

Net-Zero self-adaptive activation

of distributed self-resilient

augmented services

D3.5 Pre-Deployment Security per Construction Measures.r1

Lead beneficiary TSS Lead author Vincent Lefebvre

Reviewers Md Munjure Mowla, Robert Gdowski (ISRD), Gürkan Gür (ZHAW)

Type R Dissemination PU

Document version V1.0 Due date 30/09/2025

Ref. Ares(2025)8635076 - 10/10/2025

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 2 of 71

Project information

Project title Net-Zero self-adaptive activation of distributed self-resilient
augmented services

Project acronym NATWORK

Grant Agreement No 101139285

Type of action HORIZON JU Research and Innovation Actions

Call HORIZON-JU-SNS-2023

Topic HORIZON-JU-SNS-2023-STREAM-B-01-04
Reliable Services and Smart Security

Start date 01/01/2024

Duration 36months

Document information

Associated WP WP3

Associated task(s) T3.4

Main Author(s) Vincent Lefebvre (TSS)

Author(s) Mark Angoustures (TSS), Antonios Lalas, Virgilios Passas, Eleni
Chamou, Stelios Mpatziakas, Vangelis V. Kopsacheilis, Alexandros
Papadopoulos, Aristeidis Papadopoulos, Konstantinos Nikiforidis,
Athanasios Korakis, Anastasios Drosou (CERTH), Vinh La, Edgardo
Montes de Oca, Manh Nguyen (MONT), Sumeyya Birtane, Mays Al-
Naday (UESSEX), Maria Safianowska (ISRD), Wissem Soussi (ZHAW)

Reviewers Md Munjure Mowla, Robert Gdowski (ISRD), Gürkan Gür (ZHAW)

Type R - Document, Report

Dissemination level PU - Public

Due date M21 (30/09/2025) – Extended to M22 (10/10/2025)

Submission date 10/10/2025

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 3 of 71

Document version history

Version Date Changes Contributor (s)
v0.1 16/06/2025 Initial table of

contents
Vincent Lefebvre (TSS)

v0.2 11/07/2025 Initial contributions
in various sections

Vincent Lefebvre, Mark Angoustures (TSS),
Antonios Lalas, Virgilios Passas, Alexandros
Papadopoulos, Aristeidis Papadopoulos,
Konstantinos Nikiforidis, Athanasios Korakis,
Anastasios Drosou (CERTH), Vinh La, Edgardo
Montes de Oca, Manh Nguyen (MONT),
Sumeyya Birtane, Mays Al-Naday (UESSEX),
Maria Safianowska (ISRD)

v0.3 24/07/2025 Updated content in
sections 4 and 5

Vincent Lefebvre, Mark Angoustures (TSS)

v0.4 25/08/2025 Revised content for
sections 2 and 3

Vincent Lefebvre, Mark Angoustures (TSS),
Antonios Lalas, Virgilios Passas, Eleni Chamou,
Stelios Mpatziakas, Athanasios Korakis,
Anastasios Drosou (CERTH), Vinh La, Edgardo
Montes de Oca, Manh Nguyen (MONT),
Sumeyya Birtane, Mays Al-Naday (UESSEX),
Maria Safianowska (ISRD)

v0.5 10/09/2025 Pre-final version
for late inclusions

Vincent Lefebvre (TSS)

v0.6 16/09/2025 Last refinements in
various sections

Vincent Lefebvre, Mark Angoustures (TSS),
Antonios Lalas, Virgilios Passas, Eleni Chamou,
Stelios Mpatziakas, Vangelis V. Kopsacheilis
(CERTH), Vinh La, Edgardo Montes de Oca,
Manh Nguyen (MONT), Sumeyya Birtane,
Mays Al-Naday (UESSEX), Maria Safianowska
(ISRD), Wissem Soussi (ZHAW)

v0.7 19/09/2025 Draft ready for
peer review

Vincent Lefebvre (TSS)

v0.7.5 23/09/2025 Reviewed version Md Munjure Mowla, Robert Gdowski (ISRD),
Gürkan Gür (ZHAW)

v0.8 26/09/2025 Version after
addressing peer
reviewers’
recommendations

Vincent Lefebvre (TSS), Virgilios Passas
(CERTH)

v0.8.5 29/09/2025 Quality review Joachim Schmidt (HES-SO)

v0.9 08/10/2025 Final review and
refinements

Vangelis V. Kopsacheilis, Antonios Lalas
(CERTH)

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 4 of 71

Version Date Changes Contributor (s)
v1.0 10/10/2025 Final version ready

for submission
Antonios Lalas (CERTH)

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 5 of 71

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or 6G-SNS. Neither the European Union nor the granting
authority can be held responsible for them. The European Commission is not responsible for any use that may be
made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the NATWORK consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the NATWORK Consortium nor any of its members, their officers, employees, or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the NATWORK Consortium nor any of its

members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss or

damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© NATWORK Consortium. This deliverable contains original unpublished work except where clearly indicated

otherwise. Acknowledgement of previously published material and of the work of others has been made through

appropriate citation, quotation, or both. Reproduction is authorised provided the source is acknowledged.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 6 of 71

Contents

Contents .. 6

List of acronyms and abbreviations .. 8

List of figures ... 10

List of tables .. 10

Executive summary ... 11

1. Introduction .. 12

1.1. Purpose and structure of the document .. 12

1.2. Intended Audience .. 13

1.3. Interrelations .. 13

2. State of the art analysis .. 14

2.1. Introduction .. 14

2.1.1. Definition and usability ... 14

2.1.2. Interaction with service-level security solutions .. 16

2.1.3. Interaction with D 2.1 service level security services ... 16

2.1.4. Interaction with D 3.1 ... 18

2.1.5. Summary ... 18

2.2. PDSCMs for containers ... 19

2.2.1. Introduction .. 19

2.2.2. Confidential containers frameworks .. 20

2.2.3. Pre-deployment Microservice Security by construction 25

2.2.4. Kubernetes security analysis ... 26

2.2.5. O-RAN xAPP security ... 29

2.3. Binary pre-deployment hardening techniques ... 34

2.3.1. General .. 34

2.3.2. Confidentiality preservation ... 34

2.3.3. Integrity preservation ... 36

2.3.4. Availability preservation ... 37

2.4. Web Assembly security ... 39

2.4.1. WASM technology history and key design attributes .. 39

2.4.2. WASM security analysis .. 40

2.4.3. WASM module integrity. .. 40

2.4.4. SotA Takeaways .. 44

3. NATWORK’s PDSCMs on containerized payloads ... 46

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 7 of 71

3.1. Kubernetes pre-deployment progress .. 46

3.2. PDSCMs on microservices ... 48

3.3. O-RAN xAPP onboarding security analysis and progress .. 49

3.3.1. IS-RD Liquid xAPP threat model .. 49

3.3.2. NATWORK work on xAPP security .. 53

4. NATWORK’s PDSCMs on native workloads .. 57

4.1. General .. 57

4.2. MMT’s threat model ... 57

4.3. PDSCM on MMT .. 59

4.3.1. MMT remote attestation and continuous integrity verification 59

4.3.2. MMT in-TEE sheltering .. 60

5. NATWORK’s PDSCM on WASM workloads ... 61

5.1. NATWORK runtime integrity technique ... 61

5.2. Integration in D-MUTRA blockchain based mutual remote attestation 63

5.3. Alignment with NATWORK ... 64

5.3.1. Workload portability ... 64

5.3.2. Performance impact ... 65

5.3.3. Sustainability ... 65

5.4. Future work in the NATWORK project and beyond. ... 66

5.4.1. D-MUTRA integration ... 66

5.4.2. Towards 0-latency at start .. 66

5.4.3. Lower bounding the performance impact in all situations with an on-demand

trigger …… 66

5.4.4. WASM module confidentiality preservation .. 66

5.4.5. During or beyond NATWORK. Mitigating JIT spraying .. 66

6. Conclusion ... 67

6.1. Next steps ... 67

References .. 69

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 8 of 71

List of acronyms and abbreviations

Abbreviation Description
AD Anomaly Detection

AI Artificial Intelligence

AI/ML Artificial Intelligence / Machine Learning

API Application Programming Interface

CC Confidential Computing

CCA ARM’s TEE Confidential Compute Architecture technology

CIA Confidentiality Integrity and Availability

CPU Central Processing Unit

CNCF Cloud Native Computing Foundation

CNF Containerized Network Function

CTI Cyber Threat Intelligence

CVM Confidential VM

D-MUTRA DLT-backed MUtual Remote Attestation, a solidshield framework

DDoS Distributed Denial of Service

DEFM Decision eXplainablity for MTD

DFE Decentralized Feature Extraction

DLT Distributed Ledger Technology (aka blockchain)

DoS Denial of Service

DoSt Denial of Sustainability

DPSF Data Plane Security Function

ELF Executable and Linkable Format

E2E End to end

IoT Internet of Things

ISD Intrusion Detection System

ITS Intelligent Transportation System

JIT Just in Time (compilation)

K8s Kubernetes (i.e., a container-based framework)

KPI Key Performance Indicator

MANO Management and Orchestratoin

MGEC MTD Green Energy Consumption

ML/DL Machine Learning / Deep Learning

MMT MONT’s network Monitoring (i.e., commercial name)

MMTC Massive Machine Type Communication

MTD Moving Target Defense

MTID Mean Time to Implement Action

MTTD Mean Time to Detect

NCC Network and Computing Convergence

NIC Network Interface Component

O-RAN Open Radio Access Network

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 9 of 71

Abbreviation Description
ONOS Open Network Operating System

PDSCM Pre-deployment Security per Construction measure

P4 Programming Protocol-Independent Packet Processors (P4)

QoE Quality of Experience

QoS Quality of Service

RBAC Role Based Access Control

SDN Software Defined Network

SECaaS Security as a Service

SEV SNP AMD’s Secure Encrypted Virtualization-Secure Nested Paging TEE
technology

SGX Intel’s Secure Guard Extension TEE technology

SotA State of the Art

TCB Trusted Computed Basis

TDX Intel’s Trust Domain Extension TEE technology

TEE Trusted Execution Environment

TLS Transport Layer Security

TPM Trusted Processing Module

UC Use Case

UDP User Datagram Protocol

UE User Equipment

UE User Equipment

UPF User Plane Function

uRLLC Ultra Reliable Low Latency Communication

VM Virtual Machine

VNF Virtual Network Function

WASM Web Assembly (an interpreted language technology derived from
JavaScript)

WG11 O-RAN Working Group 11 (security WG)

x86 Intel processor architecture

XAI Explainable AI

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 10 of 71

List of figures
Figure 1. General xAPP authentication in near RT-RIC ... 31

Figure 2. O-RAN theoretical full stack remote attestation framework .. 32

Figure 3: WASM runtime-orchestrated module authentication .. 43

Figure 4: Theoretical WASM remote attestation framework ... 44

Figure 5: Pod manifest with root privileges and no resource limits ... 46

Figure 6: NetworkPolicy allowing unrestricted ingress traffic .. 47

Figure 7: RBAC binding granting cluster-admin to a service account ... 47

Figure 8: Service of type LoadBalancer exposing an internal API... 47

Figure 9. Two schemes for xAPP security. .. 55

Figure 10. Memory map of WASM runtime (virtual machine) and module (application) 61

Figure 11. Flow diagram of NATWORK WASM module runtime integrity verification 62

Figure 12. Modified WASMTIME runtime generation .. 63

Figure 13. WASM full-stack remote attestation ... 63

Figure 14. WASM mutual remote attestation by D-MUTRA .. 64

List of tables
Table 1. PDSCM enumeration ... 14

Table 2. Potential PDSCMs leverage in D2.1 Security Services .. 16

Table 3. Security challenges by PDSCM leverage as per D2.1 .. 17

Table 4. Potential PDSCMs leverage in D 3.1 MANO .. 18

Table 5 Confidential Containers Comparison ... 25

Table 6. Strengths and weaknesses of WASM security .. 40

Table 7. WASM authentication and remote attestation techniques ... 42

Table 8. Liquid near-RT RIC xApp STRIDE analysis .. 50

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 11 of 71

Executive summary
This deliverable presents the Pre-Deployment Security per Construction Measures (PDSCM)

developed in the NATWORK project. PDSCM refers to security mechanisms and actions applied

prior to payload deployment, aiming to strengthen software artefacts against security threats

from the outset. The work addresses three main types of software payloads executed across the

computing continuum: native binaries, containerized applications, and WebAssembly (WASM)

modules.

The deliverable first defines the PDSCM concept and presents a state-of-the-art (SotA) review of

existing measures and associated threat models. The SotA is then continued by addressing the

three-payload format separately for clarity.

The deliverable enumerates the actions carried out in NATWORK for each payload format.

Notably, they elevate significantly the security of xAPP during execution in the near RT-RIC,

WASM module during execution and exemplify how a security service (i.e., MMT anomaly

detection) can be secured by two alternative techniques, i.e. TEE (Trusted Execution

Environments) and D-MUTRA remote attestation.

Finally, the deliverable analyses the differences in PDSCM applicability across workload and

system levels and discusses their implications for usability and operational efficiency. The results

demonstrate how PDSCMs contribute to NATWORK’s overall vision of secure, performant, and

sustainable operations across the computing continuum.

.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 12 of 71

1. Introduction
NATWORK aims to regulate performance and security at sustainable resource consumption using

bio-inspired principles as do natural entities and immune systems. When projected to telecom

networks, these bio-inspired mechanisms can be set as means to reconcile security and

sustainability, security and performance, performance and sustainability.

PDSCMs are pre-deployment security measures applied on software payloads, reinforcing their

immunity against various threats. Three payload formats are discussed (i.e., native, containers

and WASM) with their specific facets.

When payloads are protected by construction before deployment, all attack vectors are less

efficient and the whole system healthier and more sustainable. However, on the other hand, an

important consideration is to assess the direct performance impact caused by the PDSCM, which

opposes NATWORK’s concept of higher-performance and more cost-efficient cybersecurity. An

overreaction induced by security is potentially resource costly. Performance penalties must be

measured and when possible be adjustable, as discussed in this deliverable.

1.1. Purpose and structure of the document

The purpose of the document is to assess and position how PDSCMs are beneficial to the

NATWORK concept. This work includes a specific SotA and the description of specific PDSCM

applied over the three treated formats.

Following the Introduction, which sets the stage for the document's purpose, audience, and its

interconnections within the project's framework, the structure continues as follows:

Sections:

2. Section 2 SotA: Presents the PDSCM state of the art, including our definition of PDSCM

3. Section 3 NATWORK PDSCMs on containerized payloads: Describes the NATWORK

specific research actions towards container-oriented PDSCMs

4. Section 4 NATWORK PDSCMs on native payloads: Describes the NATWORK specific

research actions towards native-oriented PDSCMs

5. Section 5 NATWORK PDSCMs on WASM: Describes the NATWORK specific research

actions towards WASM-oriented PDSCMs

6. Section 6 Conclusions: Wraps up the document, reflecting on the project's strategic

orientation and establishing expectations for future milestones.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 13 of 71

1.2. Intended Audience

The NATWORK D3.5 Deliverable Pre-Deployment Security per Construction Measures.r1 is for

Public Dissemination. It is there devised for the internal and external use of the NATWORK

consortium, comprising members, project partners, affiliated stakeholders and the public. This

document mainly focuses on the pre-deployment security per construction measures of the

project, thereby serving as a referential tool throughout the project's lifespan.

1.3. Interrelations

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and

resources from academia, industry, and research sectors, focusing on user-centric service

development, robust economic and business models, cutting-edge cybersecurity, seamless

interoperability, and comprehensive on-demand services. The project integrates a collaboration

of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a

broad representation for addressing security requirements of emerging 6G Smart Networks and

Services in Europe and beyond.

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple

activities across various WPs, the structure ensures clarity in responsibilities and optimizes

communication amongst the consortium's partners, boards, and committees. The interrelation

framework within NATWORK offers smooth operation and collaborative innovation across the

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e.,

Research Institutes, Universities, SMEs, and large industries) enabling scientific, technological,

and security advancements in the realm of 6G.

The current D3.5 – “Pre-Deployment Security per Construction Measures” deliverable

addresses specific software payload hardening techniques, applied at deep and elementary level

(i.e., software payloads). However, high level security services, applied at the different layers and

technical domains of NATWORK (RAN, cloud, core, data plane, orchestration and management

layer), described in Deliverable D2.1 – “General State of the Art Security” and in Deliverable D3.1

– “Secure by design orchestration and Management” are all based on different and distributed

software payloads. By hardening these payloads, PDSCMs directly impact the security of security

services. These inter-deliverable relations are detailed in Section 2.

D3.5 is also related to D2.2 – “Use Case Scenarios and Requirements”, where use cases will

implement PDSCM (e.g., native PDSCM applied on MMT probe takes part of Use Case 4.5

Enabling optimized explainable MTD). Finally, D3.5 will feed the integration and validation efforts

within WP6, for evaluating and improving the assets presented in this deliverable.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 14 of 71

2. State of the art analysis

2.1. Introduction

Our state-of-the-art analysis is focused on pre-deployment security per construction measures

(PDSCM), specific actions on the workloads, to be taken prior to their deployment, and covering

the workload formats of x86 executables, containers and WASM.

For clarity, this section starts with a definition of PDSCM, followed with exemplification of their

usage inside high-level service security solutions developed in priorly submitted deliverables (i.e.,

D 2.1, D3.1), clarifying how PDSCMs contribute to 6G services security. Through this, we intend

to clarify their usability and merits to cope with NATWORK security challenges, reconciliating

networking security, performance and sustainability.

2.1.1. Definition and usability

2.1.1.1. Definition

As a simple definition, PDSCMs embrace the following criteria:

• Act at the software payload level

• Enhance the security of workload against a specific security threat model

• Implemented prior deployment, by activation of tools or security methodologies

• Modify the workloads, security-related parameters and their execution environments

Table 1 enumerates PDSCMs, as commonly used in the SotA. It is worth noting that the first three

PDSCM dealing with CIA threats are cardinal on which all following PDSCMs depend. For instance,

user right enforcement solution must be protected and are defended against CIA attacks.

Table 1. PDSCM enumeration

PDSCM Threat Model Employed techniques

Confidentiality
preservation

 -Static (i.e., on executable
or module file) code
analysis
 -Dynamic (i.e., on
memory footprint) code
analysis

-Placement in trusted execution
environment
-Code section encryption
-Code obfuscation

Integrity
preservation

 -Static file tampering
-Memory footprint
tampering

-Placement in trusted execution
environment
-Authentication (i.e., delivering execution
environment local assurance of code
integrity at onboarding)

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 15 of 71

PDSCM Threat Model Employed techniques

-Remote attestation (i.e., delivering
remotely the assurance that code is
integrated at on-boarding)
-Runtime integrity verification

Availability
preservation

 Flood DoS, DDoS,
deprivation of resource

-Resource isolation
-Resource monitoring
-Workload performance monitoring
-System level network traffic limitation

Singularization -IP theft
-Cloning
-Impersonation

-Placement in TEE + selective provisioning of
a key needed for execution
-Selective provisioning of a key needed for
execution

Locality
enforcement

 -IP theft
-Illicit placement outside a
permitted perimeter

-Placement in TEE + selective provisioning of
a key needed for execution

Interfaces
hardening

-API abuse

-Hardening APIs with RBAC

User right
enforcement
(against IPRs)

-Licence violation

-Digital right management techniques such
as:
-Code-to-machine binding
-Software activation method delivering
activation tokens
- Tokenization

Vulnerability
curation

-Detect then exploit a
vulnerability

-Safe coding methodology
-Dependency vulnerability scanning
-Code confidentiality, preventing discovery

Access control -Violation of access policy
to content or
functionalities, through
impersonation or privilege
escalation

-Role Based Access Control (RBAC)
enforcement

2.1.1.2. Workload migratability

The usability of PDSCM varies with the level where it is setup as follows:

• Technology-level (e.g., TEE enforcement, VM isolation), restricted workload deployment

in duly equipped or specific platform)

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 16 of 71

• System-level parametrization (e.g., network flow limitation) requires the user possession

of system administrative right. Thereafter, at deployment, the workload should be

deployed in such tuned systems.

• Workload-level (e.g., binary rewriting, vulnerability safe programming) requires getting

access to the code (and right to change it). No restriction applies during workload

deployment.

Workload migratability over the continuum is a very interesting property, magnified by workload-

level PDSCM. The workload is protected by itself with no dependence on the platform.

2.1.2. Interaction with service-level security solutions

Already submitted D2.1 and D3.1 are service-level security focused, hence located at a higher

level than atomic software payloads as considered here. D2.1 produces a 360° service security

survey while D3.1 is more specifically addressing secure orchestration and data plane

computation offloading (i.e., which brings its own security considerations and needs). As a 6G

service security depends on many, composed and chained software payloads spread along the

traffic pathway either directly traversed (i.e., network functions) or indirectly (e.g., networking

management and orchestration, security functions), software security appears as a common

exigency to be fulfilled on each running software payloads, being security-related or not. Hence,

PDSCM is applied to each software workload deployed by service-level security solutions to

enhance the trust and security assigned to service-level security solutions.

2.1.3. Interaction with D 2.1 service level security services

D2.1 – “SotA Analysis & Benchmark Assessment” provides a detailed SotA analysis on prevalent

security solutions implemented at the different technical domains traversed by a 6G service. Key

attack vectors on the RAN, data plane, orchestration, and edge-core are detailed. It produces a

list of commonly found security services and associated technologies at different network layers.

For clarity, we define the interaction of PDSCM against each of these functions in Table 2.

Table 2. Potential PDSCMs leverage in D2.1 Security Services

D2.1 Service
level Security

List of potentially activated PDSCM (at workload level)

Defence in Depth -RBAC perimetric security (parametrization)

Workload MTD

-TEE enablement, for a secured migration of attacked workloads
-Remote attestation, easing workload secure migration
-Workload deep monitoring (early bird anomaly detection)

Workload isolation -Runtime integrity (preventing tampering attack)
-Performance monitoring (preventing resource attrition by container
co-residents)

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 17 of 71

D2.1 Service
level Security

List of potentially activated PDSCM (at workload level)

Trust management -Integrity of trust metrics collectors and aggregating scoring algorithms
-Confidentiality of trust metrics collectors and aggregating scoring
algorithms
-Singularisation of trust assessors

Attack detection
and protection

-On the anomalous traffic detection workload
-Integrity elevation techniques (e.g., TEE, remote attestation, runtime
integrity verification)
 -Confidentiality elevation techniques (e.g., encryption, placement in
TEE)
-Locality enforcement, mitigating impersonation

Machine learning
Frameworks for
CTI analysis

Multi stakeholder collaborative CTI, with distributed CTI nodes
consuming and producing CTI feeds.
-CTI node remote attestation and continuous integrity verification
-TEE placement of each CTI node producing and consuming feeds
-CTI node singularization for multi factor identification
-Cloud security, VM introspection threat model:
-Continuous workload integrity verification
-TEE-bastioned VM (e.g., TDX, SEV-NP, CCA TEE)
-Workload singularization for identity checks.

Service accurate
monitoring and
traceability

-Monitoring metric producers integrity verification
-Monitoring metric producers confidentiality preservation by TEE
placement
-Monitoring metric producers singularization for MFA

2.1.3.1. Matching D2.1 priority challenges

The list of priority challenges and how they are potentially addressed through PDSCM included

in deliverable D2.1 is presented in the following table.

Table 3. Security challenges by PDSCM leverage as per D2.1

D 2.1 prioritized
challenge

PDSCM match and high-level specification

Fostering software
migratability

- Payload self-contained hardening, directly implies platform-
agnosticism.
Not all PDSCMs are self-contained (e.g., TEE-dependent) but a
significant number are (e.g., modified payload for tampering resilience)

Security and
Privacy
(e.g., platform
agnostic security,

- Devise novel, low-noise continuous integrity verification

Data governance Policies:

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 18 of 71

D 2.1 prioritized
challenge

PDSCM match and high-level specification

continuous
security, data
governance)

-Establish non-ambiguous identification and localization of data
consumers and producers, based on novel PDSCM.

Energy efficiency
and sustainability

On-demand security:
- Develop PDSCM which trigger security verification on-demand, hence
drastically reducing energy consumption and performance impact.

2.1.4. Interaction with D 3.1

Deliverable D3.1 – “Secure-by-design orchestration and management & Data plane computation

offloading” discusses two interrelated matters. The document details service and function

orchestration at various technical domains (i.e., far edge, CRAN, core, and, finally, the data plane).

In a general perspective, orchestration and function placement decisions shall derive from the

ingestion of trustworthy metrics reflecting the current load state at the targeted hosting platform

and of course be trustworthy and secure by itself. As stated in Table 4, PDSCM can contribute to

reach these security attributes. The deliverable highlights the relevance of MANO API security,

the high heterogeneity of the different entities which take part in the management and

orchestration, as well as the core requirement for ultra-fast decision taking. When energy

efficiency is piled up on the list of high-level specifications, we reach a challenge or trade-off

between orchestration responsiveness, reliability/security and energy. Last, AI will be an

essential asset to make these multi-modal and complex decisions. Therefore, AI trustworthiness

and security are pivotal.

Table 4. Potential PDSCMs leverage in D 3.1 MANO

D3.1 Orchestration domains How PDSCM interfere
Orchestration at the Extreme
Edge

All orchestration and management solutions and
workloads are exposed to CIA threat models. PDSCMs
shall be used to harden such deployed workloads.
Typically, code tampering can have devastating influence
on the network reliability or energy consumption.

Orchestration at the CRAN

Orchestration at the Core

Data plane function off-loading

2.1.5. Summary

As illustrated by this matching work, PDSCMs directly contribute to fulfil NATWORK’s security

challenges as stressed in D 2.1 and D 3.1. In practice, their contribution can be essential and a

condition to meet specific identified challenge. Typically, magnifying payload migratability along

the continuum can only met if the payload security is self-contained, resulting from a PDSCM.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 19 of 71

In a general perspective, all NATWORK security services exemplified in D2.1 and MANO services

exemplified in D3.1 are built and dependent of several software payloads whose hardening by

PDSCMs makes them more reliable and at lower resource consumption.

2.2. PDSCMs for containers

2.2.1. Introduction

Containerized environments have become the de facto standard for deploying and scaling cloud-

native applications, but their flexibility and efficiency also introduce new security challenges. Pre-

deployment hardening is therefore a critical phase, as it establishes the foundation for ensuring

that workloads can be executed with strong guarantees of confidentiality, integrity, and

availability (CIA). By addressing security early in the lifecycle, it is possible to reduce the attack

surface, prevent misconfigurations, and ensure that orchestration frameworks operate on

trusted components.

This section surveys the key aspects of pre-deployment container and microservice security,

building upon novel Confidential Computing (CC) frameworks, DevSecOps practices, and

Kubernetes-native hardening approaches. First, we provide an overview of container security

concerns and their mapping to the CIA triad, highlighting how emerging Confidential Computing

frameworks and secure orchestration mechanisms extend traditional models of protection

(Section 2.2.2). We then examine pre-deployment container security by construction, analysing

frameworks such as CNCF’s CoCo. This survey evaluates their security merits, performance

implications, and migratability, identifying trade-offs relevant to practical adoption (Section

2.2.2).

Next, we focus on microservice-level hardening, building on the secure-by-design orchestrator

(sFORK) introduced in Deliverable D3.1. From a DevSecOps perspective, declarative modelling,

pre-established secure inter-cluster channels, and strict role-based access controls are discussed

as essential measures to ensure that orchestration begins from a secure baseline (Section 2.2.3).

We then turn to Kubernetes security analysis, since Kubernetes has emerged as the dominant

orchestration platform. We describe its main security features—such as Network Policies, Pod

Security Policies (and their successors, Pod Security Admission modes), RBAC, and security

contexts—while evaluating their strengths and weaknesses with respect to CIA, performance,

and usability (Section 2.2.4).

Finally, we extend the scope beyond conventional cloud-native environments by considering the

O-RAN ecosystem, where containerized xAPPs are onboarded in the near Real-Time RIC. This

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 20 of 71

context highlights specific pre-deployment verification and attestation challenges, as defined by

O-RAN WG11, and illustrates how container hardening principles must be adapted to telecom-

grade distributed systems (Section. 2.2.5).

Together, these subsections provide a comprehensive view of container and microservice pre-

deployment hardening techniques, emphasizing how different frameworks and orchestrators

converge toward the goal of delivering trustworthy and resilient cloud-native applications.

2.2.2. Confidential containers frameworks

With the growing traction to large TCB trusted execution environments, their adoption for

containers through confidential containerization is becoming a mature technology. We had

produced a technical survey of four emblematic frameworks (i.e., CoCo, MarbleRun, Parma,TCX)

with the lens of performance, sustainability and security.

2.2.2.1. Confidential Containers (CoCo)

Security

The Confidential Containers (CoCo) project is an open-source Cloud Native Computing

Foundation (CNCF) initiative that integrates Trusted Execution Environments (TEEs) with

Kubernetes to protect data in use at the pod level [1] CoCo builds on Kata Containers by running

each pod inside a Confidential VM (CVM) – a lightweight VM with memory encryption – so that

workloads are isolated not only from each other but even from the host and cloud administrator

[2]. CoCo introduces a “Trustee” component (including a Key Broker Service and Attestation

Service) to handle remote attestation and key management for these CVMs [3]. This means that

each container’s image and startup state can be measured and verified, and encryption keys for

secrets or images are only released if the pod is confirmed to be running in a genuine TEE-backed

VM. Overall, CoCo significantly strengthens confidentiality and integrity: even if the host OS or

hypervisor is compromised, the encrypted memory and attestation process protect the

container’s code and data.

Performance

CoCo’s use of hardware-backed VMs (like Intel TDX [4] or AMD SEV [5] adds some overhead

compared to standard containers, but this overhead is mostly attributable to the TEE mechanisms

themselves. In practice, CoCo can achieve near-native performance for many workloads. For

example, one study found that running a workload under CoCo on an SEV-enabled cluster

incurred only about an 8% throughput overhead relative to a native Kubernetes pod (versus ~5%

overhead using Kata alone without memory encryption [6]. Another evaluation noted that with

proper tuning, Confidential VMs perform comparably to non-confidential VMs – the difference

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 21 of 71

was often within single-digit percentages for CPU and I/O-bound tasks. The “peer pods” mode

(where pods are launched as confidential VMs via cloud provider APIs) can introduce higher

startup latency and resource overhead (e.g. one vCPU reserved for TEE runtime) but yields strong

isolation [3]. In summary, CoCo’s performance overhead is low enough that most applications

see only modest slowdowns, making it feasible for production use.

Sustainability

CoCo leverages TEEs already available in cloud and on-premises hardware to securely extend

workloads across hybrid cloud [7]. It enables secure cloud bursting – confidentially offloading

overflow work from private datacenters to public cloud – without maintaining duplicate

infrastructure [8]. By scaling confidential workloads on demand using existing TEE-enabled

servers, CoCo maximizes hardware utilization and avoids idle, redundant machines. This efficient

use of resources translates into better energy efficiency for confidential computing deployments.

2.2.2.2. MarbleRun

Security

MarbleRun [9] is an open-source platform that acts as a “service mesh for confidential

computing”, particularly targeting Intel SGX enclaves. Instead of VMs, MarbleRun orchestrates

process-level TEEs (enclaves) across a distributed application. It provides a deployment manifest

that specifies the expected cryptographic identity and connections of each microservice enclave,

and it will only consider the overall application trusted if all components match this manifest.

This yields a powerful security guarantee: an entire pipeline of services can be remotely attested

and verified as a unit, rather than just individual enclaves. MarbleRun also handles secure key

management and inter-service encryption transparently. Upon startup, each enclave gets a

certificate issued by MarbleRun’s CA and uses it to establish mutually authenticated TLS

connections with other enclaves, ensuring data exchanged between services is encrypted and

only goes to attested endpoints. Secrets (like decryption keys or credentials) can be sealed to the

enclave identities and distributed via MarbleRun once the deployment is verified. In essence,

MarbleRun extends zero-trust principles: even if the underlying Kubernetes nodes or networks

are untrusted, the enclave network remains secure and verifiable at runtime.

Performance

Running containerized workloads inside SGX enclaves does introduce performance

considerations. Intel SGX enclaves have hardware memory protections that can cause overhead

on I/O and memory-intensive operations (e.g., due to enclave context switches and limited

secure memory sizes). In general, SGX-based solutions tend to show higher overheads for heavy

workloads compared to VM-based TEEs – one study notes that AMD SEV (VM encryption) had

negligible performance impact, whereas Intel SGX could introduce significant slowdowns in

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 22 of 71

certain scenarios. However, MarbleRun’s design allows enclaves to be selectively used for the

sensitive parts of an application, and its overhead can be modest for typical microservice

interactions. MarbleRun itself adds a small constant overhead for attestation and key exchange

during startup, but after that, services communicate directly over TLS with negligible additional

latency. Thus, while developers should expect some overhead from using SGX enclaves,

MarbleRun demonstrates that a distributed enclave architecture can still meet performance

requirements for many applications.

Sustainability

MarbleRun orchestrates Intel SGX enclaves as Kubernetes-managed microservices, allowing

confidential workloads to scale up or down flexibly without static overprovisioning. Secure

services are deployed at a fine-grained microservice level, so each enclave is lightweight and uses

only the necessary CPU and memory. By integrating enclave workflows into Kubernetes,

MarbleRun ensures resources are allocated on demand, supporting sustainability goals. The

result is a confidential microservice architecture that provides strong security while minimizing a

waste of computing and energy resources.

2.2.2.3. Parma

Security

Parma is the architecture underpinning Microsoft Azure’s confidential container groups,

designed to provide strong confidentiality without altering container images [10]. It leverages

AMD SEV-SNP (a VM-level TEE) to run an entire container group inside a hardware-encrypted VM

(also called a UVM – UltraViolet VM in Azure’s terms). Parma’s key innovation is the use of an

attested execution policy that defines exactly what actions the cloud’s container runtime is

allowed to perform within the guest VM. At launch, the policy (covering permitted system calls,

mount operations, network config, etc.) is cryptographically measured and included in the

hardware attestation report. This means the attestation not only vouches for the VM’s initial

software (kernel, guest agent) but also locks down how containers inside can behave. If anything

outside the policy is attempted (e.g., mounting an unexpected filesystem layer or executing a

disallowed command), the guest agent will block it, and the deviation would make the attestation

report invalid. In addition, Parma uses proven techniques to protect container data: container

image layers are stored on an integrity-protected file system (using dm-verity), and any writable

storage is encrypted so that plaintext data only ever appears inside the VM’s secure memory.

The result is a very strong security posture: the cloud provider’s host OS and hypervisor are

excluded from the trust boundary, and even a malicious or compromised infrastructure cannot

inject code or inspect data without detection. Only the combination of the tenant’s approved

container images and the Parma guest agent (running under SEV-SNP’s protection) are in the

Trusted Computing Base.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 23 of 71

Performance

Parma was built to impose nearly zero performance penalty beyond the cost of hardware

encryption. Empirical evaluations on prototype Azure Container Instances showed that

introducing Parma’s policy enforcement had a negligible effect on throughput and latency

compared to using SEV-SNP alone [10]. Parma doesn’t heavily modify the runtime execution path

– it primarily adds checks during container setup and relies on hardware to handle memory

protection. Networking and disk I/O operations are still hardware-accelerated inside the VM, so

throughput remains high. In summary, workloads under Parma run at virtually the same speed

as they would in a normal confidential VM. This low overhead means users of Azure confidential

containers can achieve strong security without sacrificing the performance or scalability of their

applications.

Sustainability

Parma isolates container groups inside individual VM-based TEEs, combining virtual machine

security with container agility. Its design introduces almost no performance overhead – around

1% additional overhead in tests – which means negligible extra energy consumption for

confidentiality [10]. With such low CPU and memory overhead, Parma’s confidential containers

run nearly as efficiently as ordinary containers. This balance of strong isolation and performance

ensures security is achieved with minimal impact on resource usage, promoting sustainable

computing.

2.2.2.4. Trusted Container Extensions (TCX)

Security

Trusted Container Extensions (TCX) is a research prototype architecture that combines the agility

of Docker containers with the protection of hardware TEEs [11]. In TCX, each container runs

inside a lightweight VM called a Secure Container VM (SC-VM), which is backed by AMD SEV

encryption to ensure the container’s memory is always encrypted and cannot be read or

tampered with by the host OS or hypervisor. A unique aspect of TCX is that it uses a single trusted

VM per host to coordinate security for all the SC-VMs on that machine. By centralizing services,

TCX can, for example, set up a secure channel between containers even if they are on different

hosts – to the container it looks like normal networking, but in reality, all traffic is transparently

encrypted and authenticated by the TCX layer. The container runtime (Docker/Kubernetes) is

extended so that when you launch a container, it is provisioned in an SC-VM with all these

protections enabled. Integrity and confidentiality are enforced at multiple levels: the VM’s disk

image and the container filesystem are measured and encrypted, and all interactions between

secure containers go through encrypted tunnels that the host cannot spoof. Essentially, TCX

ensures that even in a hostile cloud, containers can only run trusted code and their data stays

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 24 of 71

safe. The strong hardware-enforced isolation means the attack surface is much smaller than in

standard container setups. This architecture achieves protections similar to confidential VMs but

maintains a container-centric deployment model.

Performance

The TCX researchers demonstrated that this approach incurs minimal performance overhead.

Their implementation (built on Kata Containers with AMD SEV-SNP) showed an average overhead

of about 5.8% on CPU-intensive benchmarks (SPEC2017) compared to native execution [12].

Real-world server workloads were also tested: for instance, Nginx web server throughput under

TCX was only slightly reduced, and a Redis in-memory database saw modest slowdowns primarily

due to the underlying SEV memory encryption cost. The overhead introduced by the TCX layer

itself (beyond what SEV encryption alone causes) was very low. This is because TCX still leverages

hardware virtualization extensions for speed and optimizes its secure services. Networking

overhead in TCX’s secure channels was also kept low by using efficient in-kernel encryption for

virtual network interfaces. The research concluded that TCX’s performance is practical for

production, as even high-throughput workloads and multi-container deployments scaled well

with TCX’s protections in place.

Sustainability

TCX combines the manageability and agility of standard containers with the strong protection

guarantees of TEEs, promoting efficient resource utilization. It provides significant performance

advantages, reducing the need for excessive computational resources and supports sustainable

deployment practices by enabling secure, high-performance computing within containerized

environments [12].

2.2.2.5. Conclusions

In summary and depicted in Table 5, each framework has its unique strengths, catering to

different workload requirements, infrastructure capabilities, and organizational priorities. CoCo

stands out for its hybrid cloud support, enabling secure cloud bursting and efficient resource

utilization across environments. Marblerun excels in Kubernetes-native orchestration, providing

minimal overhead and seamless integration for enclave-based workloads. Parma offers VM-

based isolation with minimal performance overhead, making it ideal for high-performance,

confidential computing tasks. TCX combines the agility of standard containers with robust

security guarantees, achieving a balance between performance and sustainability. The table

summarizing each framework’s security, performance and sustainability levels is provided below.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 25 of 71

Table 5 Confidential Containers Comparison

Framework Security Performance Sustainability
CoCo High Variable High

MarbleRun High Moderate High

Parma Very High High Moderate

TCX High High High

2.2.3. Pre-deployment Microservice Security by construction

In Deliverable D3.1, we described how the secure-by-design orchestrator (sFORK) manages

resources and security at runtime using dependency graphs, CTI-driven selective sharing, hygiene

scores and AI-based workload prediction service. The deployment side of the framework includes

the instantiation of microservices of a 6G service, which starts from a secure baseline that

complements the cybersecurity-based service placement and scheduling. From a DevSecOps

perspective, several actions should be applied before deployment to reduce the attack surface

and provide reliable security guarantees:

• Declarative modelling of microservice dependencies: Service dependencies must be

explicitly described (e.g., Kubernetes YAML or Helm charts). This avoids insecure

couplings between services and provides the orchestrator with a complete view of

allowed communications and resource bindings.

• Secure inter-cluster channel establishment: Secure communication channels between

clusters should be pre-defined at the configuration level. Using CLI-based tooling,

developers/operators can set up encrypted tunnels (e.g., via mTLS, IPsec, or Submariner,

etc.) that guarantee authentication and confidentiality before services are deployed. This

step prevents unprotected connections from being instantiated in production.

• Role-Based Access Control (RBAC) rules setting: Access rights need to be restricted from

the start. Role-Based Access Control (RBAC) policies should be defined before

deployment, giving each service and operator only the permissions they really need.

These measures establish a baseline of trust and security for microservice deployments that can

be embedded into the DevSecOps pipeline. The orchestration layer (sFORK) later operates on

already-hardened payloads, where dependencies, communications, and access rights are strictly

controlled.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 26 of 71

2.2.4. Kubernetes security analysis

2.2.4.1. Main security features

Security in Kubernetes has emerged as a fundamental field of research, as this platform has been

established as the standard for container orchestration in cloud-native environments. The

Kubernetes architecture integrates multi-layered security mechanisms aimed at protecting both

applications and the underlying infrastructure. At the heart of these mechanisms are two key

tools: Network Policies and Pod Security Policies (PSPs).

Network Policies are a crucial tool for controlling the flow of data between Pods and services.

Through them, administrators can define detailed rules for allowing communication, achieving

isolation between applications, and limiting exposure to lateral movement attacks. Study [13]

highlights the dual nature of these policies, examining both their performance and security. The

results show that eBPF-based solutions, such as Calico and Cilium, offer robust security with

negligible performance impact, making Network Policies suitable for use even in resource-

constrained environments. Additionally, paper [14] emphasizes that the choice of network

infrastructure (overlay vs. underlay) in edge environments significantly affects both the

performance and effectiveness of policies, highlighting the need for a balance between security

and performance in constrained systems. This allows for a more realistic and comparative

evaluation of Network Policies depending on their application environment.

Although PSPs have been deprecated in newer Kubernetes versions, they served as a foundation

for applying restrictions to Pods. Through them, it was possible to control the execution of

privileged containers, access to host resources, and the use of Linux kernel capabilities. The

modern approach is now based on Pod Security Admission (PSA) modes, which incorporate the

same logic through admission controllers and security profiles such as seccomp and AppArmor.

These tools allow the application of security policies with granular control, enhancing the

protection of workloads. As stated in the official Kubernetes documentation, while PSA/PSPs

provide significant security, full protection depends on proper implementation and a

combination with other measures such as RBAC and Network Policies, which highlights the

strengths and limitations of these tools in real-world environments.

The work presented in [15], offers a structured reference framework for Kubernetes security,

systematizing best practices into eleven fundamental commandments. This framework covers all

aspects of security, from hardening the control plane to the secure management of secrets and

the implementation of network restrictions. The article's contribution is pivotal as it bridges the

gap between theory and practice, providing a strategic tool for implementing secure

containerized applications. Furthermore, this analysis allows for a comparison between different

practices, highlighting where they excel and where they may present weaknesses (e.g., the need

for automation or a combination of other measures).

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 27 of 71

The main security features of Kubernetes—Network Policies and Pod Security Policies—form the

foundation for building a secure runtime environment. Their evolution, combined with the

systematization of knowledge and the application of best practices, shapes the modern state of

the art in Kubernetes security. Research in this field continues to evolve, responding to the

growing demands of cloud-native and edge computing environments, and highlighting the need

for a balance between security, performance, and usability in real-world settings.

2.2.4.2. Kubernetes security strengths

It is important to evaluate how the Kubernetes features collectively contribute to the broader

security objectives of a system. A well-established framework for this analysis is the CIA triad

(Confidentiality, Integrity, and Availability), which defines the fundamental pillars of information

security. Kubernetes supports confidentiality by combining isolation mechanisms with fine-

grained access controls to protect sensitive data in shared environments. At the orchestration

level, as study [16] highlights, container-based scheduling and namespaces create separation

between tenants, reducing the risk of data exposure across workloads. Evaluations of different

Container Network Interface (CNI) plugins confirm that strong segmentation can be enforced

even in resource-constrained environments, such as edge clusters or IoT gateways, where

computational and networking capacity are limited. Studies comparing different plugins show

that enforcing network policies does not introduce major penalties in throughput or latency, even

when the number of policies scales into the thousands [14]. This demonstrates that

confidentiality through network isolation is achievable not only in large cloud data centres but

also in smaller, distributed deployments. At the configuration level, confidentiality also depends

on secure manifests: empirical studies reveal that many security incidents are due to

configuration errors, such as exposed credentials or overly permissive settings [17]. However,

Kubernetes provides primitives like Secrets, security contexts, and privilege restrictions that,

when properly applied, help protect confidential information. Complementing these features,

there can be found best-practice guidelines such as enforcing role-based access control (RBAC)

and applying network and Pod security policies, that further strengthen Kubernetes security, as

they ensure that both data access and communication paths are tightly controlled [15].

Kubernetes provides integrity maintenance via multiple complementary mechanisms that ensure

workloads and communications remain consistent with intended policies. On the orchestration

side, Kubernetes uses policy-driven scheduling, which means that the system places workloads

on nodes according to clear rules set by administrators. This helps keep the cluster running

consistently and avoids situations where a workload might be started in the wrong place or with

the wrong resources [14]. This consistency protects against accidental misplacements and helps

preserve the correctness of operations even in large, dynamic environments. Integrity is also

protected at the network level through access controls such as Role-Based Access Control (RBAC),

which ensure that only authorized users or services can change important settings [17], [15].

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 28 of 71

Integrity is reinforced by network policies, which apply the principle of least privilege to

communication. This means allowing Pods to connect only to explicitly permitted peers,

therefore reducing the chance of malicious tampering or data injection between services. In

addition, network policies improve integrity by limiting how Pods can talk to each other, so that

they only exchange the data needed for their tasks and are less exposed to malicious or

accidental tampering [16]. Importantly, evaluations show that these policies can be scaled to

thousands of rules with negligible performance impact, meaning they preserve secure

communication without weakening the system’s responsiveness. Studies of real Kubernetes

configurations show that while errors are common, features like security contexts and privilege

restrictions give administrators tools to keep workloads in a safe and correct state when they are

applied properly.

Complementing the above, Kubernetes contributes to availability by ensuring that applications

remain operational despite failures, resource shortage, or the addition of security controls.

Scheduling policies and replication strategies keep workloads running smoothly by redistributing

them when nodes or resources become unavailable, which helps ensure that the service remains

accessible and usable by authorized users whenever it is needed [16]. Automatic scaling

mechanisms also adapt resource use to match changing demand, reducing the risk of service

interruptions during peak loads. In addition, study [13] demonstrates that even with thousands

of network policies in place, latency and throughput performance remains stable, showing that

security enforcement does not come at the cost of system responsiveness.

2.2.4.3. Kubernetes security weaknesses

While Kubernetes offers robust security features, the literature identifies several weaknesses and

recurring challenges that can undermine its overall security posture. A key issue arises from

insecure or improper configurations, such as weak authentication, poorly defined network

policies, and excessive permissions. Sometimes administrators set up Kubernetes with weak or

missing security settings. Examples of this include giving users, Pods, or services more

permissions than they really need, exposed credentials issues, manifesting by leaving passwords,

API keys, or tokens in plain text inside configuration files, and default root access, which means

letting containers run as root inside Pods, which makes it easier for attackers to break into the

host. These misconfigurations increase the risk of unauthorized access, data breaches, and

privilege escalation, leaving clusters open to attack. Closely related is the problem of root access

and privilege escalation, where containers often run with elevated privileges by default, enabling

malicious actors to break out of their containers and compromise the underlying host system if

not properly restricted [19]. The empirical study of Kubernetes manifests [17] finds widespread

security misconfigurations, such as missing security context, excessive privileges and hard-coded

credentials. These significantly increase the attack surface and confirm that misconfiguration is

one of the most critical and common weaknesses.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 29 of 71

Another major weakness is the limited strength of namespace isolation. Although namespaces

are designed to separate workloads logically, they do not provide strong security isolation.

Without additional controls such as strict network segmentation or Pod security restrictions,

attackers who gain access to one namespace may be able to move laterally across the cluster.

The paper [19] also highlights that improper access control, including weakly configured role-

based access control (RBAC), can allow users or services to perform unauthorized actions,

undermining both confidentiality and integrity of workloads.

In addition, the reliance on container images introduces risks tied to image vulnerabilities and

supply chain security. If images are not scanned or hardened, they may carry exploitable software

flaws into the cluster. If combined with inadequate runtime security, this creates opportunities

for attackers to escalate privileges or inject malicious code. As multiple studies show,

vulnerability management and patching practices are often inconsistent. Delays in applying

patches to Kubernetes components and container images expose clusters to known exploits,

while insufficient monitoring and logging reduce visibility into ongoing threats. Paper [15]

concludes that while security practices are well documented, many organizations fail to apply

them consistently. This gap between available practices and their actual adoption remains a

central security challenge.

2.2.5. O-RAN xAPP security

In O-RAN project, xAPP are containerized payloads onboarded the near Real Time RIC. O-RAN

security Working Group 11 (WG11) has been very active in defining the security exigencies

related to O-RAN open architecture, as its desired openness generates novel security threats. As

the architecture includes several API-defined interfaces between several units, the security of

these APIs is the main concern. As O-RAN enables operators or tech vendors proprietary software

workloads to be on-boarded in the Near and Non -Real Time RICs, hence sharing local resources,

these workloads shall be verified before being on-boarded and executed.

WG11 has produced several documents to establish how these workloads can be authenticated

and remotely attested. In this sub section, we take a deep dive to assess the maturity of the

specifications or recommendations, assessing in which directions NATWORK can elevate security,

notably leveraging one or several PDSCM. As part of NATWORK, we consider IS-RD’s Liquid xAPP

as a workload to protect. For clarity, the following survey does not claim to be fully

comprehensive in terms of analysis of WG11 recommendations document. The security aspect is

treated in different areas and angles (e.g., O-cloud, risks assessment). However, our survey

highlights what shall be retained in view of defining NATWORK’s offering.

Our survey delivers the following order of precedence in WG11 documentation:

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 30 of 71

• O-RAN ALLIANCE TS, “O-RAN Near-RT RIC Architecture [20]

• O-RAN Security Requirements and Controls Specifications [21]

• O-RAN Study on Security for Service Management and Orchestration (SMO) [22]

• O-RAN Study on Security for O-Cloud [23]

• O-RAN Study on Zero Trust Architecture for O-RAN 2.0 [24]

• O-RAN xAPP SDK [25]

• O-RAN Study on Security for Near Real Time RIC and xApps 5.0 [26]

2.2.5.1. xAPP authentication process

Two stage xAPP registration (i.e., SMO, near RT RIC): MOI generation

Figure 1 reflects O-RAN two stage xAPP registration sequence. The xAPP signature produced by

the xAPP provider is an asymmetric encryption of the xAPP manifest. The manifest contains the

digest of xAPP package and security policy elements.

The service provider checks the signature delivered by the provider, verifying its provenance (i.e.,

public key delivered with signature). From this step, the service provider signs again the xAPP

signature and delivers it to the SMO.

The SMO, after checking the identity of the service provider (i.e., public key delivered with the

signature), will have access to the manifest. SMO also extracts its data structures and produces

an integrity verification of the package, using that digest. Once this integrity verification is made,

all fields are supposed to be valid, and SMO produces an xAPP metadata store in its catalogue.

The SMO will then forward these elements to the near RT RIC and instruct the generation, signing

and catalogue storage of the xAPP managed object instance (MOI). The MOI will then be used for

all verifications by the near real time RIC, validating the xAPP authenticity and compliance with

security requirements.

The MOI is the composite metadata of the xAPP, containing references to the xApp identity (e.g.,

name, version), packing elements (e.g., list of containers, command used to run the container),

controls (i.e., internal to the xAPP), metrics, certificates, the image digest, deployment policies,

network policies, security policies and many other xAPP descriptive fields.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 31 of 71

Figure 1. General xAPP authentication in near RT-RIC

xAPP onboarding verification workflow

The SMO initiates the onboarding workflow and triggers the near RT RIC. For that, the SMO

provisions the xAPP metadata, enabling the reconciliation with the xAPP MOI.

The near RT RIC checks its operational status and validates the onboarding, checking that the

deployment (i.e., affinity rule), networking and security exigencies as stated in the xAPP MOI,

then transfers the onboarding status (i.e., possible, not possible) to the SMO. All authentication

and authorization credentials used by the near RT RIC APIs are stored in the near RT RIC.

The near RT RIC does not produce an xAPP digest verification, which is done at the SMO level. If

the xAPP deployment in the near RT RIC is possible, the SMO triggers for the deployment of the

xAPP containers to the near RT RIC (where API authorization and authentication tokens are made

ready).

 Takeaways and identified security gaps

• The above-described workflow relates to the authentication process initiated with a

registration in a catalogue and the verification of attributes in correspondence with the

catalogue-stored artefact during on-boarding.

• The process is multi-stakeholder and complex. The xAPP integrity verification is done by

comparing a signed digest stored at the SMO.

• The SMO acts as the security guard, making the peripheral checks before use. Once the

xAPP integrity has been checked by the SMO, it is no longer checked thereafter. The SMO

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 32 of 71

is trusted to deliver correct onboarding triggers. A compromise SMO can produce

corrupted xAPP onboarding demands luring the near RT-RIC.

• The near RTRIC consumes both and then validates the xAPP MOI, creating a trust anchor

issue. A corrupted near RT RIC can vet unauthorized xAPP being trusted.

• The threat model considered by O-RAN excludes a corrupted near RT-RIC and a corrupted

SMO.

2.2.5.2. WG11 statement on xAPP remote attestation

In O-RAN Security Requirements and Controls Specifications 11.0 [21], WG11 recommends a

conceptually defined remote attestation service (AS) for providing additional benefits besides

verifying the O-Cloud platform integrity by Chain of Trust. WG11 stipulates that the remote AS

should be extended to include O-RAN Applications integrity as depicted in Figure 2.

Figure 2. O-RAN theoretical full stack remote attestation framework

WG11 details the remote attestation of the O-CLOUD platform. The remote attestation is multi

layered and full-stack, covering O-cloud hardware root of trust, the hardware resources, the

virtualization layer, the virtual root of trust and finally the on-boarded applications (e.g., xAPP).

Although this full stack remote attestation does not specify a TPM leverage but is inspired from

it, as notions of root of trust (i.e., RoT in the picture) and virtual root of trust (i.e., vRoT) suggest

it.

2.2.5.3. xAPP runtime integrity verification

xAPP tampering is identified as a security Key Issue (aka Op-2) by WG11, stressing the possibility

for an attacker to “Negatively affect the O-RAN platform”. WG11 also states that “Detecting and

preventing threats during application runtime is still an on-going research problem”. WG11

pinpoints three research issues of:

• Trust of the integrity monitoring solution which can be itself tweaked and corrupted,

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 33 of 71

• Verifying the integrity of a running application requires knowledge of the known good

states of the application and what is not. Changing application data within memory may

not necessarily indicate a tampered application, especially considering AI/ML application

• Performance impact of integrity monitoring for control loop execution times for xApps

and rApps. The Near-RT RIC requires control loops from 10 milliseconds to 1s, and the

non-RT RIC control loops are specified for more than 1 second. These control loop

execution times must be considered, especially for xApps, when factoring in potential

negative effects on performance by monitoring for integrity on running O-RAN

applications.

These three elements are indeed to be considered when designing a runtime integrity

verification.

2.2.5.4. xAPP SBOM management

WG11 stresses that one noticeable element is that the requirement or recommendation for xAPP

SBOM processing does not translate into a “related security control”. WG11 recalls that SBOM

verification is an activity practiced during development but checks of correct dependencies

during runtime are hardly worked out.

2.2.5.5. Takeaways

Our survey has brought us the following vision and lessons learnt:

On xApp authentication

• WG11 has streamlined the design and workflow of xAPP authentication verification,

articulated by the SMO (using the digest and supplier signature) first before the near RT

RIC (using a locally produced security content-rich xAPP MOI grasping all security

exigencies).

• The SMO is the central ledger which detains the catalogue of verified xAPPs and triggers

the operations of the near RT-RIC at onboarding request.

• The maturity of the defined scheme is high. The accuracy of the different description

reflects a strong understanding of all operational and security considerations for xAPP

onboarding.

• The security relevance of this scheme imposes that both SMO and the near RT RIC are

integrated.

On xApp remote attestation

• A general full stack remote attestation framework including all layers from the hardware

anchor to the xAPP.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 34 of 71

• No TPM requirement on the near RT-RIC is stated, although the terminology used evokes

it.

• The schema defines the SMO as the central verification utility, comparing all

measurements of different types and including xAPP digest.

• As mentioned for authentication, the SMO and the trust agent must be integrated.

• The maturity level of the recommendations can be assessed as preliminary and

conceptual.

On xAPP runtime integrity verification

• WG 11 stresses the requirement for runtime integrity verification, breaking the threat

model as employed in authentication (i.e., corrupted SMO, corrupted near RT-RIC)

• WG 11 positions runtime integrity as a research challenge, notably stressing the impact

of performance induced by periodic integrity verification. In the NATWORK project, this

can be viewed as a security gap to cover.

On xAPP SBOM management

• WG 11 stresses the requirement for continuous verification of used dependencies at

runtime.

2.3. Binary pre-deployment hardening techniques

2.3.1. General

Native payloads (i.e., executables, libraries) have been PDSCM hardened against various threats

for longbeen directly exposed to attackers, as their bare metal deployment limits the system

protection virtualization or containerization can bring. For attackers who have acquired the code

file, static analysis discovers the code and data structures, enabling both reverse engineering and

tampering. For attackers with administrative rights on the platform that runs the payload,

dynamic analysis is without limit, with the support of tracers, debuggers and decompilers,

capable of mapping the memory allocated to the running process.

Against CIA attacks, a major shift came with the emergence of TEE from 2015 onwards. A 360°

high-level survey of PDSCM techniques is given below, according to the different payload threat

models.

2.3.2. Confidentiality preservation

The SotA integrates the following PDSCM techniques. In the last three decades, academic surveys

[27][28][29][30] have covered the promises, efficiency and performance impact of the different

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 35 of 71

techniques employed in code security.

2.3.2.1. Code encryption

Encrypting the code section of the ELF formatted .exe or .so (i.e., for library) files, prevents static

analysis but the protection breaks as soon as the code start executing (i.e., the encrypted code

section is decrypted before execution). Code encryption protection depends on the encryption

algorithm. AES 256 encryption is generally practiced and brings a plain security assurance (against

static analysis)

Code encryption has no impact on performance as the decrypted code is identical to the original,

and a short latency at start is caused by the decryption primitive plugged at the code entry point.

Can be bridged or interfaced with a selective provisioning of the decryption key to a restricted

perimeter of platforms. This does not prevent the integral collection of the decrypted code on a

legit platform, which is migratable to any other platform.

Runtime code reconstruction uses basic code encryption on restricted snippet with a timely

description just before the snippet execution. This method reduces the exposure window of the

code snippet to a few CPU clocks around the snippet execution. Code encryption is a direct

PDSCM as the code shall be modified before release (i.e., encrypted code section or snippets).

2.3.2.2. Code obfuscation

With the objective of elevating the level of efforts required to produce a reverse engineering

through a dynamic analysis, code obfuscation over complexify the code structure. Obfuscation

brings a relative security assurance but a hardly scaled resilience. Used in the video game

industry, it aims at securing the publisher sales during first days after a game release date. Code

obfuscation is generally associated with hidden anti-tampering traps impeding the progression

of the attackers. Hidden traps are added snippets using elementary original code memory cells.

A large variety of code obfuscation techniques have been designed and used over time (e.g.,

control flow flattening, code virtualization, instruction substitution, opaque predicate/junk code

insertion, data structure obfuscation, symbol and string encryption) [31][32][33]. Each of them

brings in one specific context (i.e., when applied to one specific executable) a different efficiency

and performance impact. The performance impact can be significant (i.e., in the range of 100%

for complex code virtualization or control flow flattening), restricting their usage to security-

sensitive code and skilled integration teams. Obfuscation requires a specific set up activity on

each payload. AI-based tools simplify this workflow [34][35]. AI-based deobfuscation tools

[36][37] de-obfuscate code, recognizing obfuscated code patterns and removing them. Code

obfuscation is a direct PDSCM as the code shall be modified through obfuscation patterns.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 36 of 71

2.3.2.3. Trusted Execution Environment

TEE is a processor vendor-supported technique, arising first in 2015 (i.e., with ARM’s TrustZone),

producing on-the-fly (encrypted) memory page decryption and integrity verification prior use.

The pages are encrypted in DRAM, decrypted when used, and re-encrypted thereafter. The

memory in the “enclave” or TEE-protected area (used by the processor) cannot be accessed for

read or write by any external process. The Trusted Computing Basis (TCB) aggregates all memory

pages protected therein.

Intel’s SGX original design (i.e., 2019) restricted the TCB size to the bare minimum; notably, a

vulnerable TCB can be equally exploited and totally covertly. Vulnerability scanners cannot access

the TCB, hence are inoperant with a vulnerable TCB (aka evil TCB threat model). SGX is a shelter

for security-sensitive executables and routines. No system calls are permitted from the TCB,

generally implying code modifications. The new generation of VM-based ultra-large TCB (Intel’s

TDX, AMD’s SEV-NP, and ARM’s CCA) has emerged since 2020, following AMD’s first SEV release

for the cloud market. These TEEs drastically simplify the DevSecOps as untouched VM onboards

the TCB, but they equally drastically augment the malicious TCB risk. The TEE impact on

performance fluctuates from an average of 10-30% for SGX to an average of 5-10% for VM-based

TEE. Placement inside SGX was a direct PDSCM, as code shall be modified and prepared to

onboard SGX. With VM-based TEEs, PDSCM is an indirect action, consisting in selecting prior

deployment the TEE equipped platforms.

PDSCM consist in either modifying the payload (i.e., by encryption or obfuscation) or ensuring its

execution in a TEE.

2.3.3. Integrity preservation

The SotA integrates several techniques employed at various level (i.e., system level, application

level through PDSCM).

System-level security: Software tampering protection is an epic battle, that one can date back to

the 40s and 50s, at which Van Neumann’s CPU architecture was preferred against Harvard’s,

which merges both data and code in the same memory space. As data shall be writable, there is

native protection to prevent writing on code residing aside. It took a long time for operating

systems to adopt Write xor Execute (WxorE) principle (i.e., in the 1990s onward) with declarative

flags preventing code tampering. For attackers with administrative rights on the platform, WxorE

flags can be removed and the code modified. Henceforth, WxorE protection does not prevent

memory introspection and tampering.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 37 of 71

2.3.3.1. Application-level security by PDSCM

 The SotA contains the following integrity preservation measures:

• Authentication provides the recipient with the assurance that the static code file has not

been tampered with after it was signed by the developer or operator and before it was

onboarded on a platform. Both payload’s provenance and integrity are checked together

with the payload signature and the developer’s public key delivered in the payload’s

manifest. For that, the code file hashing, then asymmetric encrypted deliver these two

assurances.
• Remote attestation provides the payload operators with the assurance that their

deployed payloads are integrated where they are deployed, leveraging similar basic

techniques. Remote attestation needs a Prover where the code executes, producing the

quote, and a remote verifier comparing the quote with a reference measurement.
• Granular and imbricated integrity verification: Software-based techniques have been

designed to create a lattice of imbricated elementary memory state checks, which deliver

probabilistic protection. The density of these buried traps, executed on the fly during

execution, is correlated with the induced performance penalty.
• Trusted Execution Environment brings a de-facto integrity preservation to the TCB,

notably through on-the-fly integrity check processed at memory page loads.

PDSCM consist in application-level security as stated above.

2.3.4. Availability preservation

For software, availability exclusively relates to the availability of the needed resources allocated

by the execution environment. Techniques integrate system-level techniques, user-triggered

resource reallocation, and application performance monitoring. The following exclusively relates

to CPU sharing, while shared memory process allocation techniques similarly impact software

availability. For simplicity, memory allocation is not listed below.

2.3.4.1. System-level native CPU allocation (to processes)

Natively, CPU regulates the resource allocation to the different processes in operations with

time-sharing, priority scheduling or affinity pinning to distribute the processes execution over

several cores. Similarly, VM hypervisors regulate the resource allocation between VMs, based on

credit-based, fair scheduling, proportional share, and CPU quotas.

2.3.4.2. User-level arbitrary resource allocation

Systems deliver users sufficient administrative rights to adjust the resource allocated to a process

(e.g., Linux’s cgroup, nice/renice scheduling priority, taskset to bind processes and containers to

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 38 of 71

cores). Hypervisor administrators permit permissioned users to adjust the CPU resource

allocation (e.g., allocation of vCPUs assigned to a VM, adjust CPU shares, limits, reservations (e.g.,

VMware, vSphere, Xen, KVM), and finally by pinning vCPUs to physical CPUs.

2.3.4.3. Performance monitoring

CPU performance monitoring is offered by many different tools natively including in the

operating system or integrated applications

Operating system commands

- At CPU level (e.g., Linux commands top, htop, uptime, ps).

- At CPU core level (e.g., Linux commands mpstat, pidstat, perf)

Integrated performance application

A large set of Monitoring applications belongs in the SotA:

• Nagios [38], a widely used infrastructure monitoring (with plugins for CPU usage).

• Zabbix [39], a popular open-source monitoring system with CPU usage metrics.

• Prometheus + Grafana [40], a modern full stack for time-series CPU metrics and

dashboards.

• Datadog [41], a cloud-based monitoring with strong CPU profiling and alerts.

• New Relic [42], a SaaS monitoring for applications and infrastructure, including CPU

usage.

Self-contained performance monitoring

In [43], a disruptive approach intends to assess the allocated resource level by the payload itself

(through payload rewriting) or better through an agent (i.e., sidecar container). PDSCMs consist

of setting up monitoring applications in the execution environment, producing operating system

commands, or modifying the code for self-probing.

2.3.4.4. IPR security

Several techniques are employed to prevent illicit use of software, infringing the licence rights.

Techniques can be summarized as below:

Digital Right Management (DRM)

DRM techniques are present on the market in the following patterns:

o Software activation consists, through a remote server licence activation service, to (i)

collect machine specific invariants, (ii) process accordingly an activation token by an

activation server, once pending user right to install is verified, install the machine

invariant specific activation token on the permissioned platform. At software start, the

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 39 of 71

machine invariants are collected a second time and reconcile with the activation token

through a test, triggering the software start if positive.

o Dongle binding consists of checking the presence of a non-duplicable dongle on the

machine, at the software start.

Both above techniques imply modification of the code, notably at its entry point to insert the

DRM routine.

o Machine binding consists of checking the presence of a digital blob in the execution

environment to start the software. Several flavours of blob anti-duplication and migration

security are employed, preventing easy localization and copy. Ultimate security is

achieved when the blob is resident in a TEE.
o Watermarking has no semantic and would not stop the software execution, but it is used

to track each user licence, separately. In case of illicit replication, it is used to trace back

the copy. In practice, watermarks come with a change on the code package.

 PDSCM consist in modifying the code or placing a watermark inside the code package.

2.3.4.5. Vulnerability preservation

Vulnerabilities have several origins such as buffer overflow (i.e., exploitation permitted by Van

Neumann architecture), memory management errors (e.g., use-after-free), Input validation and

injection (e.g., SQL injection), race conditions, and higher-level origins (e.g., wrong

authentication, misconfiguration, and cryptographic weaknesses).

PDSCM consists of identifying the vulnerability and curating the code (i.e., reprogramming as no

curation exists at executable level). Vulnerability detection, however, can be practiced at all steps

of the executable file generation (i.e., at programming, on binary executables).

2.4. Web Assembly security

2.4.1. WASM technology history and key design attributes

As stated in D2.1, WASM was defined by Internet browser giants [44], as a substitute to JavaScript

highly portable interpreted language. The working group objective was to raise concurrently

JavaScript's security, performance and sustainability, in alignment with NATWORK’s vision. For

that, WASM core asset is its lower-level instruction set, closer to machine atomic operations,

faster to interpret and supposedly harder to reverse. Since its standardisation [45] in 2019,

WASM has attracted several CPU intensive industries, domains and technologies (e.g.,

blockchains, FaaS, crypto mining, gaming engines). WASM module interpretation is faster and

more sustainable than any containerization solutions and its inherited portability ideal for cloud

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 40 of 71

continuum payload migration in networking. The exact same WASM can be executed at very

different platforms, equipped with their platform-specific WASM runtime (i.e., interpreter).

Notably, by contrast to containers, WASM technology expands the continuum up to the User

Equipment. Thanks to the high traction and work on WASM development activity, WASM

compilers are today totally polyglot, able to compile programs written in any existing languages.

Hereto, for networking, WASM is a high potential contender for instant and highly migratable 6G

services over the continuum.

2.4.2. WASM security analysis

Table 6 provides a rapid view on the key pros and cons of WASM security, deriving from our own

study and security surveys [46][47]. We have excluded the generally-cited low-level bytecode

instruction set, supposedly making reverse engineering harder, a relative security guarantee (i.e.,

seasoned reversers are efficient at assembly level, a lower level than WASM instruction set) and

AI-enhanced reverse engineering tools will bring instant, near-complete WASM module

decompilation in several programming languages outputs [48][49][50].

Table 6. Strengths and weaknesses of WASM security

 Strengths Weaknesses
Sandbox execution environment, where:
-Payloads can run but cannot access other
process memory space.
-Native enforcement of Write xor Execute,
making code tampering impossible through
data channel, without local memory
introspection. This strong security
assurance applies to native compiled WASM
payloads (i.e., through JIT or AOT
compilation) and the WASM runtime itself.

-Code tampering: Through remotely-spawn
privilege escalation attacks or by direct memory
introspection, the memory states can be
modified. Write xor Execute memory protection
cannot be applied WASM bytecodes (i.e.,
writable data structures).

-Type-control by WASM runtime producing
buffer bound checking, making buffer
overflow attack unexploitable.

-As an inheritance or common taken attack path
to JavaScript, JIT spraying technique tweaks the
JIT compilation to generate malicious code
snippets activable as backdoors.

2.4.3. WASM module integrity.

In a general perspective, two techniques deal with workload integrity. Trusted Execution

Environments (TEE) decrypt on-the-fly encrypted swapped memory pages, restricting access to

the DRAM-stored ephemeral decrypted pages. Additional integrity checks are produced at each

page load, on-the-fly. Confidentiality and Integrity are delivered de facto for any resident

workloads. Authentication and remote attestation, produce a verification of integrity using

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 41 of 71

hashing and a comparison with a signed reference measurement (i.e., signed certificate attached

with the workload). These processes ascertain both the provenance and integrity of the

workload. While authentication operates at the workload location only, remote attestation

operates on both ends (i.e., where the workload is deployed, at the remote location).

2.4.3.1. TEE-delivered integrity

By placing the WASM runtime into a TEE, both WASM runtime and module are preserved of

confidentiality and integrity attacks. As detailed in [51], using TEE shall be considered and

restricted to security-sensitive workloads as it implies higher memory and CPU consumption,

leads to novel threat models (e.g., DoS by Raw hammering, evil TCB) and frustrates workload

portability (i.e., heterogeneity). The workload-specific performance impact induced by TEE

placement also varies with the type of TEE. VM-based optimized TEE (i.e., Intel’s TDX, AMD’s SEV

and ARM’s CCA) performance penalty range is generally below 10%. Executable-based TEE (i.e.,

ARM’s TrustZone, Intel’s SGX) impact is higher and bounded below 30%. In NATWORK, our vision

is to consider TEE for these specific security sensitive workloads (e.g., network probe), which

deployment can be managed with care and the extra resource consumption measured to be

acceptable.

2.4.3.2. Distinction between authentication and remote attestation

Authentication solutions ascertain the provenance of the workload, leveraging asymmetric

encryption and secondly the integrity or genuineness of the workload, leveraging a hashing on

the workload artefact data. Authentication is a security service beneficial to the recipient of a

workload (i.e., an infrastructure operator), taking for granted it is trustworthy to make this test.

Remote attestation does not depend on the recipient's trustworthiness and is a security

assurance delivered to the workload operator (i.e., service operator). For the service operator,

there is a need to check that what is deployed remotely corresponds to what is expected (i.e.,

identity check). The verification is worked out remotely leveraging components on both side (a

“prover” at the workload location, a “verifier” at another position).

2.4.3.3. SotA’s Integrity techniques

Table 7 shows the current state of the art related to WASM identity and integrity verification,

regrouping the usual techniques of WASM module authentication at onboarding, remote

attestation at onboarding, TEE-based remote attestation, and WASM module runtime

integrity.Table 7. WASM authentication and remote attestation techniques identifies, for each

technique, the verified artefacts attributes, some noticeable operational considerations and how

the current state of the corresponding SotA.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 42 of 71

Table 7. WASM authentication and remote attestation techniques

Integrity
technique

Location of the
Prove and
Verification
routines

Artefact verified
attributes

Other
considerations

State of the
art

Authentication

Both at payload’s
execution site

-Origin (i.e., Public
key’s owner)
-Integrity (i.e., vs the
signature generation
time, prior
deployment)

-No payload
identity
information
collected
-No signature
management
required

-Browsers ‘
SRI,
-DIY,
-Wasm-sign,
-WABT,
LUCET

Remote
attestation

-Prove routine at
payload
execution site
-Verify routine is
remote

-Identity (i.e.,
artefact’s ident)
-Origin (i.e., by
database signature
public key)
-Integrity (i.e., vs the
signature generation
time, prior
deployment)

-Requires
signature
management (i.e.,
pristine and
trustworthy
signature
database at the
verifier site)

In NATWORK,
by IMEC

TEE-based
remote
attestation
(Intel’SGX
sample)

3rd-party remote
utility (i.e., Intel
attestation
service)

-SGX TEE genuiness
Payload integrity
(i.e., vs the SGX
enclave generation
time at build stage)
-Implicit attributes of
confidentiality and
integrity assurances
for the payload
during runtime.

-Verified
Attributes vary
with TEE types
(e.g., AMD’s SEV-
SNP)
-No enclave
identity delivered

-WaTZ,
-Twine,
-Enarx,
-RA-WEB

Runtime integrity
verification

-Prove routine is
at execution site.
-Verify routine
can be either at
execution site or
remotely

Loaded memory
pages footprint
integrity (vs. a
reference
measurement made
at first run or prior
deployment)

-The memory
pages footprint
can also be used
for remote
attestation. Both
remote attestation
and runtime
integrity checks
can use the exact
same maerial

None

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 43 of 71

Integrity
technique

Location of the
Prove and
Verification
routines

Artefact verified
attributes

Other
considerations

State of the
art

-Continuous
attestation
repeats
periodically,
integrity
verification.

2.4.3.4. WASM authentication techniques

Two different types of authentication techniques must be distinguished. The first being

embedded by web browsers, and the second by runtimes.

Browser SubResource authentication

The .wasm file integrity verification is practiced through Subresource (SRI), an in-browser

functionality, w/o checking the origin and taking for granted that the source is trusted. Typically,

source trust can be derived by a variety of complementary techniques (e.g., OAuth, mutual TLS,

session tokens) used to authenticate the source in the http/https handshake.

Runtime authentication

For WASM runtimes (e.g., WASMTIME, WASMER), programming a DIY (Do It Yourself) protocol

leveraging a classical hashing routine is always possible as depicted in Figure 3. Moreover, several

tools combine source authentication and payload integrity verification, leveraging a signed hash

(i.e., signature) (e.g., Wasm-Sig, WABT, Lucet).

Figure 3: WASM runtime-orchestrated module authentication

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 44 of 71

2.4.3.5. Remote attestation

To the best of our knowledge, there is no existing remote attestation framework for WASM

modules. In networking, WASM modules will be Network Functions and thus ETSI NFV security

working group recommendations fully apply [52]. Module authentication suffices when payloads

are executed in browsers, while it is not sufficient for networking, where remote attestation is

required for service operators.

Theoretical WASM remote attestation implementation

Although we have not found any existing WASM module remote attestation framework, we

believe that the first implementations will come soon. A WASM remote attestation framework

can be constructed with the support of existing authentication tools, without major technical

difficulties. For that, the authentication verifier can be turned into a prover, forwarding signed

quotes to a distant verifier, which checks the validity of the prover's public key and the signature

by comparison with the same payload's signature stored in its database. This theoretical

implementation is illustrated in Figure 4.

Figure 4: Theoretical WASM remote attestation framework

2.4.4. SotA Takeaways

We have reached the following conclusions:

• WASM authentication is a usual and well-established technique, delivering a security

attribute for the workload recipient (i.e., the cloud infra operator) while remote

attestation is required for service operators.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 45 of 71

• All technical bricks used for authentication can be assembled to construct a remote

attestation of the WASM module when they are onboarded.

• After the remote attestation onboarding test, the WASM module runtime integrity is

lacking, and there is a security gap to fill.

• TEE remote attestation brings the assurance that the WASM module executes in a

sheltered execution environment where confidentiality and integrity are near certain, but

at the cost of deployment constraints, performance degradation, and excessive memory

consumption. According to the TEE type and, more specifically, if the TEE is process- or

VM-centric, the remote attestation respectively attests to whether this specific process is

inside or not. VM-based remote attestation checks the complete VM in its initial state,

without insight and accuracy down to the different processes inside the VM.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 46 of 71

3. NATWORK’s PDSCMs on containerized payloads

3.1. Kubernetes pre-deployment progress

Kubernetes provides several native mechanisms for security, including Network Policies, Role-

Based Access Control (RBAC), and Pod Security Admission. However, studies have shown that

security incidents frequently arise not from the absence of these features but from their

misconfiguration or misuse. Common problems include exposed credentials, overly broad RBAC

assignments, containers running with elevated privileges, and network policies that are either

missing or too permissive. These weaknesses are particularly dangerous in distributed

environments such as edge clusters and multi-tenant deployments, where the attack surface is

naturally wider. Alongside the identified weaknesses presented in Section 2.2.4.3, NATWORK

addresses these challenges by emphasizing pre-deployment hardening, ensuring that workloads

are validated and secured before they reach the production environment.

To achieve this, we propose the integration of CERTH’s AI-based Intrusion Detection System (AI-

IDS) into the Kubernetes pre-deployment pipeline. The AI-IDS would act as a policy gatekeeper

within the CI/CD process and Admission Controllers, performing in-depth analysis of deployment

manifests and configuration files. For example, in Figure 5: Pod manifest with root privileges and

no resource limits, Pod manifests and Helm charts can be scanned to detect dangerous practices

such as privilege escalation (e.g., containers defined with runAsUser: 0, running as root),

missing resource limits (Pods deployed without resources.limits, able to consume unlimited

CPU/memory), or the exposure of sensitive credentials (passwords hardcoded in environment

variables instead of referencing Kubernetes Secrets).

Figure 5: Pod manifest with root privileges and no resource limits

Another critical domain of analysis involves Network Policies and RBAC rules. Here, insecure

configurations often allow unrestricted traffic or excessive permissions. For instance in Figure 6:

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 47 of 71

NetworkPolicy allowing unrestricted ingress traffic, a Network Policy with ingress: { from:

[] } effectively permits all traffic, enabling lateral movement between Pods. Similarly, RBAC

bindings that assign cluster-admin rights to a microservice service account provide

unnecessary and dangerous access to the entire cluster. Even a misconfigured role granting write

access to namespaces intended to be read-only can compromise cluster integrity.

Figure 6: NetworkPolicy allowing unrestricted ingress traffic

Figure 7: RBAC binding granting cluster-admin to a service account

Finally, as shown in Figure 7: RBAC binding granting cluster-admin to a service accountexternal

interfaces and IP bindings must be reviewed to prevent unintentional exposure of services to

the internet. Examples as in Figure 8: Service of type LoadBalancer exposing an internal API

include Services of type LoadBalancer created without source IP restrictions, exposing internal

APIs publicly, Pods configured with hostNetwork: true that bypass the cluster network and

bind directly to the host, or workloads mapping host ports such as 22 (SSH) onto every node,

unintentionally opening attack vectors at the infrastructure level.

Figure 8: Service of type LoadBalancer exposing an internal API

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 48 of 71

By catching these risks at the pre-deployment stage, insecure workloads are blocked before they

ever enter production, ensuring that Kubernetes clusters start from a hardened and trustworthy

baseline.

The benefits of this approach are multiple. By embedding shift-left security into NATWORK’s

DevSecOps workflow, developers and operators gain immediate feedback on security flaws

during the build and deployment phases, long before the workloads run in production. This

reduces the likelihood of misconfigurations reaching live clusters, thereby lowering the risk of

privilege escalation, data leakage, or lateral movement attacks. Furthermore, the approach

ensures that clusters start from a hardened security baseline, which improves resilience across

both cloud-native and edge/O-RAN environments.

The proposed solution integrates CERTH’s AI-IDS into the Kubernetes pre-deployment pipeline

as a policy gatekeeper. By analysing manifests, Helm charts, RBAC rules, and Network Policies

before workloads are deployed, it detects misconfigurations such as privilege escalation, exposed

secrets, and overly permissive access. This shift-left security approach blocks insecure workloads

early, provides immediate feedback to developers, and establishes a hardened baseline for

deployment. As a result, NATWORK strengthens Kubernetes security against misconfiguration-

driven risks, reducing the likelihood of privilege escalation, data leakage, and lateral movement

attacks, while enhancing resilience across cloud-native and edge/O-RAN environments.

3.2. PDSCMs on microservices

The pre-deployment security measures outlined in Section 2.2.3 - Pre-deployment Microservice

Security by construction are currently at varying stages of implementation within the NATWORK

project. The declarative modelling of CNF (Containerised Network Function) dependencies and

the specification of their cybersecurity requirements are under active development, with an

initial mature version already integrated into the secure-by-design orchestrator (sFORK) for

runtime management. These models, expressed through Kubernetes YAML manifests and Helm

charts, provide an explicit description of service dependencies, allowed communications, and

resource bindings. This allows sFORK to reason about CNF composition and to enforce secure

scheduling decisions at runtime. The declarative approach is already being implemented in the

NCL testbed to test inter-service communication and meeting security requirements of the 6G

slices.

The project has successfully adopted and implemented Submariner to establish secure inter-

cluster communication tunnels, providing encrypted connectivity between clusters. These

tunnels provide confidentiality and authentication for cross-cluster service traffic and are

integrated into the orchestration workflows. This step guarantees that communication links

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 49 of 71

between clusters are operational and secure at the service level. The use of IPsec has already

been validated in initial testbed experiments, enabling secure multi-cluster orchestration.

The automatic (re)configuration of RBAC rules, informed by vulnerability assessment tools, is

planned for a subsequent phase of the project to further harden the security baseline. While

RBAC rules can already be defined declaratively, NATWORK is exploring automated

(re)configuration based on vulnerability assessment results. Lightweight tools such as Kubesec

can provide recommendations on patching runtimes and tightening access rights, which can then

be translated into RBAC policies. This would allow DevSecOps pipelines to dynamically adapt

permissions before deployment, aligning the access model with both security requirements and

runtime risk assessment.

We created a secure baseline before deployment through dependency modelling and encrypted

inter-cluster channels. The automatic RBAC policies are planned to be developed. On top of this

baseline, runtime optimisation strategies, CTI-driven selective sharing of hygiene scores and AI-

based workload prediction developed in D3.1 provide additional protection, optimisation and

adaptability. This combination allows sFORK to make placement and scaling decisions with both

pre-deployment hardening and live feedback in mind, linking DevSecOps practices with runtime

orchestration.

3.3. O-RAN xAPP onboarding security analysis and progress

3.3.1. IS-RD Liquid xAPP threat model

IS-Wireless’s Liquid RAN and Liquid near-Real-Time RIC (Radio Intelligent Controller) together

form an open, cloud-native RAN system following O-RAN Alliance specifications. The near-RT RIC

hosts xApps – microservice applications that ingest RAN data and issue control decisions – which

interface with RAN components (e.g., O-DU/O-CU) over standardized O-RAN interfaces (such as

the E2 interface). The entire system is deployed on a Kubernetes-based cloud-native platform,

meaning RAN, RIC, and xApp components run in containers orchestrated by Kubernetes. This

architecture introduces new security considerations due to microservice communication, multi-

vendor plugin apps, and disaggregated network elements.

We applied the STRIDE methodology with its threat modeling categories – Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service (DoS), and Elevation of Privilege – to

identify potential threats to the IS-Wireless xApp in four contexts:

• Kubernetes Cloud – The cloud-native infrastructure that orchestrates and secures

containers running Liquid RAN, RIC, and xApps.

• near-RT RIC Platform – The control framework that hosts xApps and manages near real-

time optimization of RAN functions via standardized O-RAN interfaces.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 50 of 71

• 3rd party xApp – Another vendor’s modular microservice deployed on the RIC that

consumes RAN data and issues control actions for tasks like traffic steering or slice

assurance.

• Liquid RAN Components – The disaggregated RAN building blocks (O-DU, O-CU, O-RU)

that deliver radio access services and interact with the RIC through E2 and O1 interfaces.

Each STRIDE category is discussed with examples in these contexts in the following Table 8. Liquid

near-RT RIC xApp STRIDE analysis

Table 8. Liquid near-RT RIC xApp STRIDE analysis

STRIDE
Category

Kubernetes
Cloud

near-RT RIC
Platform

(framework &
services)

xApp (3rd-
party plugin)

Liquid RAN
Components
(O-DU/O-CU
and O-RU)

Spoofing - Rogue pod

impersonating a

service due to

lack of mTLS,

allowing attacker

to masquerade as

xApp or API

server.

- Compromised
credentials used
to create
malicious pods,
appearing as
legitimate
components.

- Malicious xApp

or process

impersonates RIC

internals via

unsecured APIs,

injecting

commands as if

from a trusted

module.

- Lack of mutual
auth allows a fake
RIC component to
register as part of
RIC and intercept
traffic.

- Rogue xApp

presents stolen or

forged

credentials during

onboarding to

pose as a trusted

vendor’s xApp (if

onboarding

process is weak).

- One xApp
pretends to be
another via inter-
xApp API if
mutual auth isn’t
enforced.

- Fake base

station (rogue O-

DU) tries to

connect to RIC’s

E2 interface,

impersonating a

legitimate RAN

node to inject

false data.

- Spoofed
gNodeB ID in E2
messages if
authentication is
missing,
misleading the
RIC about the
sender.

Tampering - Supply chain

attacks inserting

malicious code

into container

images.

- Attacker
modifies cluster
config to alter
network policies

- Manipulation of

RIC message bus

traffic (if not

signed) .

- Exploiting a
vulnerability to
modify RIC’s state
(e.g., change

- Malicious xApp

tampering with

control messages

to disrupt service.

- Altering data it
receives
(telemetry)
before passing to
other modules,

- Injection of false

configuration via

O1 or E2:

attacker alters a

parameter (like

frequency or TX

power) in transit,

impacting RAN

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 51 of 71

STRIDE
Category

Kubernetes
Cloud

near-RT RIC
Platform

(framework &
services)

xApp (3rd-
party plugin)

Liquid RAN
Components
(O-DU/O-CU
and O-RU)

or disable
security checks.

policy values in
memory).

feeding false info
into RIC
decisions.

behavior.

- Tampering with
fronthaul or
synchronization
messages (if
physical access
gained) causing
RAN faults.

Repudiation - Inadequate

audit logs let an

attacker change

settings and

delete evidence,

claiming

innocence (e.g.,

deleting a rogue

pod leaves no

trace if logging is

off).

- No tracking of
which admin or
service account
performed a
critical action,
enabling plausible
denial.

- Poor logging of

xApp actions

means a rogue

xApp can send a

harmful

command and

later deny it was

the source.

- If RIC
configuration
changes aren’t
logged with
who/when, an
attacker could flip
them undetected.

- If xApp actions

aren’t audited, a

vendor can deny

their xApp caused

an incident.

- XApp could
manipulate its log
outputs or use
unsupported
channels to
perform actions,
evading normal
logs.

- A compromised

RAN node could

deny sending a

critical alert if

logs are not

collected (e.g., it

turned off an

alarm and claims

it never

happened).

- If RAN audit logs
(of commands
received from
RIC) are absent,
RAN vendor could
repudiate that a
detrimental
command came
from their
equipment.

Information
Disclosure

- Stolen service

account token

used to read all

Kubernetes

Secrets (e.g., RIC

credentials).

- Sniffing intra-
cluster traffic if

- RIC’s database

or monitoring

data exfiltrated

via a debug

interface left

open, leaking cell

performance or

user metrics.

- xApp gains

unauthorized

read access to

subscriber data

or cell configs via

a misused API,

leaking sensitive

info externally

- Unencrypted

CUs/DUs control

traffic could be

sniffed, revealing

subscriber traffic

patterns or keys.

- O1 interface
data (config files,

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 52 of 71

STRIDE
Category

Kubernetes
Cloud

near-RT RIC
Platform

(framework &
services)

xApp (3rd-
party plugin)

Liquid RAN
Components
(O-DU/O-CU
and O-RU)

no encryption,
revealing RAN
telemetry or
credentials.

- An unauthorized
user in RIC could
query data meant
for SMO or
operators (like
network topology
info).

(e.g., phone

locations).

- Supply-chain
compromised
xApp quietly
sends
confidential RAN
data to attacker’s
server.

performance
reports)
intercepted by an
attacker, leaking
network
configuration
details.

Denial of
Service

- Attackers spam

the Kubernetes

API to overwhelm

the control plane

(schedule

countless pods)

causing

management

outage.

- A noisy neighbor
container
exhausts node
CPU/memory,
starving RIC
components (if
no limits).

- Crash of a core

RIC service (E2

terminator,

routing manager)

triggered by

malformed xApp

message, halting

near-RT control.

- Multiple xApps
issuing heavy
compute tasks
(like complex AI
inferences) freeze
the RIC’s real-
time processing.

- An xApp

intentionally

consumes

excessive RIC

resources (e.g.,

subscribes to

every possible

event at high

frequency) to

overwhelm the

RIC or E2 node

(preventing other

xApps from

timely

processing).

- Failure to
handle
backpressure: a
slow or hung
xApp causes
queue buildup,
blocking other
xApps’ messages
(indirect DoS).

- Flooding the RIC

with excessive

measurement

reports or fault

indications (a

hacked O-DU

could spam E2

messages) to

overwhelm RIC

processing

capacity.

- Desynchronizing
RAN: e.g., a
timing sync
attack making
cells go out of
sync, effectively a
DoS on radio
service.

Elevation of
Privilege

- Compromised

container escapes

to host (if running

- A bug in RIC (or

RMR library)

allows code

- A compromised

xApp exploits an

API flaw to

- If an O-DU is

compromised, it

could potentially

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 53 of 71

STRIDE
Category

Kubernetes
Cloud

near-RT RIC
Platform

(framework &
services)

xApp (3rd-
party plugin)

Liquid RAN
Components
(O-DU/O-CU
and O-RU)

privileged),

gaining root on

host node.

- Excessive RBAC
privileges let a
low-level service
account modify
cluster roles
(becoming
cluster-admin).

execution, letting

an xApp gain

control of the RIC

host process.

- An xApp without
proper
sandboxing calls
privileged RIC
APIs to change its
permissions or
access other
xApps’ data.

elevate its role

(gaining

permissions to

control all cells

instead of its

assigned scope).

- xApp escapes its
container (if
running with
unnecessary
privileges) and
modifies host or
RIC files,
effectively
becoming an
admin on the
system.

issue privileged

Core network

messages or alter

its role (e.g., act

as a ‘master’

node) beyond

design.

- Malware on a
DU could use the
O-RAN interfaces
to pivot into the
RIC’s domain,
escalating its
reach into the
control plane.

3.3.2. NATWORK work on xAPP security

3.3.2.1. General

To augment the traction of our security development, we shall first stand on WG11 integrity

solutions showing a high maturity level, notably xAPP authentication at onboarding. Hence, our

development will be steered to develop solutions in three areas where WG11 work is of lesser

maturity level (i.e., remote attestation, runtime integrity and SBOM runtime enforcement). We

will work with ISRD, acting as the aka Liquid xAPP provider and the integration of D-MUTRA

blockchain-based remote attestation framework. The following work plan has been defined.

3.3.2.2. On remote attestation

The WG11 architecture places the SMO as the central and unique verification utility, which

exposes it to DoS attacks caused by flooding attestation requests. The SMO is the utility which

also validates remote attestation. Last and as stated above our work plan is twofold:

• Develop an alternative to the SMO centralized verification (and storage of xAPP

catalogue), based on D-MUTRA decentralized framework. This alternative framework

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 54 of 71

shall no longer be directly dependent on the integrity of the verification and measuring

entities.

• Develop a user-centric remote attestation where permissioned stakeholders can collect

their workload remote attestation timestamped results.

3.3.2.3. On runtime integrity

We will progress on the three challenges defined by the WG11:

• Trustworthiness of the integrity monitoring: security analysis of our decentralized

structure

• Applicability of remote attestation when applied to AI/ML: Consider how model

parameters can tentatively integrate the range of the measured memory footprint

• Performance impact: Elaborate three possible schemes of:

o Spread-over-time hashing technique, to reduce the resource consumption by the

measuring thread

o Linux’s cgroup CPU resource restriction, applied to the measuring thread

o On-demand trigger to limit to one measurement only (i.e., at user-defined timing).

3.3.2.4. On SBOM runtime verification

Taking advantage of the sidecar container as used for D-MUTRA, we will expand its functionality

from integrity verification to dependency check, intercepting all called dependency at runtime.

We will consider how an agent can share the file system and get a dynamic view of the called

dependencies. According to the permission for sidecar mounting, we will define the appropriate

implementation either using a sidecar or by binary rewriting.

3.3.2.5. PDSCM for xAPP security

The following PDSCMs will be applied on the Liquid xAPP:

• SECaaS processing for reference measurement: This pre-deployment step elaborates the

reference measurement and stores it on the SECaaS. This reference measurement will be

used by D-MUTRA for integrity verification.

• Docker compose for sidecar mounting: This operation consists of modifying the Docker

orchestration, adding a script line referring to the sidecar container for its future collateral

mounting aside the xAPP container.

3.3.2.6. xAPP migratability

xAPP migratability may be affected with the sidecar mounting, as this opposes some WG11

guidelines (i.e., restricting deployment to what SMO strictly knows). However, in some restricted

conditions, sidecar mounting is permitted. Noticeably, in the Security Near-RT RIC xApps technical

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 55 of 71

report [26] , there is a specific mention of sidecar containers: “Optional side-car container for key

and certificate management reduces the attack surface on the Applications.”

According to a deeper technical survey, we will opt for the sidecar mount or a direct SECaaS

rewriting of the xAPP as is described in Figure 9.

Benefits of sidecar mounted SECaaS

In Figure 9, two different setup workflows are represented. The left-hand section shows a PDSCM

based workflow with operations performed prior to deployment by a SECaaS. In the right-hand

section, a diagram without SECaaS is shown, applying only to containerised workloads and

enabling a Drop and Attest model, where the “dropped” container has not gone through pre-

deployment change, therefore is deployed without modification or measurement. This simplified

workflow is more scalable while limiting possible security functions to runtime integrity only. In

fact, no prior-deployment code encryption, for code confidentiality preservation, can be

delivered. Moreover, no prior-deployment reference measurement will be produced by the

(inexistant) SECaaS but the reference measurement is collected at the first execution of the

payload, by the sidecar container and serves for future integrity measurement. This schema does

not bring remote attestation as the measure cannot be verified with a locally stored reference

measurement but brings runtime integrity verification, which represents however the main

security gap to fill.

Figure 9. Two schemes for xAPP security.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 56 of 71

3.3.2.7. xAPP performance and latency

The blockchain-based remote attestation induces a penalty of around 2-3 seconds, integrating

the complete DLT cycle. We will investigate if this is acceptable with standard on-boarding (and

RAN near real time loops (i.e., 10 ms -1s). A possible shift to Attest-After-Starting pattern will also

be investigated as it drops latency to nil. The performance impact of three different runtime

integrity verification methods will be measured.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 57 of 71

4. NATWORK’s PDSCMs on native workloads

4.1. General

Montimage’s MMT (Montimage Monitoring Tool) network anomaly detection is a good

candidate for PDSCM for the native deployment case. As evoked in Section 2, PDSCM can harden

security services, by nature targets of choice exposed to various attacks. A dedicated effort has

been initiated and is on-going in the NATWORK project.

4.2. MMT’s threat model

The MMT Framework is a modular platform for network monitoring, traffic analysis, and security

enforcement. It is designed for both research and operational environments, providing deep

visibility into traffic patterns as well as the ability to enforce security rules in real time. The

framework is composed of several key components:

− MMT-Probe: A high-performance packet capture and analysis engine based on Deep

Packet Inspection technique that extracts traffic metadata, protocol details, and

application-level insights.

− MMT-Security: A security enforcement module that applies detection rules (compiled

into .so shared libraries) to traffic flows, identifying threats, anomalies, or policy

violations.

− MMT-Operator (optional): Interfaces for orchestration, visualization, and management

of collected data and security alerts.

The MMT framework can be deployed in two main ways depending on the needs of the

environment. One option is native installation, where users compile the binaries such as MMT-

probe, MMT-security, and the associated .so modules, and then run them directly on Linux

systems. This approach provides maximum flexibility for integration with custom setups and

allows fine-grained control over configuration and optimization. Alternatively, a more modern

and reproducible method is containerized deployment using pre-built Docker images. With this

approach, all dependencies are packaged together, making it easier to install, test, and update

the framework while ensuring consistency across environments. Containerized deployment also

simplifies orchestration with tools such as Kubernetes or Docker Compose, which is particularly

valuable in infrastructures that need to scale dynamically or enforce standardized deployment

practices.

When deploying the MMT framework, whether through native binaries or containerized

environments, the security of the software artefacts and associated rulesets is a critical concern.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 58 of 71

A binary or shared library that has been tampered with, replaced, or misconfigured can

undermine the entire monitoring and enforcement pipeline. To evaluate these risks

systematically, we apply the STRIDE methodology [54], which helps us reason about potential

threats across six key categories. We discuss in detail the threat model of deploying MMT that

highlights multiple pre-deployment security considerations.

− Spoofing is a significant concern during the distribution and deployment of MMT.

Without proper controls, an attacker could impersonate a legitimate developer or

repository and trick operators into installing a maliciously crafted version of MMT-probe,

MMT-security, or one of the .so detection modules. In practice, this can occur if binaries

are downloaded from unofficial mirrors or if Docker images are pulled from unverified

registries. Preventing spoofing requires strong authentication of both the source

repository and the individuals who build and release MMT.

− Tampering focuses on the risk of modification to binaries or rulesets before they are

deployed. Because MMT-Security relies on compiled .so rules to enforce detection logic,

even a subtle modification in a library could result in rules being disabled, altered, or

replaced with logic that intentionally bypasses threats. For example, a tampered library

could silently allow specific malicious traffic through, creating a blind spot in monitoring.

To counter this risk, deployments must incorporate artifact integrity validation, such as

checksum verification, digital signatures, or trusted build pipelines.

− Repudiation arises when there is no clear accountability for changes made to binaries or

configurations. In environments without proper logging and version control, it may be

impossible to prove whether a binary was modified by a malicious actor or simply updated

by a developer. This lack of traceability hinders incident response and weakens

confidence in the security posture. Implementing auditable pipelines, logging all artifact

changes, and enforcing commit signing are crucial to address repudiation threats.

− Information disclosure represents another serious category of risk. The detection

rulesets themselves may encode proprietary intellectual property or sensitive patterns

used for anomaly detection. If these .so libraries or associated configuration files are

leaked, an adversary could gain insights into the organization’s detection strategy,

allowing them to craft evasive attacks. Moreover, improper containerization or

configuration could inadvertently expose sensitive credentials used by MMT to external

parties. Ensuring proper access control, encrypting secrets, and limiting container

privileges are necessary steps to reduce exposure.

− Denial of Service (DoS) can result from the deployment of corrupted or malicious artifacts

that cause instability in the monitoring stack. For example, a malformed ruleset could

trigger a crash loop in MMT-security, rendering the detection system unavailable.

Similarly, a binary modified to consume excessive resources could degrade the overall

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 59 of 71

monitoring environment. DoS threats highlight the importance of testing rulesets in

staging environments before production rollout, as well as implementing resource

isolation through container orchestration platforms like Kubernetes.

− Elevation of Privilege threats occur when compromised binaries or libraries exploit

elevated system permissions to execute unauthorized actions. Since the MMT framework

often runs in privileged environments where it has access to raw network traffic and

sensitive telemetry, a backdoored version of MMT-probe or MMT-security could be used

to exfiltrate data or manipulate monitoring outcomes. Preventing this requires strict

adherence to the principle of least privilege in both IAM roles and container runtime

configurations, ensuring that even if a component is compromised, its ability to escalate

further within the environment is minimized.

4.3. PDSCM on MMT

With respect to detailed threat analysis exposed above, MMT integrity preservation appears to

be the priority as the vast majority of threats are directly linked to a modification of the

executable, being at the time of deployment (i.e., spoofing) or during its execution (i.e.,

tampering, repudiation, elevation of privileges and denial of service). Code tampering is the self-

evident attack vector for all security-related software. NATWORK has considered two alternatives

detailed below.

4.3.1. MMT remote attestation and continuous integrity verification

Covering both stages of deployment and runtime, the two techniques can be offered by D-

MUTRA, a TSS’s solution providing automatic remote attestation and using the same memory

footprint measurement for both verifications. D-MUTRA is an outcome of DESIRE-6G SNS project

[49] that aligns with NATWORK, fostering workload migratability by removing technical

dependencies (e.g., TPM, Linux’s IMA presetting). Its runtime integrity verification is designed for

being penalty-free (with a cap of 1% performance penalty). Noticeably, D-MUTRA leveraging of

Hyperledger blockchain shall not be perceived as a dependency as the blockchain can be setup

anywhere, separately from the workload's execution environments.

In Use Case 4.6 dedicated to DoS prevention by self-monitoring, we will initiate our work with

the implementation of D-MUTRA to assess the integrity of MMT. Penalty measurements will be

worked out as well as the blockchain footprint inflation rate.

The PDSCM consists in modifying MMT executable to integrate different routines (i.e., Prove,

Verify, DLT-com) for MMT to integrate D-MUTRA service, hereto be remotely attested and

continuously integrity verified.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 60 of 71

4.3.2. MMT in-TEE sheltering

As part of Use Case 4.5 dedicated to optimized and explainable MTD, ZHAW and Montimage are

closely working on the dynamic placement of MMT in and out of a TEE enclave with AMD’s SEV-

SNP (Secure Encrypted Virtualization with Secure Nested Paging) [53], a VM-type TEE. The

experiments are conducted on AMD EPYC v4 processors, which provide native support for AMD

SEV-SNP [5] Noticeably, the experiment totally aligns with NATWORK’s concept, consisting of a

hot migration of MMT to a TEE sheltering, (only) at occurrence or presumption of a security

threat. We believe that this policy totally makes sense, with the avoidance of a costly by default

overprotection (i.e., if MMT were sheltered in TEE by default).

The planned PDSCM consists of inserting MMT inside a migratable SEV-SNP managed Virtual

Machine. TEE sheltering overhead, although assessed to be relatively small with the VM-type

form of SEV-SNP, is still to be measured. The impact in terms of memory consumption and CPU

overhead will be measured in the use case as part of upcoming NATWORK efforts.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 61 of 71

5. NATWORK’s PDSCM on WASM workloads
NATWORK’s work on WASM workload security has focused on module runtime integrity

verification, a runtime method assessing the integrity of the workload memory footprint and

comparing it with a pre-deployment reference measurement. This work aims at filling a security

gap, deemed critical for WASM adoption in networking, where a WASM module can be directly

modified since it is treated as a data structure where no Write xor Execute protection can be

enforced. By doing so, NATWORK is taking a significant step. Referring to the list of possible

PDSCMs as listed in Section 2.1 of this document, our work stands on integrity preservation,

detecting tampering in the complete module lifetime.

The PDSCM consists of collecting a reference measurement prior to deployment (and used during

the verification occurring on-boarding or module execution). It also consists in installing a

workload identifier used for reconciling the workload and its reference measurement. The main

difficulty of our development consists in collecting at runtime evidence that the workload has

not been modified.

5.1. NATWORK runtime integrity technique

To collect integrity evidence at runtime, we first analysed a WASM payload memory map as

shown in Figure 10.

Figure 10. Memory map of WASM runtime (virtual machine) and module (application)

We discovered that WASMTIME created three distinct memory areas (i.e., stack, WASM

instructions and linear memory). An integrity checker requires access to the WASM instructions

during runtime which can only be accessed at the runtime level. As a matter of fact, linear

memory only contains offsets to the WASM instructions, insufficient to assess integrity. Then,

our reverse engineering of WASMTIME, we had then discovered that we could force a JIT

compilation and a serialization of the executable binary blob. A serialized blob is a specific format

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 62 of 71

derived from ELF. This format contains the instructions in the classical ELF's text section.

Noticeably, these x86 native assembly instructions result from the JIT compilation which ingests

the WASM's module instruction. Any change to the WASM module results in a different set of

native instructions. Our implementation is depicted in the flow graph of Figure 11.

Figure 11. Flow diagram of NATWORK WASM module runtime integrity verification

We have created a second thread triggering JIT+ serialization and we produce a hash of the ELF's

text section and compare it to a reference signature. The reference measurement derives from

the same exact process in our SECaaS, using the exact same components. Two methods can be

used to store the reference measurement. It can be appended directly on the WASM module,

resident in our SECaaS or be stored after generation at the first loop iteration. It is then used for

comparison.

Our WASMTIME interpreter has been appended with Prove and Verify routines able to generate

the hash and verify it by comparison with the reference measurement.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 63 of 71

5.2. Integration in D-MUTRA blockchain based mutual remote

attestation

For the integration with D-MUTRA, a blockchain-based mutual remote attestation framework,

the following steps shall be worked out.

Producing a modified WASTIME runtime

WASMTIME is open source, the integrity verification functions are programmed at source code

level, and a novel compilation of the runtime is generated, as depicted in Figure 12.

Figure 12. Modified WASMTIME runtime generation

Full stack remote attestation scheme

The modified WASM runtime is per-se a security-sensitive entity accessing the WASM payload at

the first place and secondly producing its integrity verifications. It is a basic security provision to

attest the runtime at the first place.

Figure 13. WASM full-stack remote attestation

Figure 13 shows a basic workflow where TSS modified WASMTIME interpreter is first checked (1)

by comparison of a SECaaS reference measurement before the modified runtime delivers payload

integrity verification (2).

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 64 of 71

Several implementations are considered for measuring the runtime. The agent can be appended

with its own proving routine, or if the runtime is delivered as a container, a side car container will

be added for the proving task. In both cases, the SECaaS will be used as a centralized verifier.

Mutual remote attestation scheme

D-MUTRA enacts a novel software-based chain of trust based on integrity freshness criteria,

where the most recently verified payload is elected by consensus to make the next payload

verification. In the context of WASM, D-MUTRA principle must be slightly deviated. WASM

module cannot directly verify a peer (i.e., module), but WASM runtime can. The verifier election

smart contract shall elect WASM runtimes, as reflected in Figure 14.

Figure 14. WASM mutual remote attestation by D-MUTRA

5.3. Alignment with NATWORK

5.3.1. Workload portability

Keeping in mind the stated priority of workload migration ability as defined in D2.1, it is worth

stating that our solution restricts deployment to locations where a modified WASMTIME runtime

is implemented, only where integrity verification is requested. Conversely, WASM modules can

still be executed in a standard WASM runtime but without integrity being verified during their

execution. In fact, WASM top notch migratability is conserved and untouched as WASM modules

can still be executed on any platform duly equipped with a WASM runtime of any kind. In the

context of the Telecom industry, workloads will be executed in either controlled or managed

execution environments. The execution environments are either detained or managed by

operators which deploy their workloads (i.e., telecom operators) or by their contractors (i.e.,

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 65 of 71

cloud vendors). In both cases, prior to deploying the WASM module, a managed deployment and

verification leveraging either authentication or better remote attestation of the specific runtimes

can be processed. In practice, telecom operators can set up a pre-deployment security per

construction deployment of the runtimes to get a runtime integrity of their modules thereafter.

This policy can be worked out because it implies a limited and controlled number of deployments

at pre-identified locations. Moreover, the possible execution of the same WASM modules with

unchanged runtimes, relaxes this runtime pre-deployment policy and justifies it, in the

perspective of the telecom operators whose modules can still execute everywhere (up to

uncontrollable end user endpoints) but will be integrity verified in a perimeter defined by the

runtime pre-deployment policy.

5.3.2. Performance impact

As shown in [49], the performance impact induced by integrity verification can be capped to an

average 1%, by use of two techniques:

- Spread-over-time hashing, where each step of the hashing process is paused with duration

adjustable idle times. This technique resides in a specific development by modification of a

hashing function. No administrative right is needed to employ this user-level technique.

Noticeably, the performance impact is workload dependent.

- Linux’s cgroup resource limitation, applied to the measuring thread, ensuring that the WASM

module interpretation executed at the same time is not allocated with a reduced amount of

CPU resources. Administrative rights must be delivered to leverage this system's utility.

These two techniques will be complemented with an on-demand activation pattern, lower

bounding the impact irrespectively to the workload type and tentatively through an

implementation without specific administrative right. The specific advantage of on-demand

trigger is the limitation to one measure made sporadically, with no periodic repetition, hereto

dropping drastically dropping the induced costs.

5.3.3. Sustainability

 Sustainability shall be considered over resource consumption in terms of CPU processing and

memory usage. With an adjustable CPU processing level limited to 1%, the solution can be

considered sustainable.

The memory consumption of the measuring process is always lower than the memory footprint

of the monitored process and generally smaller by several orders of magnitude. A short-lived

buffer is used and released after each measurement cycle.

When integrated with the D-MUTRA blockchain-based remote attestation framework,

blockchain inflation rate must be monitored and controlled by limiting the block creation

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 66 of 71

cadence. In a high-frequency scenario—one attestation every 2 seconds for 3 agents—the system

produces approximately 47.3 million attestations per year, resulting in around 28.4 GB of

blockchain data annually. However, D-MUTRA mitigates this by storing only tampering

detections, which are rare events. This reduces the blockchain inflation rate by 6 to 12 orders of

magnitude, depending on the frequency of detected anomalies. In this condition, one tampering

detection inflates the blockchain by approximately 600 Bytes, which is totally negligible. In

addition to tampering detection, each onboarding induces a remote attestation at the same cost.

5.4. Future work in the NATWORK project and beyond.

5.4.1. D-MUTRA integration

As explained, the full stack remote attestation and the integration into D-MUTRA will be carried

out during the project.

5.4.2. Towards 0-latency at start

An implementation of a novel Attest-After-Starting measuring sequence will be established,

enabling workload to instantly start. To cover the associated integrity blind window (i.e., between

the workload start and its measurement), our design will consider a bridge with the workload

authentication at on-boarding. From the authentication step onward, our attestation takes

runtime measurements.

5.4.3. Lower bounding the performance impact in all situations with an on-

demand trigger

An implementation of an on-demand activation of the runtime verification will be established,

dropping the performance impact in all situations, irrespective of the workload size and

detention of platform administrative right.

5.4.4. WASM module confidentiality preservation

We will devise and implement confidentiality preservation, through another set of modifications

on WASMTIME runtime and a SECaaS processing. The latter will encrypt the WASM module while

the former will decrypt the encrypted module before execution.

5.4.5. During or beyond NATWORK. Mitigating JIT spraying

During NATWORK, we will study the possibility to detect JIT spraying, leveraging our integrity

verification second thread as described in Figure 11. Flow diagram of NATWORK WASM module

runtime integrity verification JIT spraying defense was not part of our original plan, according to

our feasibility study, the implementation of JIT spraying defense will be tentatively worked out

during or following NATWORK.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 67 of 71

6. Conclusion
In NATWORK, PDSCMs is elaborated on the three payload formats, elevating security

substantially in each domain:

1. Containerized xAPP security is elevated, beyond O-RAN authentication specifications and

fulfilling O-RAN WG11 identified persisting security threat (i.e., runtime tampering),

applying runtime integrity verification. The PDSCM consists of a modified Docker’s

orchestration layer, to bridge a sidecar container. If this schema cannot be applied, the

PDSCM will consist of modifying the xAPP to inject the required routines for the

continuous integrity verification.

2. Highly migratable WASM modules security is significantly improved by a PDSCM

consisting of modifying the WASM runtime, not the WASM module itself. This is a

significant security improvement, done without touching the payload, making WASM

technology safer and usable for networking.

3. Our work on native payloads integrates use cases illustrating how PDSCM hardens a

security service. Two PDSCMs are implemented, consisting of (i) placing MMT probe (i.e.,

a network anomaly detection probe) into SEV-NP TEE and (ii) modifying it to be attestable

and runtime verified. This work will be continued and exemplified in Use Cases 4.5 and

4.6, respectively. This will notably show how MMT integrity preservation can be offered

by two opposing techniques (i.e., TEE and remote attestation) and the intricacies and

impacts of each in terms of performance and sustainability.

PDSCMs contribute to NATWORK’s reconciliation principle, reducing the costs of security by

applying security at each elementary component. They also contribute to NATWORK’s security

challenges, hardening the security code itself, for more reliable security services. They differ in

nature and are enacted at different levels, impacting differently workload migratability as

recalled in Section.2.1.1.2.

As each use case and context differs (e.g., no workload migration considered, possession of

platform administrative rights, severity of the security threat, and access to technology), the

appropriate PDSCM can be implemented to better match the requirements and offered

possibilities.

6.1. Next steps

The next phase will focus on validating and integrating the proposed Pre-Deployment Security

per Construction Measures (PDSCM) across native, container, and WASM payloads. Efforts will

extend towards adaptive, performance-aware security regulation, ensuring optimal trade-offs

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 68 of 71

between protection, efficiency, and sustainability. Validation through representative cloud–edge

use cases will demonstrate secure and platform-agnostic payload mobility. Continued

collaboration with confidential computing and WASM ecosystem initiatives will ensure alignment

with state-of-the-art developments, reinforcing NATWORK’s objective to deliver secure,

interoperable, and energy-efficient computing continuum operations. These efforts will be

reported in the deliverable D3.6 – “Pre-Deployment Security per Construction Measures.r2” due

to M30.

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 69 of 71

References
[1] Intel. (n.d.). Confidential containers made easy. Retrieved September 21, 2025, from

https://www.intel.com/content/www/us/en/developer/articles/technical/confidential-

containers-made-easy.html

[2] RedHat. (n.d.). Zero trust starts here: Validated patterns for confidential container

deployment. Retrieved September 21, 2025, from

https://www.redhat.com/en/blog/validated-patterns-confidential-container-deployment

[3] Falcao, E., Silva, F., Pamplona, C., Melo, A., Asadujjaman, A. S. M., & Brito, A. (2025).

Confidential Kubernetes deployment models: Architecture, security, and performance

trade-offs. Applied Sciences, 15(18), 10160. https://doi.org/10.3390/app151810160

[4] Intel. (n.d.). TDX documentation. Retrieved September 21, 2025, from

https://www.intel.com/content/www/us/en/developer/tools/trust-domain-

extensions/documentation.html

[5] AMD. (n.d.). SEV-SNP documentation. Retrieved from

https://www.amd.com/fr/developer/sev.html

[6] Ye, M. (2024). Enabling Performant and Secure EDA as a Service in Public Clouds Using

Confidential Containers. Retrieved September 21, 2025, from

https://arxiv.org/pdf/2407.06040v1

[7] Confidential Containers. (2024). Introduction to Confidential Containers (CoCo). Retrieved

September 21, 2025, from

https://confidentialcontainers.org/blog/2024/02/16/introduction-to-confidential-

containers-coco/

[8] Pronteff. (n.d.). Openshift confidential containers now on Microsoft Azure. Retrieved

September 21, 2025, from https://pronteff.com/openshift-confidential-containers-now-

on-microsoft-azure/

[9] Edgeless Systems. (n.d.). Marblerun. Retrieved from

https://www.edgeless.systems/products/marblerun

[10] Johnson, M. A., et al. (2024). Confidential Container Groups: Implementing confidential

computing on Azure container instances. ACM Queue 22(2). https://spawn-

queue.acm.org/doi/pdf/10.1145/3664293

[11] Sanctuary. (n.d.). Trusted container extensions for container-based confidential

computing. Retrieved September 21, 2025, from https://sanctuary.dev/en/blog/container-

based-confidential-computing/

[12] Brasser, F. (2022). Trusted Container Extensions for Container-based Confidential

Computing. https://arxiv.org/pdf/2205.05747

https://www.intel.com/content/www/us/en/developer/articles/technical/confidential-containers-made-easy.html
https://www.intel.com/content/www/us/en/developer/articles/technical/confidential-containers-made-easy.html
https://www.redhat.com/en/blog/validated-patterns-confidential-container-deployment
https://doi.org/10.3390/app151810160
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.amd.com/fr/developer/sev.html
https://arxiv.org/pdf/2407.06040v1
https://confidentialcontainers.org/blog/2024/02/16/introduction-to-confidential-containers-coco/
https://confidentialcontainers.org/blog/2024/02/16/introduction-to-confidential-containers-coco/
https://pronteff.com/openshift-confidential-containers-now-on-microsoft-azure/
https://pronteff.com/openshift-confidential-containers-now-on-microsoft-azure/
https://www.edgeless.systems/products/marblerun
https://spawn-queue.acm.org/doi/pdf/10.1145/3664293
https://spawn-queue.acm.org/doi/pdf/10.1145/3664293
https://sanctuary.dev/en/blog/container-based-confidential-computing/
https://sanctuary.dev/en/blog/container-based-confidential-computing/
https://arxiv.org/pdf/2205.05747

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 70 of 71

[13] Budigiri, G., Baumann, C., Mühlberg, J. T., Truyen, E., & Joosen, W. (2021). Network policies

in Kubernetes: Performance evaluation and security analysis. In 2021 Joint European

Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit).

[14] Koukis, G., Skaperas, S., Kapetanidou, I. A., Mamatas, L., & Tsaoussidis, V. (2024).

Performance evaluation of Kubernetes networking approaches across constrained edge

environments. In 2024 IEEE Symposium on Computers and Communications (ISCC).

[15] Shamim, M. S. I., Bhuiyan, F. A., & Rahman, A. (2020). Xi commandments of Kubernetes

security: A systematization of knowledge related to Kubernetes security practices. In 2020

IEEE Secure Development (SecDev) (pp. 58–64).

[16] Carrión, C. (2022). Kubernetes scheduling: Taxonomy, ongoing issues and challenges. ACM

Computing Surveys, 55, 1–37.

[17] Rahman, A., Shamim, S. I., Bose, D. B., & Pandita, R. (2023). Security misconfigurations in

open source Kubernetes manifests: An empirical study. ACM Transactions on Software

Engineering and Methodology, 32, 1–36.

[18] Wlodarczak, P. (2017). Cyber immunity: A bio-inspired cyber defense system. In

Bioinformatics and Biomedical Engineering: IWBBIO 2017, Proceedings, Part II (Vol. 5).

Springer.

[19] Kampa, S. (2024). Navigating the landscape of Kubernetes security threats and challenges.

Journal of Knowledge Learning and Science Technology, 3, 274–281.

[20] O-RAN Alliance. (n.d.). Near-RT RIC architecture 7.0. Retrieved from

https://specifications.o-ran.org/specifications

[21] O-RAN Alliance. (n.d.). Security requirements and controls specifications 12.0. Retrieved

from https://specifications.o-ran.org/specifications

[22] O-RAN Alliance. (n.d.). Study on security for Service Management and Orchestration (SMO)

6.0. Retrieved from https://specifications.o-ran.org/specifications

[23] O-RAN Alliance. (n.d.). Study on security for O-Cloud 7.0. Retrieved from

https://specifications.o-ran.org/specifications

[24] O-RAN Alliance. (n.d.). Study on Zero Trust Architecture for Secure O-RAN. Retrieved from

https://specifications.o-ran.org/specifications

[25] O-RAN Software Community. (n.d.). O-RAN xAPP SDK. Retrieved from https://lf-o-ran-

sc.atlassian.net/wiki/spaces/ORANSDK/pages/14516830/xAppFramework

[26] O-RAN Alliance. (n.d.). Study on security for Near Real Time RIC and xApps 5.0. Retrieved

from https://specifications.o-ran.org/specifications

[27] Collberg, C., Thomborson, C., & Low, D. (1997). A taxonomy of obfuscating transformations.

[28] Barak, B. (2016). Hopes, fears, and software obfuscation (survey / review).

[29] Xu, H., Zhou, Y., Kang, Y., & Lyu, M. R. (2017). On Secure and Usable Program Obfuscation:

A Survey. arXiv:1710.01139.

[30] De Sutter, B., et al. (2024). Evaluation Methodologies in Software Protection Research.

https://specifications.o-ran.org/specifications
https://specifications.o-ran.org/specifications
https://specifications.o-ran.org/specifications
https://specifications.o-ran.org/specifications
https://specifications.o-ran.org/specifications
https://lf-o-ran-sc.atlassian.net/wiki/spaces/ORANSDK/pages/14516830/xAppFramework
https://lf-o-ran-sc.atlassian.net/wiki/spaces/ORANSDK/pages/14516830/xAppFramework
https://specifications.o-ran.org/specifications

 D3.5 - Pre-Deployment Security per Construction Measures.r1

Page 71 of 71

[31] ARXAN Technologies. (n.d.). Application security. Retrieved from

https://digital.ai/products/application-security/

[32] VMProtect. (n.d.). VMProtect. Retrieved from https://vmpsoft.com/

[33] SOLIDSHIELD. (n.d.). SOLIDSHIELD. Retrieved from https://www.solidshield.com/

[34] AppDome. (n.d.). AppDome. Retrieved from https://www.appdome.com

[35] Obfuscator-ai. (n.d.). Obfuscator-ai. Retrieved from https://pypi.org/project/obfuscator-ai

[36] Li, R., et al. (2024). PowerPeeler : A Precise and General Dynamic Deobfuscation Method

for PowerShell Scripts.

[37] Garba, P., & Favaro, M. (2019). Saturn: Software deobfuscation framework based on LLVM

[38] Nagios. (n.d.). Nagios monitoring tool. Retrieved from https://www.nagios.org/

[39] Zabbix. (n.d.). Zabbix monitoring tool. Retrieved from

https://www.zabbix.com/documentation/current/en/

[40] Prometheus. (n.d.). Prometheus + Grafana. Retrieved from https://prometheus.io/

[41] Datadog. (n.d.). Datadog monitoring tool. Retrieved from https://www.datadoghq.com/

[42] New Relic. (n.d.). New Relic monitoring tool. Retrieved from https://newrelic.com/

[43] DESIRE-6G Project. (n.d.). Deliverable D3.3. Retrieved from

https://zenodo.org/records/17077365

[44] W3C. (n.d.). WASM W3 working group. Retrieved from

https://www.w3.org/groups/wg/wasm

[45] W3C. (n.d.). WASM specifications. Retrieved from https://www.w3.org/TR/wasm-core-

2/WASM

[46] Perrone, G., & Romano, S. P. (2024, July). WebAssembly and security: A review.

[47] Michaud, Q., et al. (2024, October). Securing stack smashing protection in WebAssembly

applications

[48] She, X., et al. (2024) WaDec: Decompiling WebAssembly Using Large Language Model

[49] Werner, B. (n.d.). WasmRev. Retrieved from https://github.com/benediktwerner/rewasm

[50] Fang, W., et al. (2024). StackSight: Unveiling WebAssembly through large language models

and neurosymbolic chain-of-thought decompilation.

[51] Lacoste, M., & Lefebvre, V. (2023). Trusted execution environments for telecoms:

Strengths, weaknesses, opportunities, and threats. IEEE Privacy and Security Journal.

[52] ETSI. (2019). GR NFV-SEC 018 V1.1.1: Network functions virtualisation (NFV); Security;

Report on NFV remote attestation architecture.

[53] AMD. (n.d.). SEV-NP TEE user documentation. Retrieved from

https://www.amd.com/fr/developer/sev.html

[54] OWASP. (n.d.). STRIDE methodology for threat modeling. Retrieved from

https://owasp.org/www-community/Threat_Modeling_Process#stride

https://digital.ai/products/application-security/
https://vmpsoft.com/
https://www.solidshield.com/
https://www.appdome.com/
https://pypi.org/project/obfuscator-ai
https://www.nagios.org/
https://www.zabbix.com/documentation/current/en/
https://prometheus.io/
https://www.datadoghq.com/
https://newrelic.com/
https://zenodo.org/records/17077365
https://www.w3.org/groups/wg/wasm
https://www.w3.org/TR/wasm-core-2/WASM
https://www.w3.org/TR/wasm-core-2/WASM
https://github.com/benediktwerner/rewasm
https://www.amd.com/fr/developer/sev.html
https://owasp.org/www-community/Threat_Modeling_Process#stride

