority as the vast majority of threats are directly linked to a modification of the 

executable, being at the time of deployment (i.e., spoofing) or during its execution (i.e., 

tampering, repudiation, elevation of privileges and denial of service).  Code tampering is the self-

evident attack vector for all security-related software. NATWORK has considered two alternatives 

detailed below. 

4.3.1. MMT remote attestation and continuous integrity verification 

Covering both stages of deployment and runtime, the two techniques can be offered by D-

MUTRA, a TSS’s solution providing automatic remote attestation and using the same memory 

footprint measurement for both verifications. D-MUTRA is an outcome of DESIRE-6G SNS project 

[49] that aligns with NATWORK, fostering workload migratability by removing technical 

dependencies (e.g., TPM, Linux’s IMA presetting). Its runtime integrity verification is designed for 

being penalty-free (with a cap of 1% performance penalty). Noticeably, D-MUTRA leveraging of 

Hyperledger blockchain shall not be perceived as a dependency as the blockchain can be setup 

anywhere, separately from the workload's execution environments.  

In Use Case 4.6 dedicated to DoS prevention by self-monitoring, we will initiate our work with 

the implementation of D-MUTRA to assess the integrity of MMT. Penalty measurements will be 

worked out as well as the blockchain footprint inflation rate. 

The PDSCM consists in modifying MMT executable to integrate different routines (i.e., Prove, 

Verify, DLT-com) for MMT to integrate D-MUTRA service, hereto be remotely attested and 

continuously integrity verified.  
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4.3.2. MMT in-TEE sheltering  

As part of Use Case 4.5 dedicated to optimized and explainable MTD, ZHAW and Montimage are 

closely working on the dynamic placement of MMT in and out of a TEE enclave with AMD’s SEV-

SNP (Secure Encrypted Virtualization with Secure Nested Paging) [53], a VM-type TEE. The 

experiments are conducted on AMD EPYC v4 processors, which provide native support for AMD 

SEV-SNP [5] Noticeably, the experiment totally aligns with NATWORK’s concept, consisting of a 

hot migration of MMT to a TEE sheltering, (only) at occurrence or presumption of a security 

threat. We believe that this policy totally makes sense, with the avoidance of a costly by default 

overprotection (i.e., if MMT were sheltered in TEE by default).  

The planned PDSCM consists of inserting MMT inside a migratable SEV-SNP managed Virtual 

Machine. TEE sheltering overhead, although assessed to be relatively small with the VM-type 

form of SEV-SNP, is still to be measured. The impact in terms of memory consumption and CPU 

overhead will be measured in the use case as part of upcoming NATWORK efforts. 
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5. NATWORK’s PDSCM on WASM workloads 
NATWORK’s work on WASM workload security has focused on module runtime integrity 

verification, a runtime method assessing the integrity of the workload memory footprint and 

comparing it with a pre-deployment reference measurement. This work aims at filling a security 

gap, deemed critical for WASM adoption in networking, where a WASM module can be directly 

modified since it is treated as a data structure where no Write xor Execute protection can be 

enforced. By doing so, NATWORK is taking a significant step. Referring to the list of possible 

PDSCMs as listed in Section 2.1 of this document, our work stands on integrity preservation, 

detecting tampering in the complete module lifetime. 

The PDSCM consists of collecting a reference measurement prior to deployment (and used during 

the verification occurring on-boarding or module execution). It also consists in installing a 

workload identifier used for reconciling the workload and its reference measurement. The main 

difficulty of our development consists in collecting at runtime evidence that the workload has 

not been modified. 

5.1. NATWORK runtime integrity technique 

To collect integrity evidence at runtime, we first analysed a WASM payload memory map as 

shown in Figure 10.  

 

Figure 10. Memory map of WASM runtime (virtual machine) and module (application) 

We discovered that WASMTIME created three distinct memory areas (i.e., stack, WASM 

instructions and linear memory). An integrity checker requires access to the WASM instructions 

during runtime which can only be accessed at the runtime level. As a matter of fact, linear 

memory only contains offsets to the WASM instructions, insufficient to assess integrity. Then, 

our reverse engineering of WASMTIME, we had then discovered that we could force a JIT 

compilation and a serialization of the executable binary blob. A serialized blob is a specific format 
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derived from ELF. This format contains the instructions in the classical ELF's text section. 

Noticeably, these x86 native assembly instructions result from the JIT compilation which ingests 

the WASM's module instruction. Any change to the WASM module results in a different set of 

native instructions. Our implementation is depicted in the flow graph of Figure 11.  

 
Figure 11. Flow diagram of NATWORK WASM module runtime integrity verification 

We have created a second thread triggering JIT+ serialization and we produce a hash of the ELF's 

text section and compare it to a reference signature. The reference measurement derives from 

the same exact process in our SECaaS, using the exact same components. Two methods can be 

used to store the reference measurement. It can be appended directly on the WASM module, 

resident in our SECaaS or be stored after generation at the first loop iteration. It is then used for 

comparison.  

Our WASMTIME interpreter has been appended with Prove and Verify routines able to generate 

the hash and verify it by comparison with the reference measurement.  
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5.2. Integration in D-MUTRA blockchain based mutual remote 

attestation 

For the integration with D-MUTRA, a blockchain-based mutual remote attestation framework, 

the following steps shall be worked out.  

Producing a modified WASTIME runtime 

WASMTIME is open source, the integrity verification functions are programmed at source code 

level, and a novel compilation of the runtime is generated, as depicted in Figure 12. 

 

Figure 12. Modified WASMTIME runtime generation 

Full stack remote attestation scheme 

The modified WASM runtime is per-se a security-sensitive entity accessing the WASM payload at 

the first place and secondly producing its integrity verifications. It is a basic security provision to 

attest the runtime at the first place.   

 

Figure 13. WASM full-stack remote attestation 

Figure 13 shows a basic workflow where TSS modified WASMTIME interpreter is first checked (1) 

by comparison of a SECaaS reference measurement before the modified runtime delivers payload 

integrity verification (2). 
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Several implementations are considered for measuring the runtime. The agent can be appended 

with its own proving routine, or if the runtime is delivered as a container, a side car container will 

be added for the proving task. In both cases, the SECaaS will be used as a centralized verifier. 

Mutual remote attestation scheme 

D-MUTRA enacts a novel software-based chain of trust based on integrity freshness criteria, 

where the most recently verified payload is elected by consensus to make the next payload 

verification.  In the context of WASM, D-MUTRA principle must be slightly deviated. WASM 

module cannot directly verify a peer (i.e., module), but WASM runtime can. The verifier election 

smart contract shall elect WASM runtimes, as reflected in Figure 14. 

 

 

Figure 14. WASM mutual remote attestation by D-MUTRA 

 

5.3. Alignment with NATWORK 

5.3.1. Workload portability 

Keeping in mind the stated priority of workload migration ability as defined in D2.1, it is worth 

stating that our solution restricts deployment to locations where a modified WASMTIME runtime 

is implemented, only where integrity verification is requested. Conversely, WASM modules can 

still be executed in a standard WASM runtime but without integrity being verified during their 

execution. In fact, WASM top notch migratability is conserved and untouched as WASM modules 

can still be executed on any platform duly equipped with a WASM runtime of any kind.  In the 

context of the Telecom industry, workloads will be executed in either controlled or managed 

execution environments. The execution environments are either detained or managed by 

operators which deploy their workloads (i.e., telecom operators) or by their contractors (i.e., 
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cloud vendors). In both cases, prior to deploying the WASM module, a managed deployment and 

verification leveraging either authentication or better remote attestation of the specific runtimes 

can be processed. In practice, telecom operators can set up a pre-deployment security per 

construction deployment of the runtimes to get a runtime integrity of their modules thereafter. 

This policy can be worked out because it implies a limited and controlled number of deployments 

at pre-identified locations. Moreover, the possible execution of the same WASM modules with 

unchanged runtimes, relaxes this runtime pre-deployment policy and justifies it, in the 

perspective of the telecom operators whose modules can still execute everywhere (up to 

uncontrollable end user endpoints) but will be integrity verified in a perimeter defined by the 

runtime pre-deployment policy.  

5.3.2. Performance impact  

As shown in [49], the performance impact induced by integrity verification can be capped to an 

average 1%, by use of two techniques: 

- Spread-over-time hashing, where each step of the hashing process is paused with duration 

adjustable idle times. This technique resides in a specific development by modification of a 

hashing function. No administrative right is needed to employ this user-level technique. 

Noticeably, the performance impact is workload dependent. 

- Linux’s cgroup resource limitation, applied to the measuring thread, ensuring that the WASM 

module interpretation executed at the same time is not allocated with a reduced amount of 

CPU resources. Administrative rights must be delivered to leverage this system's utility.  

These two techniques will be complemented with an on-demand activation pattern, lower 

bounding the impact irrespectively to the workload type and tentatively through an 

implementation without specific administrative right. The specific advantage of on-demand 

trigger is the limitation to one measure made sporadically, with no periodic repetition, hereto 

dropping drastically dropping the induced costs.  

5.3.3. Sustainability 

 Sustainability shall be considered over resource consumption in terms of CPU processing and 

memory usage. With an adjustable CPU processing level limited to 1%, the solution can be 

considered sustainable. 

The memory consumption of the measuring process is always lower than the memory footprint 

of the monitored process and generally smaller by several orders of magnitude. A short-lived 

buffer is used and released after each measurement cycle. 

When integrated with the D-MUTRA blockchain-based remote attestation framework, 

blockchain inflation rate must be monitored and controlled by limiting the block creation 
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cadence. In a high-frequency scenario—one attestation every 2 seconds for 3 agents—the system 

produces approximately 47.3 million attestations per year, resulting in around 28.4 GB of 

blockchain data annually. However, D-MUTRA mitigates this by storing only tampering 

detections, which are rare events.  This reduces the blockchain inflation rate by 6 to 12 orders of 

magnitude, depending on the frequency of detected anomalies. In this condition, one tampering 

detection inflates the blockchain by approximately 600 Bytes, which is totally negligible. In 

addition to tampering detection, each onboarding induces a remote attestation at the same cost.   

5.4. Future work in the NATWORK project and beyond. 

5.4.1. D-MUTRA integration 

As explained, the full stack remote attestation and the integration into D-MUTRA will be carried 

out during the project. 

5.4.2. Towards 0-latency at start  

An implementation of a novel Attest-After-Starting measuring sequence will be established, 

enabling workload to instantly start. To cover the associated integrity blind window (i.e., between 

the workload start and its measurement), our design will consider a bridge with the workload 

authentication at on-boarding. From the authentication step onward, our attestation takes 

runtime measurements. 

5.4.3. Lower bounding the performance impact in all situations with an on-

demand trigger 

An implementation of an on-demand activation of the runtime verification will be established, 

dropping the performance impact in all situations, irrespective of the workload size and 

detention of platform administrative right. 

5.4.4. WASM module confidentiality preservation 

We will devise and implement confidentiality preservation, through another set of modifications 

on WASMTIME runtime and a SECaaS processing. The latter will encrypt the WASM module while 

the former will decrypt the encrypted module before execution.  

5.4.5. During or beyond NATWORK. Mitigating JIT spraying 

During NATWORK, we will study the possibility to detect JIT spraying, leveraging our integrity 

verification second thread as described in Figure 11. Flow diagram of NATWORK WASM module 

runtime integrity verification JIT spraying defense was not part of our original plan, according to 

our feasibility study, the implementation of JIT spraying defense will be tentatively worked out 

during or following NATWORK.  
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6. Conclusion 
In NATWORK, PDSCMs is elaborated on the three payload formats, elevating security 

substantially in each domain: 

1. Containerized xAPP security is elevated, beyond O-RAN authentication specifications and 

fulfilling O-RAN WG11 identified persisting security threat (i.e., runtime tampering), 

applying runtime integrity verification. The PDSCM consists of a modified Docker’s 

orchestration layer, to bridge a sidecar container. If this schema cannot be applied, the 

PDSCM will consist of modifying the xAPP to inject the required routines for the 

continuous integrity verification.  

2. Highly migratable WASM modules security is significantly improved by a PDSCM 

consisting of modifying the WASM runtime, not the WASM module itself. This is a 

significant security improvement, done without touching the payload, making WASM 

technology safer and usable for networking. 

3. Our work on native payloads integrates use cases illustrating how PDSCM hardens a 

security service. Two PDSCMs are implemented, consisting of (i) placing MMT probe (i.e., 

a network anomaly detection probe) into SEV-NP TEE and (ii) modifying it to be attestable 

and runtime verified. This work will be continued and exemplified in Use Cases 4.5 and 

4.6, respectively.  This will notably show how MMT integrity preservation can be offered 

by two opposing techniques (i.e., TEE and remote attestation) and the intricacies and 

impacts of each in terms of performance and sustainability. 

PDSCMs contribute to NATWORK’s reconciliation principle, reducing the costs of security by 

applying security at each elementary component. They also contribute to NATWORK’s security 

challenges, hardening the security code itself, for more reliable security services. They differ in 

nature and are enacted at different levels, impacting differently workload migratability as 

recalled in Section.2.1.1.2.  

As each use case and context differs (e.g., no workload migration considered, possession of 

platform administrative rights, severity of the security threat, and access to technology), the 

appropriate PDSCM can be implemented to better match the requirements and offered 

possibilities.    

6.1. Next steps 

The next phase will focus on validating and integrating the proposed Pre-Deployment Security 

per Construction Measures (PDSCM) across native, container, and WASM payloads. Efforts will 

extend towards adaptive, performance-aware security regulation, ensuring optimal trade-offs 
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between protection, efficiency, and sustainability. Validation through representative cloud–edge 

use cases will demonstrate secure and platform-agnostic payload mobility. Continued 

collaboration with confidential computing and WASM ecosystem initiatives will ensure alignment 

with state-of-the-art developments, reinforcing NATWORK’s objective to deliver secure, 

interoperable, and energy-efficient computing continuum operations. These efforts will be 

reported in the deliverable D3.6 – “Pre-Deployment Security per Construction Measures.r2” due 

to M30. 
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